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Abstract:
Real-time rendering of large unstructured meshes is a major research goal in the sci-
entific visualization community. While, for regular grids, texture-based techniques
are well-suited for current Graphics Processing Units (GPUs), the steps necessary for
rendering unstructured meshes are not so easily mapped to current hardware. This pa-
per reviews volume rendering algorithm and techniques for unstructured grids aimed
at exploiting high-performance GPUs. We discuss both the algorithms and their im-
plementation details, including major shortcomings of existing approaches.

Resumo:
A visualização volumétrica de grandes malhas não estruturadas é uma das principais
metas da comunidade de visualização científica. Enquanto que em grades regulares
o uso de técnicas baseadas em textura são adequadas para as Unidades de Processa-
mento Gráfico (GPUs) atuais, os passos necessários para exibir malhas não estruturas
não são diretamente mapeadas para o hardware atual. Este artigo revisa algoritmos e
técnicas de visualização volumétrica que exploram GPUs de alta performance. São
discutidos tanto os algoritmos como seus detalhes de implementação, incluindo as
principais dificuldades das abordagens atuais.

1 Introduction

This paper contains a survey of volume visualization techniques for unstructured vol-
umetric meshes. This manuscript was not designed as a comprehensive survey. Instead, we
cover the material that will be presented at our tutorial to be given at the XVII Brazilian Sym-
posium on Computer Graphics and Image Processing (SIBGRAPI 2005). Our emphasis on
unstructured data is unique when compared to other recent surveys, e.g., [7, 31], which are
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often comprehensive in coverage and have a stronger focus on regular datasets. Our coverage
is necessarily biased to the work that we know best, and to that work that we have performed
ourselves. Whenever possible, we try to give extra insights on some topics not directly de-
scribed in the original references, or to point to more general frameworks that can enlighten
the material. We hope our discussion of current techniques is useful to other people interested
in this area. (We wrote this paper when the current GPUs were represented by the ATI X800
and the NVIDIA 6800 series.)

2 Volume Rendering Techniques

For the visualization of three-dimensional scalar fields, direct volume rendering has
emerged as a leading, and often preferred, method. In rendering volumetric data directly, we
treat space as composed of semi-transparent material that can emit, transmit, and absorb light,
thereby allowing one to “see through” (or see inside) the data [49]. Volume rendering also
allows one to render surfaces, and, in fact, by changing the properties of the light emission
and absorption, different lighting effects can be achieved.

Volumetric representation leads to different visualization techniques. For instance,
regular grids have a well-defined structure that can be explored when designing visualization
algorithms. Today, texture-based visualization [29] is central to many different algorithms
for regular grids. On the other hand, unstructured grids composed of meshes of tetrahedra
are more challenging, and have led to a larger variety of different techniques, e.g., [10, 48,
55,61,64,66,70]. In this section we review some of the techniques that have been efficiently
mapped to GPUs.

2.1 Texture-Based Techniques

In many volumetric applications, data is obtained from a regular sampling approach
that leads to a discrete representation of regular grids. In 3D, regular grids are usually stored
as a volumetric table containing data from the sampled function (e.g., scalar values, color,
etc.) in each cell (usually referred to as a voxel). Generating volume rendering images of
regular grids requires sampling the information stored in this table in visibility order (either
front-to-back or back-to-front). This requires either computing successive intersections of
the volume against a given ray (a ray casting approach) or along parallel planes.

Texture-based visualization is a technique that exploits the texture-based functionality
of the graphics hardware to solve the above problem efficiently. Regular grid data is stored
directly in the GPU memory as textures. Early graphics boards only supported 2D textures
in hardware, which made volumetric visualization only possible by representing volumet-
ric data as stacks of 2D images. Preliminary approaches sample the volume with parallel
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Figure 1. Texture-based visualization uses parallel planes orthogonal to the viewing
direction to sample the volume.

planes (proxy geometry) that change according to the the viewing parameters. To avoid arti-
facts, data is replicated in the three directions, increasing memory usage. Avoiding this extra
storage requires on-the-fly slice reconstruction at the expense of performance overhead [38].
Another problem that arises here is the dependency on the sampling rate used to produce the
regular grid, which can be avoided by using extra slices and trilinear filtering [56].

The advent of 3D texturing capabilities even further improved the ways that the graph-
ics hardware can be used to perform volumetric visualization. Since the volume data is natu-
rally stored as a 3D texture, it suffices to use a proxy geometry consisting of a set of parallel
polygons orthogonal to the viewing direction (Figure 1).

