
TreeMaps

CSE 591 Visual Analytics

Shinichiro Terashima

Agenda
What is a Treemap?
Treemap Basics
Original Treemap Algorithm (Slice-and-dice layout)
Issues for Treemaps
Cushion Treemaps
Squarified Treemaps
Ordered Treemaps
Quantum Treemaps
Other Treemaps
Application of Treemaps (PhotoMesa)
Conclusion

What is a Treemap?
Space filling technique to visualize hierarchical data

Basics
Originally designed to visualize files on a hard
drive and developed by Shneiderman and Johnson.
Developed from a tree to get over the limitation
that node and link diagrams use the display space
inefficiently.
The full display space is used to visualize the
contents of the tree.
Each node has a name (a letter) and an associated
size (a number).
Each rectangle corresponds to an attribute of
the data set.

Basics (cont.)
The size of leaves may represent for instance the size
of individual files, the size of non-leaf nodes is the
sum of the sizes of its children.
The treemap is constructed via recursive subdivision
of initial rectangle.
The size of each sub-rectangle corresponds to
the size of the node.
Color and annotation can be used to give extra
information about the leaves.
The treemap is very effective when size is the most
important feature to be displayed.

Basics (cont.)

Basics (cont.)

Aspect Ratio (of a rectangle)
Max (width/height, height/width).
The lower the aspect ratio of a rectangle,
the more nearly square it is.
ie. a square has the ratio of 1.

Layout of a treemap.
Set of rectangles that makes up the map.

Original treemap algorithm
(Slice-and-dice layout)

The simplest treemap algorithm.
At each level, the orientation of lines switches. (vertical to
horizontal or horizontal to vertical)
Shading indicates the order.
The size of each rectangle reflects the size of the leaf.

Issues for Treemaps

Treemaps often fall short to visualize the
structure of tree.
Aspect Ratio difference. ie. Balanced tree.
rectangles are difficult to compare and to
select.
Maintain order.
Accommodate changes in the data.
Difficult to find the data.

Cushion Treemaps Overview
Compact, space-filling displays of hierarchical information based
on recursive subdivision of a rectangular image space.

Take advantage of how human visual system is trained
to interpret variations in shades as illuminated surface.

Shading is used to show insight in the hierarchical structure.

During the subdivision ridges are added per rectangle to
form a surface that consists of recursive cushion.

Various coloring options are available to show the size, the level,
and other attributes of the leaves.

Cushion Treemap Method to
produce the surface.

1. Subdivide the interval and add a
bump to each of the two
subintervals.

2. Repeat the step above recursively.
To each new sub-interval, add a
bump again, with the same shape
but half of the size of the previous
one.

Use a parabola function to make the
ridges have cushion-like shape.

If we interpret this curve as a side
view of a bent strip, and render it as
viewed from above, the bumps
transform into a sequence of rides.

Cushion Treemap Algorithm
Follows the original treemap algorithm.

The main input consists of the root of the tree to be rendered,
the initial rectangle to be used, and settings for height and
parabola function.

The main extension is that during the generation of the
rectangles, the surface is constructed.

The surface is bent in a direction.

If the tree is a leaf, the cushion is rendered, else the direction is
changed and its children are visited.

Cushion Treemap example
Cushion Treemap VS Original
Treemap

Cushion Treemap Summary

Efficient: generation of image takes less than
a second.
Effective: the structure is visualized
much more effective compared with
original treemaps.
Easy to implement: the algorithm is very
simple.
Emergence of thin, elongated rectangles.

Squarified Treemaps Overview
For large hierarchical structure.
Sub-rectangles have a lower aspect ratio.
Display space is used more efficiently. The number of
pixels to be used for the border is proportional to its
circumference.
Square items are easier to detect and point at.
Comparison of the size of rectangle is easier
when their aspect ratio are similar.
The accuracy of presentation is improved.

Squarified Treemaps Method.
Squarification Key Ideas.

Do not consider subdivision for all levels
simultaneously.

