CSE 564
Visualization & Visual Analytics

Visual Analytics & The Visual Sense Making Process

Klaus Mueller
Computer Science Department
Stony Brook University
<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intro, schedule, and logistics</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Applications of visual analytics, basic tasks, data types</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Introduction to D3, basic vis techniques for non-spatial data</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Data assimilation and preparation</td>
<td>Project #1 out</td>
</tr>
<tr>
<td>5</td>
<td>Data assimilation and preparation</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Bias in visualization</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Data reduction and dimension reduction</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Visual perception</td>
<td>Project #2(a) out</td>
</tr>
<tr>
<td>9</td>
<td>Visual cognition</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Visual design and aesthetics</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Cluster analysis: numerical data</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Cluster analysis: categorical data</td>
<td>Project #2(b) out</td>
</tr>
<tr>
<td>13</td>
<td>High-dimensional data visualization</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Dimensionality reduction and embedding methods</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Principles of interaction</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Midterm #1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Visual analytics and the visual sense making process</td>
<td>Final project proposal call out</td>
</tr>
<tr>
<td>18</td>
<td>Evaluation and user studies</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Visualization of time-varying and time-series data</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Visualization of graph data</td>
<td>Final project proposal due</td>
</tr>
<tr>
<td>21</td>
<td>Visualization of text data</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Foundations of scientific and medical visualization</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Computer graphics and volume rendering</td>
<td>Project 3 out</td>
</tr>
<tr>
<td>24</td>
<td>Scientific and medical visualization</td>
<td>Final Project preliminary report due</td>
</tr>
<tr>
<td>25</td>
<td>Illustrative rendering</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Midterm #2</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Data journalism</td>
<td>Final Project slides and final report due</td>
</tr>
</tbody>
</table>

Final project presentations
Why Visual Analytics?

Big Data

12+ TBs of tweet data every day

25+ TBs of log data every day

30 billion RFID tags today (1.3B in 2005)

4.6 billion camera phones worldwide

100s of millions of GPS enabled devices sold annually

76 million smart meters in 2009... 200M by 2014

2+ billion people on the Web by end 2011
Visual Analytics

Big Data → Actionable Intelligence → Profitability
Problems With Scalability

Must be scalable to
- number of data points
- number of dimensions
- data sources
- diversity of data sources (heterogeneity)
- number of users
- diversity of users and tasks
- quality of the data

Visual Analytics comes to the rescue...
Ease understanding of the data by providing an effective visual representation

Amplify Perception

Detect the Expected, Discover the Unexpected™
Visualization plus...
- interaction (HCI)
- data processing (analytics)
- story telling
- scientific approach

but also...
- intelligent computing (AI, machine learning)
- behavioral psychology (cognitive science, human factors)

Visual Analytics is the science of analytical reasoning supported by a highly interactive visual interface
The Daniel Keim Mantra of Visual Analytics

“Analyze First - Show the Important – Zoom, Filter and Analyze Further - Details on Demand"

The triangle of Visual Analytics (VA)
Intelligence analysis is challenging
Huge amounts of data
Low signal vs. noise (SNR)
Many data types
 - text, images, video, sensor data, etc.
Uncertainty
Contradictions
Omissions
Use of Visualization

Visual perception
- high bandwidth
- fast screening of a lot of data
- pattern recognition
- higher-level cognition

Interaction
- direct manipulation
- two-way communication

Recall intro lecture on the human visual system...
Use of Visualization

Visual perception
- high bandwidth
- fast screening of a lot of data
- pattern recognition
- higher-level cognition

Interaction
- direct manipulation
- two-way communication

Recall intro lecture on the human visual system...

But... humans are imperfect
Humans tend to overlook/ignore non-focus (and unexpected) objects even when very close and obvious
 ▪ note the Visual Analytics slogan: *Detect the Unexpected*

Humans also have limited working memory
 ▪ fine details are quickly forgotten when focus changes
 ▪ big effect in animated or interactive visualizations
 ▪ need to preserve temporal context
Spot a difference?

This is called change blindness
Gradual Change

Gradual Change Test (1)
from Simons, Franconeri, & Reimer (2000)
In this video you will do some counting.

It is very important that you get the right number!

Ready?

[YouTube]

Video by Dan Simons (U Illinois)
Another distraction experiment

YouTube

Video by Dan Simons (U Illinois)
Distraction Experiment

The "Eyes" Study
from Gliner & Levin (1973)
Intuitions About Perception
Thoroughly studied by Dan Simons (U Illinois)
 - see http://www.dansimons.com/index.html

Visual Analytics tools – what can you do to help:
 - help human analysts cope with insufficient memory
 - visualizations externalize memory
 - allow humans to perform visual queries (see C. Ware book)
 - help human analysts deal with change blindness
 - analytics can detect changes
 - visualization can highlight/emphasize these changes
 - we have seen many visual tools this semester
 - this lecture is more about strategy building
The Magic Number Seven

- ± 2: the number of things most people can keep in working memory at one time
- famous paper by George A. Miller (1956)
- channel capacity 2.5 bits
- applies to letters, sounds, shapes, colors, etc.
- causes problems for complicated analysis