The scalar values stored in 3D textures are processed in pairs of successive slices.
For each pair of scalar values, lighting calculation accumulate the color contribution of one
ray segment using the volume rendering integral. The use of approximations of the volume
rendering integral calculations are often useful to speed up this process. The pre-integration
approach described in [22] computes an approximation that takes into account the scalar val-
ues sampled at two different positions of the ray and the distance between each sample to
produce color and opacity values based on a given transfer function. The resulting calcula-
tions are stored as a 3D texture accessed by the scalar values (x-axis andy-axis) and distance
(z-axis) during rasterization, then combined into the accumulated final color.

The discretization used in the pre-integration might introduce some artifacts because
it assumes a linear progression of the scalar values between slices. An adaptive approach is
proposed in [57] that tries to overcome this problem with an adaptive sampling rate based on
the actual information stored in the volume and the transfer function used.

In [37], several techniques are discussed to reduce the cost of per-fragment opera-
tions perfomed during texture-based visualization. Empty-space skipping techniques allow
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Here, we only discuss methods that keep the original
unstructured mesh.

The remainder of this paper is organized as follows: In
Section 2, we provide some definitions and then, in
Section 3, we discuss related work. In Section 4, we describe
our scanning exact meshed polyhedra visibility ordering
(SXMPVO) algorithm. In Section 5, we present a detailed
analysis of the performance of the SXMPVO algorithm,
including extensive timing results. Finally, in Section 6, we
discuss future work and give our conclusions.

2 PRELIMINARY DEFINITIONS

To provide a formal basis, we start with a few definitions,
some slightly modified from [27]. The viewpoint vp is some
point in three-dimensional space representing the viewer or
camera position. The occludes relation is defined as follows:
Let c1 and c2 be two distinct cells of a mesh S and intðc1Þ
and intðc2Þ be the interiors of c1 and c2. Relative to
viewpoint vp, c2 occludes c1 if there is a half-line hl starting
at vp and points p1 in hl \ intðc1Þ and p2 in hl \ intðc2Þ so
that p2 lies between vp and p1 on hl. A visibility ordering can
be defined in the following way: For a given viewpoint, if
cell a occludes cell b, then cell a must come after b in the
visibility ordering. Note that, if the viewpoint remains fixed
and a subset of the cells of interest is selected, the visibility
ordering restricted to this subset is still valid and does not
need to be recomputed. Projecting and compositing the cells
of a mesh in visibility order (back-to-front order) results in a
correct volume rendering of the image.

We also define the behind relation <vp such that c1 <vp c2
if and only if c2 occludes c1. Note that the set of behind
relationships for pairs of cells in the mesh represents only a
partial ordering of the cells, so many correct visibility
orderings may exist consistent with this partial order. A
visibility cycle is a sequence a <vp b <vp # # # <vp c <vp a of
cells of S. We say S is acyclic if, for every viewpoint, no
visibility cycles exist.

If a face f of some cell in S is not shared by any other cell
in S, then f is an exterior face. An exterior cell has at least one
exterior face. The union of all exterior faces of S constitutes
the boundary of S. A face that is not an exterior face is an
interior face, also referred to as a shared face. If the boundary
of S is also the boundary of the convex hull of S, then S is
called a convex mesh; otherwise, it is called a nonconvex
mesh. Two meshes are disconnected if they do not share any

faces. (Two or more meshes that are disconnected are often
referred to as a single mesh with disconnected components.) A
segment of a ray between a point on an exterior face of a
mesh where the ray leaves the mesh and another such point
where the ray reenters a mesh we call a ray-gap. We refer to
a mesh that has cells of different types, e.g., tetrahedra,
hexahedra, prisms, and pyramids, as a zoo mesh.

For sorting nonconvex meshes, we need to consider
visibility relations among exterior faces and this involves
their orientation, defined as follows: We use the term front
faces or front-facing to refer to cell faces whose outward
normals have a positive component in the direction of the
viewpoint, for perspective projections, or a negative dot
product with the view direction, for orthogonal projection.
Similarly, back-facing faces are those whose normals point
away from the viewpoint or agree with the view direction.

3 RELATED WORK

In this section, we start with a discussion of several different
techniques for implementing the rendering phase of cell
projection volume rendering, including the one used for
this paper. Next, in Section 3.2, we cover the MPVO
algorithm since our algorithm and some other algorithms
discussed later are based on it. Then, in Section 3.3, we
cover other sorting methods, some of which are integrated
with rendering.

