


Lecture Topic Projects 
1 Intro, schedule, and logistics    
2 Applications of visual analytics   
3 Basic tasks, data types  Project #1 out  
4 Data assimilation and preparation 
5 Introduction to D3   
6 Bias in visualization 

7 Data reduction and dimension reduction 
8 Visual perception Project #2(a) out 
9 Visual cognition   

10 Visual design and aesthetics   
11 Cluster analysis: numerical data   
12 Cluster analysis: categorical data  Project #2(b) out 

13 High-dimensional data visualization 
14 Dimensionality reduction and embedding methods 
15 Principles of interaction  

16 Midterm #1 

17 Visual analytics Final project proposal call out 
18 The visual sense making process   
19 Maps 
20 Visualization of hierarchies Final project proposal due 
21 Visualization of time-varying and time-series data   
22 Foundations of scientific and medical visualization  
23 Volume rendering Project 3 out  
24 Scientific and medical visualization  Final Project preliminary report due 
25 Visual analytics system design and evaluation   
26 Memorable visualization and embellishments   
27 Infographics design   
28 Midterm #2  



Reduce the number of data items (samples): 
 random sampling 

 stratified sampling  

 

Reduce the number of attributes (dimensions):  
 dimension reduction by transformation 

 dimension reduction by elimination 

 

Usually do both  

 

Utmost goal 
 keep the gist of the data 

 only throw away what is redundant or superfluous 

 it’s a one way street – once it’s gone, it’s gone 

 

 

 



Sampling 

 random 

 stratified  

  

 

 

Data summarization 

 binning (already discussed) 

 clustering (see a future lecture) 

 dimension reduction (see next lecture) 



Because… 

 need to reduce the data so they can be feasibly stored  

 need to reduce the data so a mining algorithm can be feasibly run 

 

What else could we do  

 buy more storage 

 buy more computers or faster ones 

 develop more efficient algorithms (look beyond O-notation) 

 

However, in practice, all of this is happening at the same time 

 unfortunately, the growth of data and complexities is always faster 

 and so, data reduction will always be important  



Good candidates are redundant data 

 

 

 

 

 

 

 

 

 

 how many cans of ravioli will you buy? 

 

 

 



Keep a representative number of samples: 

 pick one of each  

 or maybe a few more depending on importance  



You are faced with collections of many different data  

 they are usually not nicely organized                                                      

like this: 

 

 

 but more like this: 



Are all of these items pants? 

 

 

 

 

 

 

 

 

 need a measure of similarity 

 it’s a distance measure in high-dimensional feature space 



We did not consider color, texture, size, etc… 
 this would have brought more differentiation (blue vs. tan pants) 

 the more features, the better the differentiation  

ornateness 

length 



Measuring similarity can be difficult  



needs to be  
accurately measured   

quantize each person into a vector 

each vector element is a feature measurement 

compare the vectors in terms of similarity 
similarity is also called a distance function 



Pant:  

<length, ornateness, color> 

 

Food delivery customer:  

<type-pizza, type-salad, type-drink> 

 

Examples: 

 pants: <long, plain, tan>, <short, ornate, blue>, … 

       expressed in numbers: <30”, 1, 2>, <15”, 2, 5> 

 

 food: <pepperoni, tossed, none>, <pepperoni, tossed, coke>, … 

       expressed in numbers: <1, 1, 0>, <1, 1, 3> 

 



Manhattan distance 

 

 

 

 

 

Euclidian distance 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Pearson’s Correlation = correlation similarity 
mean across all 

data values for 

attribute x, y 

 

e.g. the “average 

looking” pair of 

pants in terms of  

attribute x, y 



Correlation distance is invariant to addition of a constant 

 subtracts out by construction 

 green and blue curve have correlation of 1 

 but cosine similarity is < 1 

 correlated vectors just vary in                                                                 

the same way 

 cosine similarity is stricter 

 

Both correlation and cosine                                                                       

similarity are invariant to                                            

multiplication with a constant 

 invariant to scaling 

 green = blue + 0.1 



Distances can compare two attributes or two data items   

 means and other stats are then measured correspondingly 

 mean and std dev mileage and weight, resp. over all cars when 

computing correlation of weight and mileage   

 mean of all attribute values for each car when computing the 

distance between two cars   
weight mileage HP 



What’s the Jaccard similarity of the two baskets A and B? 