- reduce the problem by chunking
- words (vs. letters), bytes (vs. bits), clusters (vs. points), categories (vs. individual elements), ...
- hierarchical decomposition, multi level of detail
The Magic Number Seven (7) for visualization

- not more than 7 segments in a pie chart
- not more than 7 colors in a line chart
- and so on
Strategies for Dealing with Complexity

Decomposition
- decompose a complex problem into simpler problems
- get one’s thinking straight in these simpler problems

Externalization
- get the decomposed problem out of your head and down on paper or on a computer screen in some simplified form
- show the main variables, parameters, or elements of the problem and how they relate to each other

Recall principles of information visualization
- overview and detail
- focus and context
- analyze, filter, zoom,...
ANALYSIS OF COMPETING HYPOTHESES (ACH)

You want to choose the best car among various cars

What is the best car?
- lowest maintenance cost?
- highest resale value?
- slickest styling?
- best gas mileage?
- largest trunk space?

How to make a decision?
- create the car purchase matrix
#1 List the important attributes you want to maximize

- Price
- Maintenance Cost
- Styling
- Gas Mileage
- Comfort
- Handling
#2 Quantify the Relative Importance of Each Attribute

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>30%</td>
</tr>
<tr>
<td>Operating Cost</td>
<td>10%</td>
</tr>
<tr>
<td>Styling</td>
<td>20%</td>
</tr>
<tr>
<td>Comfort</td>
<td>20%</td>
</tr>
<tr>
<td>Handling</td>
<td>15%</td>
</tr>
<tr>
<td>Safety</td>
<td>5%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>
#3 Judge Each Car How it Values on Each of these Attributes

<table>
<thead>
<tr>
<th></th>
<th>%Value</th>
<th>Car 1</th>
<th>Car 2</th>
<th>Car 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>30%</td>
<td>3.5%</td>
<td>3.0%</td>
<td>3.5%</td>
</tr>
<tr>
<td>Operating Cost</td>
<td>10%</td>
<td>3.5%</td>
<td>2.0%</td>
<td>4.5%</td>
</tr>
<tr>
<td>Styling</td>
<td>20%</td>
<td>2.5%</td>
<td>4.5%</td>
<td>3.0%</td>
</tr>
<tr>
<td>Comfort</td>
<td>20%</td>
<td>4.0%</td>
<td>2.5%</td>
<td>3.5%</td>
</tr>
<tr>
<td>Handling</td>
<td>15%</td>
<td>3.0%</td>
<td>4.0%</td>
<td>3.0%</td>
</tr>
<tr>
<td>Safety</td>
<td>5%</td>
<td>3.5%</td>
<td>2.5%</td>
<td>4%</td>
</tr>
</tbody>
</table>
#4 Multiply the Overall Attribute Value by the Car’s Attribute Value

<table>
<thead>
<tr>
<th></th>
<th>% Value</th>
<th>Car 1</th>
<th>Car 2</th>
<th>Car 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>30%</td>
<td>105</td>
<td>90</td>
<td>105</td>
</tr>
<tr>
<td>Operating Cost</td>
<td>10%</td>
<td>35</td>
<td>20</td>
<td>45</td>
</tr>
<tr>
<td>Styling</td>
<td>20%</td>
<td>50</td>
<td>90</td>
<td>60</td>
</tr>
<tr>
<td>Comfort</td>
<td>20%</td>
<td>80</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>Handling</td>
<td>15%</td>
<td>45</td>
<td>60</td>
<td>45</td>
</tr>
<tr>
<td>Safety</td>
<td>5%</td>
<td>17.5</td>
<td>12.5</td>
<td>20</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>332.5</td>
<td>322.5</td>
<td>345</td>
</tr>
</tbody>
</table>
Support visualization with computations for data processing
Form a loop: visualize - refine
Gather (forage) information
Re-represent
 ▪ choose a form that aids analysis
Develop insight
 ▪ through manipulation of representations
Produce results
 ▪ “product”
Nominal Sense-Making Process
Use Visualizations to Evoke The Right Thoughts
How Many 9s Do You See?
How Many 9s Do You See?
Who has the best profit and who has the worst sales?