3.1 Rendering Phase Techniques
There are a number of different techniques for implement-
ing the rendering phase of unstructured volume rendering.
We now mention the techniques which rely on a visibility
ordering of the cells of the mesh. Tetrahedra [21], hexahedra
[19], [25], and more general cells [1] can all be converted
into polygons, triangle strips, or triangle fans for hardware
rasterization and fragment processing. Various hardware
techniques can then speed up or enhance the integration,
along the ray segment for each pixel in the cell’s projection.
As described in Williams et al. [28], our current rendering
system integrates piecewise linear transfer functions, using
a 2D texture map, parameterized by opacity and thickness
to get the correct exponential per pixel for the opacity. It
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Fig. 1. Computing the volume rendering integral for a pixel requires the

ray-tetrahedron intersection segments in sorted order.
Fig. 2. A back-to-front ordering of the cells of a mesh. Note that a
visibility ordering can be somewhat unintuitive. For instance, note that
cell 3 comes before cell 4 in a correct visibility ordering, although the
centroid of cell 4 is farther from the viewer than the centroid of cell 3.
This same error could occur if the sort was based on the power distance.
This is the reason that simple schemes, such as power distance sorts or
centroid-based sorts, may fail from certain viewpoints or viewing
directions.
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Figure 2. A back-to-front ordering of the cells of a mesh. Note that a visibility ordering can
be somewhat unintuitive. For instance, note that cell 3 comes before cell 4 in a correct

visibility ordering, although the centroid of cell 4 is farther from the viewer than the centroid
of cell 3. This same error could occur if the sort was based on the power distance. This is the

reason that simple schemes, such as power distance sorts or centroid-based sorts, may fail
from certain viewpoints or viewing directions.

processing to quickly skip entire regions of the volume that do not contain relevant informa-
tion, which is often the case in sparse datasets. In addition, an early-ray termination allows
computation to stop when sufficient opacity values have been accumulated.

2.2 Visibility Ordering

A visibility ordering of a set of objects (see Figure 2), from a given viewpoint, is a total
order on the objects such that if objecta obstructs objectb, thenb precedesa in the ordering.
Such orderings are useful for rendering volumetric data, because it enables efficient use of
graphics hardware [61,70].

In computer graphics, work on visibility ordering was pioneered by Schumackeret
al. and is later reviewed in [65]. An early solution to computing a visibility order given
by Newell, Newell, and Sancha (NNS) [51] continues to be the basis for more recent tech-
niques [64]. The NNS algorithm starts by partially ordering the primitives according to their
depth. Then, for each primitive, the algorithm improves the ordering by checking whether
other primitives precede it or not. Fuchs, Kedem, and Naylor [26] developed the Binary
Space Partitioning tree (BSP-tree) — a data structure that represents a hierarchical convex
decomposition of a given space (typically,R3). Since visibility order is essential for volume
rendering unstructured grids via cell projection, many techniques have been developed that
order the tetrahedra [16,18,34,62,70].

An intuitive overview of the Meshed Polyhedra Visibility Ordering (MPVO) algorithm
[70] is as follows (see Figure 3). First, the adjacency graph for the cells of a given convex
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Figure 3. In the top right, we show a set of cells in a convex mesh and their MPVO arrows
marked in red. In the bottom left, we show the resulting directed graph. Cell B is a sink cell.

To generate the ordering, a topological sort is computed starting from sink cells.

mesh is constructed (for non-convex meshes, see [16–18, 34, 62]). Then, for any specified
viewpoint, a visibility ordering can be computed simply by assigning a direction to each edge
in the adjacency graph and then performing a topological sort of the graph. The adjacency
graph can be reused for each new viewpoint and for each new dataset defined on the same
static mesh. The direction assigned to each edge of the adjacency graph is determined by
calculating the behind relation for the two cells connected by the edge. Informally, the behind
relation is calculated as follows. Each edge corresponds to a facet shared by two cells. That
facet defines a plane which in turn defines two half-spaces, each containing one of the two
cells. If we represent the behind relation by a directed arc (arrow) through the shared face,
then the direction of the arrow is towards the cell whose containing half-space contains the
viewpoint. To implement this, the plane equation for the shared face can be evaluated at the
viewpointv. The adjacency graph and the plane equation coefficients can be computed and
stored in a preprocessing step. Because of geometric degeneracies, the implementation of
MPVO can be complex, and needs to be performed with care.