This process is called clustering 

 and in contrast to a real store, we can make the computer do it 

for us 



Note:  

 in data mining similarity and distance are the same thing 

 so we will use these terms interchangeably  

ornateness 

length 

Clustering = 

grouping of 

similar items  

(as determined 

by the distance 

function) 



A cluster is a group of objects that are similar 

 and dissimilar from other groups of objects at the same time 

 

We need an objective function to capture this mathematically  

 the computer will evaluate this function within an algorithm 

 one such function is the mean-squared error (MSE) 

 and the objective is to minimize the MSE 

 

It’s not that easy in practice 

 there is only one global minimum 

 but often there are many local minima 

 need to find the global minimum  

 

 

 



 

 

 

 

 

 

 

In this case 

 n=12 (blue points) 

 k=2 (red points, the computed centroids) 

 distance metric used: Euclidian 

 minimization seems to be achieved 
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1. Decide on a value for k 

 

2. Initialize the k cluster centers (randomly, if necessary) 

 

3. Decide the class memberships of the N objects by 
assigning them to the nearest cluster center 

 

4. Re-estimate the k cluster centers, by assuming the 
memberships found above are correct 

 

5. If none of the N objects changed membership in the last 
iteration, exit. Otherwise goto 3 

The last slide and the next 8 slides contain figures courtesy of Eamonn Keogh, UC Riverside 
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K-means Clustering: Step 1 
Algorithm: k-means, Distance Metric: Euclidean Distance 

k1 

k2 

k3 
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K-means Clustering: Step 2 
Algorithm: k-means, Distance Metric: Euclidean Distance 

k1 

k2 

k3 
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K-means Clustering: Step 3 
Algorithm: k-means, Distance Metric: Euclidean Distance 

k1 

k2 

k3 
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K-means Clustering: Step 4 
Algorithm: k-means, Distance Metric: Euclidean Distance 

k1 

k2 

k3 
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K-means Clustering: Step 5 
Algorithm: k-means, Distance Metric: Euclidean Distance 

k1 

k2 
k3 



Strengths:  
 relatively efficient: O(tkn), where n is # objects, k is # 

clusters, and t  is # iterations. Normally, k, t << n. 

 simple to code 

 

Weaknesses: 
 need to specify k in advance which is often unknown 

 find the best k by trying many different ones and 
picking the one with the lowest error 

 often terminates at a local optimum 

 the global optimum may be found by trying many 
times and using the best result 

 



1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 

k=1, MSE=873.0 k=2, MSE=173.1 k=3, MSE=133.6 



Is there a principled way we can know when to stop looking? 

Yes… 

 we can plot the objective function values for k equals 1 to 6… 

 then check for a flattening of the curve 

 

 

 

 

 

 

 

 the abrupt change at k = 2 is highly suggestive of two clusters  

 this technique is known as “knee finding” or “elbow finding” 

tangent at k=2 



What is sampling? 

 pick a representative subset of the data 

 discard the remaining data 

 pick as many you can afford to keep 

 recall: once it’s gone, it’s gone 

 be smart about it 

 

Simplest: random sampling 

 pick sample points at random 

 will work if the points are distributed uniformly 

 this is usually not the case 

 outliers will likely be missed 

 so the sample will not be representative  



Pick the samples according to some knowledge of the data 

distribution 

 cluster the data (outliers will form clusters as well) 

 these clusters are also called strata (hence, stratified sampling) 

 the size of each cluster represents its percentage in the population 

 guides the number of samples – bigger clusters get more samples 

 

sampling rate ~ cluster size 



Eliminate redundant attributes 
 eliminate highly correlated attributes 

‒ km vs. miles 

‒ a + b + c = d  can possibly eliminate ‘c’ (or ‘a’ or ‘b’) 

 

Eliminate redundant data 
 cluster the data with small ranges e 

 only keep the cluster centroids 

 store size of clusters along to keep importance 

 

 question: how do we find a good e? 

 answer: compute histogram of distances  

 choose a reasonable threshold from the left  

2 e 



Probabilities 

 k/i for the ith sample to go into the reservoir 

 1/k · k/i = 1/i for the jth reservoir element to be replaced 

 k/n for all elements in the reservoir after n has been reached 

 can be shown via induction  

A good algorithm to use for streaming data when n is growing  



Used in the CURE high-dimensional clustering algorithm 
 S. Guha, R. Rajeev, and K. Shim. "CURE: an efficient clustering 

algorithm for large databases." ACM SIGMOD, 27(2): 73-84, 1998 

 

Algorithm 
 initialize the point set S to empty 

 pick the point farthest from the                                                                     
mean as the first point for S  

 then iteratively pick points that are                                                         
furthest from the points in S collected so far                                                             

 

Complexity is O(m·n2) 
 n is the total number of points, m is the number of desired points 

 can find arbitrarily shaped clusters and preserve outliers, too  

 need some good data structures to run efficiently: kd-tree, heap  



Dimension Reduction 

3D 2D 



Are there attributes that “go together”? 

 

 

 

 

 

 

 

Can you name a few?  

 

 

 

 

 

 

 

 



Physical attributes 

 color 

 number of doors 

 number of wheels 

 retractable roof 

 height  

 length 

 frames around side windows 

 

Which attributes are useful to distinguish SUVs from convertibles? 

 number of doors (4 vs. 2) --> numerical, two levels 

 retractable roof (no vs. yes) --> categorical, two levels  

 frames around side windows (yes vs. no) --> categorical, two levels 

 height (higher vs. lower) --> numerical, many levels 

 



Which attributes are not so useful? 

 number of wheels (constant 4) --> no discriminative power 

 length (short and long SUVs, convertibles) --> confounding  

 color (colors are seemingly random, or are they?) 