Leads to an explosion in computation time.
Produce square-like rectangles for a set of siblings,
given the rectangle where they have to fit in, and
apply the same method recursively.

The start point for the next level is close to
square, which gives good subdivisions.

Squarification Treemap
Algorithm

Split the initial rectangle. Choose horizontal
subdivision if the original rectangle is wider than high,
vertical subdivision if the original rectangle is higher
than wide.
Fill the left half by adding rectangles until we
reach the optimum point of aspect ratio.
Start to process the right half based on above.
Apply above recursively to work on the rest of
rectangles.
The order in which the rectangles are processed is
important. Process large rectangles first.
An optimal result can not be guaranteed.

Example of Squarification

A rectangle with width 6
and height 4
Subdivided into 7
rectangles(6,6,4,3,2,2,1)

Squarified Treemaps Frames

Additional feature to improve the visualization
of the structure.
Derived from Nesting (maze-like images).
Filled in the borders with gray-shades
based on a geometric model.

Example of Squarification
Treemap

Squarification Treemap VS
Original Treemap

Squarification Treemap
Summary

Rectangles get forced to be more square.
Represent sizes more precisely.
Frames can improve the perception of
structure.
Changes in the data set can cause dramatic
discontinuous changes in the layouts.

Hard to find items on the treemap by memory,
decreasing efficacy for long-term users.

Orders are not preserved.

Ordered Treemap Overview

Ensures that items near each other in the
given order will be near each other in
the treemap layout.
Maintaining relatively favorable aspect ratios
of the constituent rectangles.
Roughly preserves the given ordering of
the data (Index).
Applicable to a situation where legibility,
usability and smooth updating are important.

Ordered Treemap Algorithm
Inputs: Rectangle R and ordered list of items by
index having specific areas
Recursive algorithm. At each step:
Select a pivot item (P)
If the width of R is greater than or equal to the
height, divide R into four rectangles, R1, Rp,R2,
and R3 as shown below.

Ordered Treemap Algorithm
(Cont.)

Divide the list into 3 parts L1,L2 and L3 to be laid
out in R1, R2, and R3.
If the number of items is <= 4, lay them out in either
a pivot, quad, or snake layout,
Stop If width > = height (For this example)
Apply recursively.

Ordered Treemap Algorithm
Selection of Pivot

Pivot-by-size
The pivot is taken to be the item with the largest
area since the largest item is the most difficult to
place.

Pivot-by-middle
The pivot is taken to be the middle item of the list
since this is more likely to create a balanced
layout.

Pivot-by-split-size
Selects the pivot that will split L1 and L3 into
approximately equal total areas.

Ordered Treemap Algorithm
Selection of Pivot (Cont.)

Ordered Treemap Algorithm
Dividing the list L

Divide the items in the list, other than P,
into three lists, L1, L2, and L3, such
that L1 consist of items whose
index is less than P and L2 have
items having index less than those
in L3, and the aspect ratio of RP is as
close to 1 as possible.

Ordered Treemap Algorithm
Stopping condition

If number of items is <= 4, lay them
either in a pivot, quad, or snake
layout
Pick the best layout whose average
aspect ratio is closest to 1.

Ordered Treemap Algorithm
Stopping condition (Cont.)

Pivot Snake Quad

Performance of the Ordered
Treemap Algorithm

Pivot-by-size
n*log(n) average, worst
case.

Pivot-by-middle
n*log(n) worst case.

2n

Example of Ordered Treemap
Ordered Treemap VS Original
Treemap

Ordered Treemap Summary

Creates layouts that preserve order and
that update cleanly for dynamically changing
data.
Much better aspect ratio than the
original treemap algorithm.
Left-to-right and top-to-bottom
direction in the layout.
Tradeoff between aspect ratios and
smoothness of layout changes.