The methods presented above operate inobject-space, i.e., they operate on the primi-
tives before rasterization by the graphics hardware [2]. Carpenter [11] proposed the A-buffer
— a technique that operates on pixel fragments instead of object fragments. The basic idea is
to rasterize all the objects into sets of pixel fragments, then save those fragments in per-pixel
linked lists. Each fragment stores its depth, which can be used to sort the lists after all the
objects have been rasterized. A nice property of the A-buffer is that the objects can be ras-
terized in any order, and thus, do not require any object-space ordering. A main shortcoming
of the A-buffer is that the memory requirements are substantial. Recently, there have been
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Figure 4. Classification and decomposition of tetrahedra in the Projected Tetrahedra
algorithm.

proposals for implementing the A-buffer in hardware [23,30,36,47,71].

2.3 Splatting

Once an object-space visibility ordering has been computed, one can render a mesh by
projecting its sorted cells on the screen one at a time. The leading technique for performing
this computation is the Projected Tetrahedra (PT) algorithm [61].

Projection of a volume cell is a task which does not easily map to graphics hardware.
Shirley and Tuchman introduced the PT algorithm as a way to approximate a volume cell with
a set of partially transparent polygons that can be rendered quickly on graphics hardware.
The algorithm works by classifying a cell based on the visibility of the triangle faces with
respect to the viewpoint. This classification is done by using a plane equation for each face to
determine if the face is visible (’+’), hidden (’-’), or coplanar (’0’) with respect to the eye. The
cells are then decomposed into one to four triangles based on the classification (see Figure 4).
Using this classification, a new vertex may be computed and the color and opacity of the
decomposed triangles are linearly interpolated from the ray integral at the thickest point of
the tetrahedron. Finally, the decomposed triangles are composited into the framebuffer using
the Porter and Duff over operator [54]. Many improvements have been proposed to improve
image quality and performance of the original PT algorithm [32,35,58,64,72].

With the advent of programmable graphics hardware, even more of the processing
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burden has been shifted to the GPU. Wylieet al. [72] introduce an extension of the PT algo-
rithm that uses vertex shaders to perform the classification and decomposition of the volume
cells. This is done by creating a fixed topology for all tetrahedron called thebasis graphthat
contains four vertices of the cell with an additionalphantomvertex. When a cell is projected,
the four vertices and an invalid phantom vertex are sent to the GPU as a triangle fan. A ver-
tex program then performs a series of geometric tests and uses the results of these tests to
determine the classification of the cell. Using the classification, the vertices are mapped to
the basis graph and the phantom vertex is calculated. Once the new geometry is formed, the
thickness of the cell is determined at the phantom vertex by linearly interpolating the vertices.
Using this thickness, the color and opacity are assigned to the phantom vertex from a lookup
table. These modified faces are then rasterized and composited into the framebuffer.

The technique proposed by Wylieet al. can be considered as a general way to map
geometric computations into GPUs. Since current GPUs can not change the topology of the
graphics primitive, the idea is to always send the most general topology. Also, as no data
can be saved across vertex primitives, each primitive needs to be send with all the relevant
data structures. The actual computation is stored as a type of finite automata that operates
differently as it is given a set of different flags. It is quite instructive to study their source
code that is available on the web. (See also [52].)

2.4 Ray Casting

Garrity [28] pioneered the use of ray casting for rendering unstructured meshes. His
technique was based on exploiting the intrinsic connectivity available on the mesh to opti-
mize ray traversal, by tracking the entrance and exit points of a ray from cell to cell. Because
meshes are not necessarily convex, any given ray may get in and out of the mesh multi-
ple times. To avoid expensive search operations during re-entry, Garrity used a hierarchical
spatial data structure to store boundary cells.

Bunyk et al. [8] proposed a different technique for handling non-convexities in ray
casting. Instead of building a hierarchical spatial data structure of the boundary cells, they
exploit the discrete nature of the image. And simply determine for each pixel in the screen,
the fragments of the front boundary faces that project there (and are stored in front-to-back
order). During ray traversal, each time a ray exits the mesh, Bunyket al. use the boundary
fragment intersection to determine whether the ray will re-enter the mesh, and where (i.e., the
particular cell). This approach turns out to be simpler, faster, and more robust to floating-point
calculations.