<table>
<thead>
<tr>
<th>Product Type</th>
<th>Product</th>
<th>Central</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sum of Profit</td>
<td>Sum of Sales</td>
<td>Sum of Profit</td>
<td>Sum of Sales</td>
<td>Sum of Profit</td>
<td>Sum of Sales</td>
<td>Sum of Profit</td>
</tr>
<tr>
<td>Coffee</td>
<td>Amaretto</td>
<td>$5,105</td>
<td>$14,011</td>
<td>$1,009</td>
<td>$2,993</td>
<td>$(1,225)</td>
<td>$9,265</td>
<td>$11,253</td>
</tr>
<tr>
<td></td>
<td>Columbian</td>
<td>$8,528</td>
<td>$28,913</td>
<td>$27,253</td>
<td>$47,386</td>
<td>$8,767</td>
<td>$21,664</td>
<td>$11,253</td>
</tr>
<tr>
<td></td>
<td>Decaf Irish Cream</td>
<td>$9,632</td>
<td>$26,155</td>
<td>$2,727</td>
<td>$6,261</td>
<td>$2,933</td>
<td>$11,592</td>
<td>$18,235</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>$23,265</td>
<td>$69,080</td>
<td>$30,989</td>
<td>$56,640</td>
<td>$11,700</td>
<td>$33,256</td>
<td>$8,724</td>
</tr>
<tr>
<td>Espresso</td>
<td>Caffe Latte</td>
<td>$14,640</td>
<td>$35,218</td>
<td>$(6,230)</td>
<td>$16,646</td>
<td>$3,872</td>
<td>$15,442</td>
<td>$7,502</td>
</tr>
<tr>
<td></td>
<td>Caffe Mocha</td>
<td>$14,640</td>
<td>$35,218</td>
<td>$(6,230)</td>
<td>$16,646</td>
<td>$3,872</td>
<td>$15,442</td>
<td>$7,502</td>
</tr>
<tr>
<td></td>
<td>Decaf Espresso</td>
<td>$8,860</td>
<td>$24,485</td>
<td>$2,410</td>
<td>$7,722</td>
<td>$5,930</td>
<td>$15,384</td>
<td>$12,302</td>
</tr>
<tr>
<td></td>
<td>Regular Espresso</td>
<td>$10,062</td>
<td>$24,036</td>
<td>$15,003</td>
<td>$44,989</td>
<td>$23,868</td>
<td>$69,911</td>
<td>$20,458</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>$23,500</td>
<td>$59,703</td>
<td>$6,242</td>
<td>$48,405</td>
<td>$15,003</td>
<td>$44,918</td>
<td>$23,868</td>
</tr>
<tr>
<td>Herbal Tea</td>
<td>Chamomile</td>
<td>$14,434</td>
<td>$36,570</td>
<td>$765</td>
<td>$2,194</td>
<td>$3,180</td>
<td>$11,186</td>
<td>$8,952</td>
</tr>
<tr>
<td></td>
<td>Lemon</td>
<td>$6,251</td>
<td>$21,978</td>
<td>$7,901</td>
<td>$27,176</td>
<td>$2,593</td>
<td>$14,497</td>
<td>$13,120</td>
</tr>
<tr>
<td></td>
<td>Mint</td>
<td>$4,069</td>
<td>$9,337</td>
<td>$(2,242)</td>
<td>$(11,992)</td>
<td>$5,774</td>
<td>$25,683</td>
<td>$26,301</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>$24,754</td>
<td>$67,885</td>
<td>$6,424</td>
<td>$41,362</td>
<td>$5,774</td>
<td>$25,683</td>
<td>$26,301</td>
</tr>
<tr>
<td>Tea</td>
<td>Darjeeling</td>
<td>$10,772</td>
<td>$30,289</td>
<td>$6,497</td>
<td>$14,096</td>
<td>$11,780</td>
<td>$28,769</td>
<td>$10,425</td>
</tr>
<tr>
<td></td>
<td>Earl Grey</td>
<td>$10,331</td>
<td>$32,881</td>
<td>$3,405</td>
<td>$6,505</td>
<td>$10,425</td>
<td>$27,387</td>
<td>$10,425</td>
</tr>
<tr>
<td></td>
<td>Green Tea</td>
<td>$1,227</td>
<td>$5,211</td>
<td>$5,654</td>
<td>$11,571</td>
<td>$(7,109)</td>
<td>$16,063</td>
<td>$15,097</td>
</tr>
</tbody>
</table>
Who has the best profit and who has the worst sales?

<table>
<thead>
<tr>
<th>Product Type</th>
<th>Product</th>
<th>Central</th>
<th>East</th>
<th>South</th>
<th>West</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coffee</td>
<td>Amaretto</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Columbian</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decaf Irish Cream</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Espresso</td>
<td>Caffe Latte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caffe Mocha</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decaf Espresso</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regular Espresso</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbal Tea</td>
<td>Chamomile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lemon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mint</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tea</td>
<td>Darjeeling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Earl Grey</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Green Tea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sum of Sales (in thousands): OK, 20K, 40K, 60K.
Do The Right Analytics, Don’t Just Visualize Data
Doubling down on states for strong growth

Maria
Senior Sales Analyst
March 15th, 2012
Today’s question

In which states should we invest additional marketing dollars during the upcoming campaign?

Based upon sales growth potential...
Sales per State/Capita?

2011 sales per million residents by state (top/bottom 3 labeled)

Top sales states are quite low in sales per million people! Great potential!
Potential sales by state???

+Is there a better metric?
+The emphasis is on potential

Average sale per capita for top states multiplied by
Current population of top sales states
Sales per State/Capita x Capita

2011 sales per state (top/bottom 3 labeled)

ID at $697 0.0%

Top - TX at $467,644 11.6%
Highest growth potential in top 8

If we were to pick just one state, California has the greatest potential

The next tier is Texas, New York & Florida
Useful metrics

1. Total sales per state was OK

2. Better: Total sales per million residents per capita is better than looking at existing customers, because we want new customers

3. Top five states to target: 90th percentile +