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Computing the DFT
!Reviewing the basic DFT formula:

!Direct computation requires about 4N 
multiplications and 4N additions for each k 
(a complex multiplication needs 4 real 
multiplications and 2 real additions)

!For all N coefficients, gives about 8N2 operations
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!Can we speed this up?
!Exploit symmetry characteristics of ?

"

"

! We can use these symmetry properties to 
group terms in the summation to improve 
computational efficiency (how long it takes 
as a function of how big N is).
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The FFT
!Algorithms for computing the DFT which 

are more computationally efficient than the 
direct method (better than proportional to 
N2) are called Fast Fourier Transforms.

!Generally, we use FFT to refer to 
algorithms which work by breaking the 
DFT of a long sequence into smaller and 
smaller chunks. 

Goertzel algorithm (not an FFT)

!This shows that we can compute X[k] using an 
LTI system, as opposed to directly. Note that it�s a 
different system (called hk[n])  for every k.
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!If we use this, we get

We then make it more complicated:

!This gets rid of the complex coefficients in all the 
feedback (pole) terms, which actually makes it 
faster than the original method.
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Flow graph for Goertzel algorithm:

=X[k]



4

!The Goertzel algorithm helps by about a 
factor of 2. (Unless we need only certain 
X[k]�s, then it can help a lot.)

!We can reduce the time complexity 
from O(N2) (compute time proportional to N2) 
to O(N logN) (proportional to N times logN), 
if we use FFTs.  There are two main methods:
"Decimation-in-time
"Decimation-in-frequency

Decimation in time
!Start with decimation by 2 (Fig. 9.3)
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Resulting Improvement
!Original direct DFT:

2N2 steps  (N2 multiplications, N2 additions)
!New way:

N/2 DFT + N/2 DFT + N mult + N add.
= 2(N/2)2 + 2(N/2)2 + N + N
= N2 + 2N  steps
(N2/2 + N  multiplications, additions)

!This is faster if  N2 > 2N
"True as long as  N > 2



6

!Basic Underlying Idea:
Use 2 half-size DFTs instead of 1 full-size DFT.

!Continuing the idea:  We could split the half-size 
DFTs in half again, and keep splitting the pieces in 
half until the number of points left in each block is 
down to 2. (Then we just do those directly.)

Side note: We could just as easily split into 3 pieces 
instead of 2 � the math works out to break a DFT 
into any set of equal-size pieces.

8-pt DIT FFT
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A 2-pt DFT:

Resulting
8-pt FFT:
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!As long as N can be broken down into a bunch of 
small factors, we can use this method.  
"Usually we use powers of 2 (N=2x), so that 2 is the 

biggest prime factor.  This gives the most improvement
!The time complexity becomes proportional to how 

many times we have to subdivide N before we get 
to the smallest block � the number of FFT stages.
"For powers of 2, this is log2(N).
"Overall time becomes (N log2N) instead of (N2)
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Significance
!Change from N2 to Nlog2N is big:

"N=64: 4,096 reduces to 384
"N=256: 65,536 2,048
"N=1024: 1,048,576 10,240
"N=4096: 16,777,216 49,152
"N=16384: 268,435,456 229,376

!But�we can still get a little more
improvement through symmetry.

The Butterfly
!If we use N=2x, then all the FFT operations are 

2-input 2-output blocks, similar to 2-point DFT�s.  
This building block is called a butterfly.  
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!Since                      , we can re-draw the butterfly 
operation, reducing each block to a single 
multiplication (2x improvement).
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Resulting 8-pt FFT
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In-place computation
!Each stage of the FFT process has N inputs and N 

outputs, so we need exactly N storage locations at 
any one point in the calculations.

!It is possible to re-use the same storage locations at 
each stage to reduce memory overhead.
"Any algorithm which uses the same memory to store 

successive iterations of a calculation is called an 
�in-place� algorithm.

"Computation must be done in a specific order.

Decimation in Frequency
!Instead of separating odd and even x[n], we 

separate odd and even X[k].  For k even:
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!For k odd, we get similar results (with an 
additional multiplication):

!Again, we can compute the DFT using 2 half-size 
DFTs, but this time we combine x[n] terms first, 
then do the DFT.

!We still
"Have a sequence of butterfly elements
"Can use symmetry to reduce computation
"Can do in-place computation
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Butterfly element:

Resulting
8-pt FFT