Weiler et al. [66] propose a hardware-based rendering algorithm based on the work
of Garrity. They store the mesh and traversal data structures on the GPU using 3D and 2D
textures respectively. In their technique, there is no need for information to be send back
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Figure 5. Overview of the HAVS algorithm and volume rendered results. HAVS is a new
volume rendering algorithm based on thek-buffer that is simpler and more efficient than

existing techniques.

and forth between the CPU and GPU, because all computations are performed directly on
the GPU. GPU performance currently outpaces the CPU, thus naturally leading to a tech-
nique that scales well over time as GPUs get faster. Strictly speaking, their algorithm only
handles convex meshes (i.e., it is not able to find the re-entry of rays that leave the mesh
temporarily), and they use a technique originally proposed by Williams [70] that calls for the
convexificationof the mesh, and the markings of exterior cells asimaginaryso they can be
ignored during rendering. Unfortunately, convexification of unstructured meshes has many
unresolved issues that make it a hard (and currently unsolved) problem. We point the reader
to Combaet al. [17] for details.

An improved GPU-based ray caster has been proposed by Bernardonet al. [5]. In
their work, they propose an alternate representation for mesh data in 2D textures that is more
compact and efficient, compared to the 3D textures used in the original work. They also use a
tile-based subdivision of the screen that allows computation to proceed only at places where it
is required, thus reducing fragment processing on the GPU. Finally, their technique does not
introduceimaginarycells that fill space caused by non-convexities of the mesh. Instead, they
use a depth-peeling approach that captures when rays re-enter the mesh, which is much more
general and does not require a convexification algorithm. Concurrently with Bernardonet al.,
Weiler and colleagues developed a similar depth-peeling approach to handling non-convex
meshes [67].

2.5 Hardware Assisted Visibility Sorting

Roughly speaking, all of the techniques described above perform sortingeither in
object-spaceor in image-space exclusively. There are also hybrid techniques that sort both in
image-space and object-space [1,24]. Callahanet al. [10] proposes a visibility ordering algo-
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rithm that works in both image- and object-space (see Figure 5). The object-space sorting is
performed on the CPU and results in an approximate order of the geometry. The image-space
sorting finalizes the order of the fragments and is done entirely on the GPU using a novel data
structure called thek-buffer. The original A-buffer [11] stores all incoming fragments in a
list, which requires a potentially unbounded amount of memory. Thek-buffer approach stores
only a fixed number of fragments and works by combining the current fragments and discard-
ing some of them as new fragments arrive. This technique reduces the memory requirement
and is simple enough to be implemented on existing graphics architectures.

Thek-buffer is afragment stream sorterthat works as follows. For each pixel, thek-
buffer stores a constantk number of entries〈 f1, f2, . . . , fk〉. Each entry contains the distance
of the fragment from the viewpoint, which is used for sorting the fragments in increasing
order for front-to-back compositing and in decreasing order for back-to-front compositing.
For front-to-back compositing, each time a new fragmentfnew is inserted in thek-buffer, it
dislodges the first entry (f1). Note that boundary cases need to be handled properly and that
fnew may be inserted at the beginning of the buffer if it is closer to the viewpoint than all
the other fragments or at the end if it is further. A key property of thek-buffer is that given
a sequence of fragments such that each fragment is withink positions from its position in
the sorted order, it will output the fragments in the correct order. Thus, with a smallk, the
k-buffer can be used to sort ak-nearly sorted sequence ofn fragments inO(n) time.

The availability of thek-buffer makes for a very simple rendering algorithm. The
Hardware Assisted Visibility Sorting (HAVS) algorithm is built upon the machinery presented
above. First, thefacesof the tetrahedral cells of the unstructured mesh are sorted on the CPU
based on the face centroids using the floating point radix sort algorithm. To properly handle
boundaries, the vertices are marked whether they are internal or boundary vertices of the
mesh. Next, the faces are rasterized by the GPU which completes the sort using thek-buffer
and composites the accumulated color and opacity into the framebuffer.

3 Isosurface Techniques

One of the most important tools for scientific visualization is isosurface generation.
Given a functionf : R3 → R, an isosurface is the preimage of a given valuey∈ R. In other
words, it is the set of allx such thatf (x) = y. Isosurfaces are frequently used for effectively
exploring three-dimensional data on a computer. The functionf is usually represented either
by a regular grid of scalar values or by a set of values on a tetrahedral mesh.

The classic algorithm for isosurfacing data laid out on a regular grid is Marching
Cubes [41]. Since Marching Cubes touches every cube in the grid, it can be inefficient.
There are many published extensions that tackle the original problems [3,6]. For isosurfacing
tetrahedral meshes, there is a version of Marching Cubes called Marching Tetrahedra [20], in
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Figure 6. Checkerboard 2D texture used to compute isosurfaces: flat-shaded isosurface
(left), smooth-shaded isosurface (center), and multiple isosurfaces (right).

which most extensions of Marching Cubes can be implemented. The fundamental geometric
task is computing the isosurface approximation within a tetrahedra, and the various ways of
computing plane-tetrahedra intersections leads to the different algorithms in the literature.