Quantum Treemap
Designed for laying out images or other objects of
indivisible (quantum) size.
Guarantees that every generated rectangle will
have a width and height that are integral
multiple of an input object size.
Always generates rectangles in which a grid of
elements of the same size can be layed out.
Applied for an image browsing software “PhotoMesa”

Quantum Treemap Algorithm
Directly based on the Ordered Treemap
Algorithm. ie. Uses pivot selection & stop condition

Takes an elemental object dimension, and a
list of numbers of objects. Returns a sequence
of rectangles where each rectangle is large
enough to contain a grid of the number of
objects requested.
Takes extra input that is the aspect ratio of the
elements to be laid out in the Rectangle.
Occasionally produces undesirable layouts due to too
much wasted space.

Quantum Treemap VS
Ordered Treemap

Ordered Treemap Quantum Treemap

Quantum Treemap Summary
Improved version of the ordered treemaps in
terms of laying out images or objects.
Generated rectangles will have a width and height
that are integer multiple of an input object size.
All the grid elements will align perfectly with
rows and columns of elements running across
the entire series of rectangles.

Other Treemaps
Ordered Quantume Treemap

Combined the ideas of Quantum Treemaps and Ordered Treemaps.
Bubblemaps

Lays out groups of quantum-sized objects in an ordered position with no
wasted space per group, although there is a small amount of wasted sapce
for the entire area.

Strip Treemaps
Desinged to produce highly readble displyas. Layout has a consistently
ordered set of rectangles while still maintaining good aspect ratios.

StepTree
extended into three dimensions by the simple expedient
of stacking levels of the tree on top of each other in 3D space.

Circular Treemaps
don't fill the available space completely.
fill the available space to a varying degree which in the case of nested tree
structures leads to the problem that circles of the same size could represent
files (or folders) of a vastly different size .

Other Treemaps (Cont.)

Bubblemap

Other Treemaps (Cont.)

Step Tree Circular Treemap

Application of Treemaps
“PhotoMesa”

A standalone application that supports browsing of
large sets of images.
Allows users to view multiple directories of images
in a zoomable environment.
Organizes images in a two-dimensional grid, where
images with a shared attribute are grouped together.
Apply the quantum treemap, ordered treemap,
and bubblemap for images display.
Originally written in Java, now written in .NET.

Application of Treemaps
PhotoMesa screenshot

Conclusion
Treemaps represent large hierarchical collections of two
dimensional quantitative data in a compact display.

One dimension is mapped to the area of the rectangles and the
other is mapped to the color of a rectangle.
A label is placed in the rectangles.

Each treemap algorithm has its merit and demerit.
Cushion Treemaps
Squarified Treemaps
Ordered Treemaps
Quantum Treemaps
Other Treemaps

Application.
PhotoMesa
Stock Portfolio

References
Ordered and Quantum Treemaps:Making Effective Use of 2D
Space to Display Hierarchies

Benjamin B. Bederson
Ben Shneiderman
Martin Wattenberg
http://www.cs.umd.edu/hcil/photomesa/TOG-treemaps.pdf

Quantum Treemaps and Bubblemaps for a Zoomable Image
Browser

Benjamin B. Bederson
http://hcil.cs.umd.edu/trs/2001-10/2001-10.pdf

Ordered Treemap Layouts
Ben Shneiderman
Martin Wattenberg
http://www.ifs.tuwien.ac.at/~mlanzenberger/ps_infovis/ss03/stuff/
auth/00963283.pdf

References (Cont.)
Squarified Treemaps

Mark Bruls
Kees Huizing
Jarke J. vanWijk
http://www.win.tue.nl/~vanwijk/stm.pdf

Cushion Treemaps: Visualization of Hierarchical Information
Jarke J. van Wijk
Huub van de Wetering
http://cs.ubc.ca/~tmm/courses/infovis/readings/ctm.pdf

Extending Tree-Maps to Three Dimensions: A Comparative Study
Thomas Bladh
David A. Carr
Jeremiah Scholl
http://www.sm.luth.se/csee/csn/publications/APCHI04Web.pdf

References (Cont.)
pebbles - using Circular Treemaps to visualize disk usage

Kai Wetzel
http://lip.sourceforge.net/ctreemap.html

