

Overview

- A Review and Taxonomy of DistortionOriented Presentation Techniques
Y.K.Leung M.D.Apperley 1994
- Techniques for Non-Linear Magnification Transformations
T.A.Keahey E.L.Robertson 1996
- Extending Distortion Viewing from 2D to 3D

Carpendale Cowperthwaite Fracchia 1997

- Multi-Perspective Images for Visualization
- s.Valance P.Calder 2002
- Multiperspective Imaging
- S.M.Sertz J.Kim 2003

About this paper
A Review and Taxonomy of Distortion-Oriented Presentation Techniques (94')
Y.K.Leung (Swinburne Univ. of Tech., Australia) M.D.Apperley (Massey Univ., New Zealand)

- (A good review)
- Uses transformation and magnification functions to describe different techniques, presents a taxonomy which demonstrates their underlying relationships.
- Presents a unified theory to reveal their roots and origins.
- Discusses issues related to the implementation and performance of these techniques.
- Provides the mathematical derivation of the transformation and magnification functions for various distortion-oriented presentation techniques in the appendix.

Baw lan or

Content

Review of Representative Works

- Polyfocal display [Kadmon \& Shlomi 1978]
- Bifocal display [Spence \& Apperley 1982]
- Fisheye view [Furnas 1986]
- Perspective Wall [Mackinlay et al.c 1991]
- Graphical Fisheye Views [Sarkar \& Brown 1992]

Polyfocal display

- Proposed a polyfocal projection for the presentation of statistical data on cartographic maps, and proposed an implementation of a multifocal display.
- Laid down a solid mathematical foundation for many later techniques.

Polyfocal display (cont)

Transformation \& magnification functions

Polyfocal display on 1-D and 2-D

Polyfocal display (cont)

Multifocal polyfocal projection (multiple peaks)

Bifocal display

Transformation \& magnification functions

Polyfocal display on 1-D and 2-D

Fisheye view

typical magnification function

- $\operatorname{DOI}(a \mid .=b)=\operatorname{API}(a)-D(a, b)$

Fisheye view application

Fisheye view application (cont)

Fisheye view application (cont)

Perspective Wall

Perspective Wall (cont)

Transformation \& magnification functions A conceptual descendant of the bifocal display.

$1+\frac{1}{1-2}+1$

Graphical Fisheye Views

$$
T(x)=\frac{(d+1) x}{(d x+1)} \quad \text { and } \quad M(x)=\frac{(d+1)}{(d x+1)^{2}},
$$

Perspective Wall application

Graphical Fisheye Views (cont)

A taxonomy of these techniques

-Classified by the magnification functions:
-Piecewise continuous
-Constant function (bifocal display)
-Varying function (perspective wall)
-Continuous

Continuous magnification functions

- The problem:
- tend to distort the boundaries of the transformed image (e.g. Polyfocal display)
- Can be overcome by
- Applying transformation independently in the x and y directions, as the Cartesian fisheye view in [Sarkar and Brown 1992]
- Remapping the distorted boundaries onto a rectangle size of the display area, as the Polar Fisheye view in [Sarkar and Brown 1992]

Piecewise continuous functions

Continuous magnification functions (cont)

- An analogy: To treat the displayed information as if it was printed on a stretchable rubber sheet mounted on a rigid frame.
- The information is dense in the unstretched form, the viewer can see only the global context of the information structure. To see the detailed information, the rubber sheet has to be stretched. The stretching of the rubber sheet is analogous to applying magnification to a section of the screen. As the rubber sheet is mounted on a rigid frame, any stretching in one part of the sheet results in an equivalent amount of "shrinkage" in other areas. The situation is similar in the case of a multiple-focus view. The only difference is that stretching or magnification will occur in a greater number of areas. The amount of stretching or magnification, and the manner in which it is applied on the sheet, depend entirely on the magnification function used.

Performance issues (cont)

- Proper system response time:
- Excessively long system response time will render an interface "unusable".
- Use dedicated computer hardware to speed up mathematical transformation
- Use some tricks in the implementation, by taking advantage of the memory management system. (covered later)
- Too fast system response could also be disconcerting to the user. The effect is similar to watching a home video taken by an amateur who panned the view jerkily at high speed.
- Slowing down is easy

Implementation issues

Implementation issues (cont)

- Continuous magnification function:
- Have to cater to the continuum of magnification factors at every possible focus point, so it is impractical to use pregenerated view images.
- Instead, use a piecewise continuous magnification function to approximate the continuous function. N * N bit maps for N level function in 2-D application.
- Dedicated hardware may be needed to provide computational power, if approximation of the transformation function is not desirable.

Conclusion

Linear Transformations

Non-Linear Transformations

- Fisheye Zoom
- Hyperbolic
- Allows infinite Euclidean space to be mapped into a finite disk with center bigger and periphery smaller.
- 3D Pliable Surfaces
- Uses perspective projections of curved 3D surfaces to create non-linear magnification effects
- General Non-Linear

General Non-Linear

General Non-Linear (cont)

Figure 5. Combined Linear and Non-Linear

General Non-Linear (cont)

- Hybrid Transformations
- Constraining transformations

Figure 6. Constrained Domains

General Non-Linear (cont)

Figure 7. Boundary Conditions

Filtering Transformations

- Smoothly shift between the warped and unwarped views in order to control the degree of warping

Figure 9. Filtering for $\mathrm{s}=1.0,0.65,0.35$

- 2D Piecewise Transformations

Figure 11. Flat/Radial: tanh, 1D, 2D Piecewise
Figure 10. 1D Radial: tanh, piecewise $\mathbf{n}=8$, 16
piecewise approximation of $\tanh (x)$

- Summarizes the non-linear transformations
- Provides:
- combination with linear magnifications
- constrained transformation domains
- combining multiple transformations
- enhanced control of the overall degree to which transformations should take effect
- approximation
- Occlusion-free

Extending Distortion Viewing from 2D to 3D (97’)

M. Sheelagh T. Carpendale, David J. Cowperthwaite and F. David Fracchia (Simon Fraser University)

First try - direct extrapolation

Second try - displacement-only

Visual access distortion

Visual access distortion (cont)

9 This series shows Goussian visual access ditisotion applied progessivery to the 3 D gid.

Final result

Additional distortion variations