A challenging aspect of these techniques is that a change of isovalue incurs on a re-
computation of the entire isosurface. This new geometry data must be computed on the CPU
and then sent to the graphics processor. The CPU and GPU communicate through a relatively
narrow bus, creating a significant bottleneck. Since graphics hardware is becoming faster at
a much higher rate than general-purpose processors, a desirable option is to push as much
work as possible to the graphics side (GPU).

Early work on this area explored graphics hardware functionality without the power of
programmable shaders. In [69] it is shown how plane-tetrahedra intersections can be imple-
mented using rasterization hardware with alpha-test functionality and a stencil buffer. Back
and front faces of a given cell are drawn in this order with an interpolated scalar value stored
at the alpha component, with the appropriate alpha-test configured to reject fragments less
than the desired isovalue. The combination of the results obtained with the back and front
faces is obtained using a XOR operation and the stencil buffer. The resulting algorithm runs
in two passes (the first step sets the stencil buffer) and on average renders 5 to 7 triangles. A
revised version of this work is discussed in [58].

In [58], an alternate solution is proposed that renders fewer faces per tetrahedron. The
main idea is to use the decomposition step of the PT algorithm to create smaller tetrehedra
instead of triangles. The projections of back and front faces of each smaller tetrahedra lead
to two simple cases, either a degenerate triangle or the same triangle. The coincidence of
this projection allows the intersection computation to proceed using 2D texturing hardware
by associating a checkerboard texture. Extracting the isosurface is done by sampling the
2D texture with texture coordinates corresponding to the front and back face scalar values.
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Figure 7. Isosurfaces of the SPX dataset. Front(back) faces are shown in green(blue).

Extensions to handle smooth and multiple isosurfaces require storing shading values in the 2D
texture, as well as further partitioning of the texture domain (Figure 6). Figure 7 illustrates
the result obtained using the texture-encoded algorithm (a modified version of the HAVS
algorithm was used to generate this figure).

Although the intrinsic computation of isosurfaces differ from the visibility compu-
tations used for volume rendering, the mapping of these computations onto the GPU using
programmable hardware shares in most cases the same underlying framework. For instance,
the framework proposed in Wylieet al. [72] was revised in Pascucci [52], and represents
one of the first solutions to explore programmable hardware to compute isosurfaces. The
proposed solution consists of drawing a single quadrilateral for each tetrahedron, which cor-
responds to the most general topology an isosurface polygon can have inside a tetrahedra. The
computation of the isosurface happens inside a vertex shader, where each vertex of the above
quadrilateral is repositioned to the exact places the intersections occur, leading to degenerate
polygons in some cases. The information required to perform these intersections (tetrahedron
edges, endpoints and all possible configurations of marching tetrahedra) are stored as look-up
tables in the vertex shader attributes.

One of the reasons that initial solutions used vertex shaders is due to the fact that
it was the first part of the graphics pipeline to become programmable. With the advent of
fragment shaders, and more general texture formats that could represent floating-point values
(among other features), this problem could then be revised to use this new functionality. Since
computation with fragment shaders happens at a greater frequency than with vertex shaders,
graphics boards have more parallel units in the fragment shader, which represents a greater
computational power. In addition, one of the problems with the solution using vertex shaders
is that the computed isosurface quadrilaterals were not easily obtained unless each vertex
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Figure 8. (a) The fundamental idea inImplicit Occludersis to exploit the continuity of a
scalar fieldf (x) to define regions of occlusion. In general, anyray traveling from a region
that is above (or resp. below) the isosurface threshold to one that is below (above) has to
intersect the isosurface, thus implicitly (i.e., without the need for computing the surface)

defining regions of occlusion. (b) Rendering savings with Implicit Occluders: only 4.5% of
the isosurface is rendered.

position was written into a render target and further copied to CPU memory, thus reducing
the efficiency of post-processing of isosurface data.

In [33], a solution to compute isosurfaces using fragment shaders is proposed that
allows results to be reused with render-to-vertex-arrays functionality. The representation of
mesh information in textures required for isosurface computation follows the framework out-
lined in [66], but with a more compact representation that reduces the memory footprint. In
addition, marching tetrahedra tables are stored as textures. A single quadrilateral per tetra-
hedra is drawn, and inside the fragment shader, each different fragment extracts isosurfaces
for a given tetrahedra, producing up to four vertices that are written into four targets using
the multiple-render-targets (MRTs) feature. The resulting targets are later bound as vertex
arrays and rendered to produce the desired result. The main limitations of this technique are
the amount of memory available in the graphics card and the speed of CPU-GPU memory
transfers.

