Introduction to Medical Imaging

MRI Physics

Klaus Mueller

Computer Science Department Stony Brook University

The Essential Element for MRI: Hydrogen

In MRI only hydrogen is used for imaging: ¹H

- the hydrogen atom is a component of water: H₂0
- the body consists of 2/3 water \rightarrow a lot of potential signal

The hydrogen atom has only one proton

- this proton has a spin
- it rotates around its own axis which makes it act as a tiny magnet

Alignment of Protons

There are millions of protons in human tissue

- they are randomly oriented in the absence of an external magnetic field
- An MRI magnet has a strong magnetic field, B_0 (measured in Tesla)
 - it causes the protons to align themselves in the direction of ${\rm B_0}$
 - some align parallel to B₀, some anti-parallel
 - parallel alignment has the higher energy state
 - the higher B₀ the more protons will be aligned parallel
 - the more protons are in parallel alignment, the higher the *net magnetization* M_{z0}

 $M_{z0} \sim \sum$ parallel protons

- Σ anti-parallel protons

Larmor Frequency

The external magnet field not only aligns the protons

- it also causes the protons to spin at a certain frequency ω_0
- the frequency ω_0 called the *Larmor frequency* and is defined as:

$$\omega_0 = \gamma B_0$$

 γ : gyromagnetic ratio (42.58 MHz/T for ¹H)

Measuring the Net Magnetization M_{z0}

We suspect that M_{z0} is related to the amount of hydrogen

- but how do we measure M_{z0} ?
- A way to measure a magnetic field is via electromagnetic induction
 - moving the magnet in and out of the coil induces an alternating current which can be measured
 - the faster we move the magnet, the more current is induced
 - the problem with M_{z0} is that it is not changing and therefore cannot be measured via induction

Need a way to turn M_{z0} into an alternating magnet field

- then the stronger M_{z0} , the more current would be induced
- also need to perform the measurements orthogonal to B_0

Turn M_{zo} into such an orthogonal, alternating magnet field by adding a precession component

Proton Spin Precession: Introduction

Equivalent to a spinning top

Now the magnetic field has

- a longitudinal (along B_0) component M_z
- a transverse component ($\perp B_0$) M_{xy}

Due to the precession M_{xy} oscillates in a sinusoidal fashion

- can be measured via induction in an RF coil
- will induce a sinusoidal current at frequency ω_0
- the magnitude is $M_{xy} = M_{z0} \sin \alpha$

• then $M_{xy} = M_{z0} \rightarrow$ the desired measurement

How To Create The Precession

We need to add a magnetic field B_{xy} orthogonal to B_0

- this will pull the spinning proton into a precession
- generated by RF pulse (range: 10 100MHz)

- Х
- note: the same RF coil can also be used for the measurement of the resulting M_{xy}

 B_{xy} needs to alternate at Larmor frequency ω_0

- then we obtain resonance → the magnetic force is applied synchronous to the proton position on the precession circle
- also, the longer the RF signal is left on, the wider the procession
- to get the highest measured signal, one needs to keep B_{xy} on until the flip angle is 90°

More Formally

The magnet field B_{xv} acts in a similar manner than B_0

- it also causes a spin (around the RF coil axis)
- this spin has also a Larmor frequency, ω_{xv} (orthogonal to ω_0): B_{xv}

$$\omega_{xy} = \gamma B_{xy}$$

• since
$$B_{xy} \ll B_0 \rightarrow \omega_{xy} \ll \omega_0$$

Depending how long B_{xv} is left on (or how large it is), we can rotate M_{70} into different orientation angles α

• the angle α is called the *flip angle*

Trade-offs:

- for fast imaging it is desirable to keep t short
- this requires doubling B_{xy} which quadruples the power (and the heat and tissue temperature)

Important flip angles: B

 $\alpha = \int_0^t \gamma B_{xy} d\tau = \gamma B_{xy} t = \omega_{xy} t$

 M_0

 $\alpha = 90^{\circ}$

Relaxation

The tilt (flip) is an unstable situation

- the proton will rotate back to its original position along the z-axis
- the measured RF signal will decay and eventually go to zero

(also note the sinusoidal form of the induced signal)

• this decay is called *T1-relaxation*

transverse component:

The Net Magnetization M_{xv}

In order to measure a signal of sufficient amplitude, all protons must be precess in phase RF coil

• we need to synchronize the spins

precessing at ω_0

The RF pulse used for flipping also synchronizes the spins

- once the RF pulse is removed the spins go out of phase
- this is called T2-relaxation

M_{xy} M_{xy} <u>not</u> in phase

transverse component:

Spin-Spin Relaxation (T₂)

Relaxation due to the gradual disappearance of M_{z0} 's transverse component M_{xy}

- in practice, each spin experiences a slightly different magnet field due to the locally different chemical environments (protons can belong to H₂O, -OH, -CH, ...)
- this results the spins to rotate at slightly different angular frequencies
- and as a consequence a loss of phase coherence (*dephasing*) occurs
- the time constant for the exponential decay is called *spin-spin* relaxation time T₂:

$$M_{xy}(t) = M_{xy}(0)e^{-\overline{T_2}}$$

T₂ is very tissue-dependent Spin-spin relaxation

Spin-Lattice Relaxation (T₁)

In spin-spin relaxation there is no loss of flip angle

• the system became only disordered and unsynchronized

In spin-lattice relaxation, the flip angle actually changes

- the longitudinal component M_z will grow from $M_{z0} \cos \alpha$ to M_{z0}
- the energy shift is caused by the (small) heat released through the lattice molecule vibrations
- the time constant for the exponential decay is called *spin-lattice* relaxation time T₁:

$$M_{z}(t) = M_{z0} \cos \alpha e^{\frac{t}{T_{1}}} + M_{z0}(1 - e^{\frac{t}{T_{1}}})$$

will return to the
equilibrium value, M_{0}
Note: T_{1} is typically
always greater
than T_{2}

Summary: Energy Absorption and Relaxation

Combining the T1 and T2 effects into a single equation (the Bloch relaxation equation):

$$M_{xy} = M_{xy0}(1 - e^{-\frac{t}{T_1}}) e^{-\frac{t}{T_2}}$$

 M_{xy} is the measured transverse component at some time t>0

 M_{xy0} is the (maximal) transverse component at t=0

Complex Exponential Representation

To improve SNR, we use two coils, one aligned with the *x*-axis and one aligned with the *y*-axis (*quadrature* scheme)

• the detected signal can then be represented as follows:

$$s_x(t) = Ae^{-\frac{t}{T_2}}\cos(-\omega_0 t)$$
$$s_y(t) = Ae^{-\frac{t}{T_2}}\sin(-\omega_0 t)$$

 thus, coil x gives the real part and coil y the imaginary part of a complex-valued signal:

$$s(t) = Ae^{-\frac{t}{T_2}}e^{-i\omega_0 t}$$

• expressed in a rotating reference frame:

$$s(t) = Ae^{-\frac{t}{T_2}}$$