Isosurfaces tend to exhibit a large amount of self-occlusion, and extraction of the entire
isosurface in a view-independent manner will likely generate occluded elements that make
no difference to the final image. When occlusion is taken into account, large parts of the data
might not need traversal. Typically, some portions of the isosurface are computed and then
used to determine occlusion. A general approach is the use ofimplicit occluders[53], which
explore more general scalar field information to determine from-point occlusionsprior to the
isosurface computation. The idea is to exploit the continuity of the underlying scalar field to
speed up the computation and rendering of isosurfaces by performing visibility computations
(see Figure 8).
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Point-based isosurface extraction algorithms dates back to [15] where the Dividing
Cubes approach is described, that simply uses a view-dependent approach to divide the
model into grid cells until sub-pixel resolution in screen space is achieved. The use of view-
dependent isosurface computation is described in [40], which handles larger datasets by con-
sidering point primitives to represent smaller triangles. The central idea to the algorithm is a
front-to-back traversal of an octree that allows two kinds of pruning to happen. Value-based
prunning is responsible for discarding nodes that contain values outside the isosurface limit,
which requires storing minimum and maximum values at octree nodes. Visibility pruning
allows entire nodes to be discarded based on the fact that the bounding box of a given node
may not contribute to the final image. A fragment program is used to compute robust normal
positions on the extracted isosurfaces by accessing the positions in world coordinates of the
pixel and its neighboring pixels.

4 Advanced Techniques

Through the use of GPUs, rendering large unstructured grids has become a reality.
However, since the size of the data is still increasing faster than they can be rendered, ad-
vanced techniques need to be employed to retain interactivity.

4.1 Level-of-Detail Techniques

There are several approaches to rendering large unstructured grids. One way to speed
up the rendering is to statically simplify the mesh in a preprocessing step to a mesh small
enough for the volume renderer to handle [12, 13, 27, 63]. However, this approach only pro-
vides a static approximation of the original mesh and does not allow dynamic changes to
the level of detail. Multiresolution or level-of-detail (LOD) approaches adapt the amount
of data to be rendered to the capabilities of the hardware being used. Dynamic LOD ap-
proaches adjust the LOD on a continual basis, and have been shown to be useful by Museth
and Lombeyda [50] even if the images generated are more limited than volume rendering.

Cignoniet al. [14] propose a technique based on creating a progressive hierarchy of
tetrahedra that is stored in a multi-triangulation data structure [25] that is dynamically updated
to achieve interactive results. Their multi-triangulation model is created by encoding all the
edge-collapses operations that are required to reduce the number of tetrahedra to a base mesh.
The mesh is selectively refined to a given LOD using selection heuristics.

Another approach introduced by Levenet al. [39] converts the unstructured grid into
a hierarchy of regular grids that are stored in an octree. To mitigate the explosion in data
size that results from resampling the unstructured grid with a structured grid, the algorithm
manages the resampling, filtering, and rendering of the data out-of-core. By resampling the
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data in this way, the rendering can be performed using texture-based LOD techniques for
regular grids.

A more recent algorithm by Callahanet al. [9] takes a much simpler approach by
sparsely sampling the primitives that are rendered [19]. Reducing the data size by resampling
the domain using a series of edge-collapses can be considereddomain-basedsimplification.
The authors introduce an alternative approach that removes geometric primitives from the
original mesh calledsample-basedsimplification. Based on the HAVS volume rendering
system described in Section 2.5, which operates on the triangle faces of the tetrahedral mesh;
the algorithm keeps a list of the triangle indices sorted by importance. During interaction,
the algorithm draws the boundary triangles in addition to a dynamically adjusted number of
internal triangles. Several hueristics are explored to determine the importance of a triangle in
a preprocessing step.

4.2 Time-Varying and Dynamic Data

Visualizing large datasets interactively is further complicated when the data changes
dynamically. Scientific simulation is often interested in measuring or computing the changes
of a dataset over time. This can be a simple change of field values on a static mesh, or a
combination of changes in the topology and field values. Significant work has been done for
structured grids and can be reviewed in surveys by Ma [44] and Ma and Lum [45]. These
methods optimize the rendering time by exploring spatial data structures and temporal com-
pression [21,42,43,46,59,60,68,73].

Recent work by Bernardonet al. [4] extend some of the ideas used in the structured
case to the unstructured case of time-varying scalar fields. Due to the enormity of data needed
to represent a time-varying unstructured grid, compression techniques are essential. The au-
thors extend the vector quantization approach used by [59] to encode the scalar field based on
temporal coherence in a hierarchical data structure. The algorithm then dynamically decodes
the scalar field for each time step. The authors show that this algorithm can be integrated into
a hardware-assisted ray caster [5](see Section 2.4) by decoding each time step and updat-
ing the texture containing the scalar values using a fragment shader. Similarly, the decoding
can update scalar values for each time step on the HAVS system of Callahanet al. [10](see
Section 2.5) directly on the CPU. The resulting visualizations incur very little performance
overhead to rendering the data statically.

To our knowledge, the more difficult case of time-varying topology has not been ad-
dressed for unstructured grids. Currently, these meshes are rendered in a brute force manner.
This remains an open topic of research.
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5 Discussion

The most popular technique for rendering unstructured tetrahedral meshes is a com-
bination of using the Projected Tetrahedra (PT) technique of Shirley and Tuchman [61] with
the MPVO with Non-Convexities (MPVONC) sorting algorithm proposed by Williams [70].
Notwithstanding the fact that the MPVONC sorting is not exact, thus leading to certain vi-
sual artifacts, this technique is fast and for most applications “accurate enough”. PT also
has a number of accuracy and implementation issues that lead to incorrect images. Recently,
Krauset al. [35] show how to addresses a number of the limitations of the PT algorithm, in
particular, how to implement perspective projection correctly and how to improve the accu-
racy of compositing on existing GPUs. It isconceptuallysimple to extend MPVO into an
exact one by using a strict object-space visibility order to be computed [16, 62]. In prac-
tice, it appears to be much more stable (and simple) to guarantee correct visibility order for
a particularimage-resolutionusing the Scanning Exact MPVO (SXMPVO) algorithm [18].
Overall, most existing codes do not generate strictly correct images, and often are limited
to parallel projections because of implementation limitations. Writing a complete system is
very complex, and essentially all implementations of these algorithms can be traced back
to the original implementations by the authors. A major shortcoming is that the geometric
computations required for PT and visibility ordering are hard to implement robustly.

On the surface, GPU-based ray casting [5,66,67] appears to sidestep many of the lim-
itations of visibility orders and PT, in particular, the explicit need for computing a visibility
order and many of the accuracy issues of PT. Unfortunately, in practice, there are also accu-
racy limitations of the ray-triangle intersections that appear to lower the image quality of ray
casting systems. Also, the need to have all the data in the GPU limits the size of the datasets
that can be rendered. (This is not a problem for PT, which simply streams the data from the
CPU memory into the GPU.)

Having implemented and tested all these algorithms, it is our opinion that the HAVS
algorithm [10] provides the best compromise in terms of implementation complexity, ro-
bustness, and image quality. Although it is notguaranteedto generate correct images, our
HAVS-based system appears to generate better images than all the other techniques we tried.
Also, the implementation is very simple and robust. The main shortcoming of HAVS is the
requirement of thek-buffer, which relies on advanced (read/write) framebuffer access, a hard-
ware feature that, strictly speaking, is unstable. (But it works fine on current hardware of both
ATI and NVIDIA, the two leading manufacturers.) Although there is no reason this feature
will not be available on future generations of graphics hardware, there is also no guarantee.

Up to now, we have only addressed the rendering of single-resolution static datasets.
Both PT/VO (visibility ordering) and ray casting requires both connectivity information (i.e.,
which cells are neighbors) and geometric information (i.e., normals to the faces of the cell
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complex). Any change in geometry or topology of the mesh requires that at least part of the
computation usually done in a preprocessing step be performed again and again. This makes
these algorithms hard to use in dynamic settings, which are required not only for time-varying
datasets, but also for implementing LOD techniques. With these approaches, it is not feasible
to update all the necessary data on a frame-to-frame basis.

We note that HAVS constructs the information necessary for rendering directly on the
GPU and does not need any connectivity information. This new class of algorithm does not
require any preprocessing, and can, in principle, use a completely different set of data for
each frame. Thus, it can potentially handle dynamic geometry.

We end this paper by reiterating that visualization of dynamic unstructured meshes is
an area that has been virtually untouched in the literature and lies almost completely in future
and ongoing work (see Section 4.2).
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