 

 

 

 

 

Is color useful? 

 the convertibles seem to have more vibrant colors (red, yellow, …) 

 so maybe we made a discovery   

 



Need to consider more than two attributes 
 height attribute would have distinguished the Range Rover from 

the convertibles and caused it to be an outlier  

retractable  

roof 

frames around  

side windows 

a new type of SUV  



New classes are constantly evolving over time 

 this is known as cluster evolution  

 measuring more features will increase the chance of discovery 

retractable  

roof 

new class: the convertible SUV 

height 

why can empty 

feature spaces 

be interesting or 

useful? 



The more data (examples) the better  

 increases the chances to discover the rare specimen 

 

 

 

 

 

 

 but some attributes are useless  

 we can cull them away 

 perform attribute reduction or dimension reduction  

 



Too many attributes can lead to obliteration of data patterns 

 

 

 

 

 

 

 

 

PCA projections of the Image Segmentation dataset generated from  
(a) the full 16D dataspace comprised of all feature dimensions  

(b) the 3D Raw Color semantic subspace  

(c) the 5D extended Raw Color semantic subspace.  

The points are colored by their image class 

Only (b) and (c) can separate the image classes well  



By axis rotation 
 determine a more efficient basis  

 Principal Component Analysis (PCA) 

 Singular value decomposition (SVD) 

 Latent semantic analysis (LSA) 

 

By type transformation 
 determine a more efficient data type 

 Fourier analysis and Wavelets for grids 

 Multidimensional scaling (MSD) for graphs 

 Locally Linear Embedding 

 Isomap 

 Self Organizing Maps (SOM) 

 Linear Discriminant Analysis (LDA) 

 





Covariance 

 measures how much two random variables change together  

 

 

 

 

 

 

For N variable we have N2 variable pairs  

 we can write them in a matrix of size N2  
 the covariance matrix  

 for two variables X1 and X2 



Covariance cov(X,Y) 

 

 

 

 

Pearson’s correlation r  

 is covariance normalized by the individual variances for X and Y 

 

 

 

mean of all data item 

values xi and yi for 

attributes X and Y, resp. 
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Correlation rates between -1 and 1: 

 

 

 

 

Important to note: 

 correlation is defined for linear relationships 

 visualization can help 

 none of these point distributions have correlations: 

 



Analytical: 

 

Samples: 

 

An n-D dataset has n variables x1, x2, … xn  
 define pairwise covariance among all of these variables  

 construct a covariance matrix  

 

 

 

 

 

 a correlation matrix would just list the correlations instead 
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just value distribution (scatterplot matrix) 



Ultimate goal:  

 find a coordinate system that can represent the variance in the 

data with as few axes as possible  

 

 

 

 

 

 

 

 

 rank these axes by the amount of variance (blue, red) 

 drop the axes that have the least variance (red)  
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Find the principal components (factors) of a distribution 

 

First characterize the distribution by  

 covariance matrix Cov 

 correlation matrix Corr 

 lets call it C 

 

 perform QR factorization or LU decomposition on that matrix to get 

 

 

                     Q: matrix with Eigenvectors 

                     : diagonal matrix with Eigenvalues l 

 

 now order the Eigenvectors in terms of their Eigenvalues l 

1Q Q C



l1, l2 are the Eigenvalues 

 encode the length (and therefore significance) of the Eigenvectors  
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When to use what? 

 use covariance matrix when the variable scales are similar  

 use correlation matrix when the variables are on different scales 

 the correlation matrix standardizes the data 

 in general they give different results, especially when the scales 

are different 

 

 

 



Before PCA 
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After PCA 

 l1 = 9.8783  l2 = 3.0308  Trace = 12.9091 

 PC 1 displays (“explains”) 9.8783/12.9091 = 76.5% of total variance 
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possible 

threshold 

(explain 

75% of data 

variance) 

keep top 3 principal components  reduce dimensions by a factor of 4/7 = 57%  

Create a scree plot 

 plots a histogram of the Eigenvalues ordered by magnitude 

 plots the explained variance as a curve    



Some familiar faces… 

 



We can reconstruct each face as a linear combination of 

“basis” faces, or Eigenfaces [M. Turk and A. Pentland (1991)] 

 

+ 

Average Face 

Eigenfaces 



90% variance is 

captured by the first 

50 eigenvectors 

Reconstruct existing 

faces using only 50 

basis images 

We can also generate 

new faces by 

combining 

eigenvectors with 

different weights 

V0 

x ∑ 



A More Challenging Example 
• Data from research on habitat definition 
in the endangered Baw Baw frog 

• 16 environmental and structural variables 
measured at each of 124 sites 

• Correlation matrix used because 
variables have different units 

Philoria frosti 



Axis Eigenvalue 
% of 

Variance 
Cumulative % 
of Variance 

1 5.855 36.60 36.60 

2 3.420 21.38 57.97 

3 1.122 7.01 64.98 

4 1.116 6.97 71.95 

5 0.982 6.14 78.09 

6 0.725 4.53 82.62 

7 0.563 3.52 86.14 

8 0.529 3.31 89.45 

9 0.476 2.98 92.42 

10 0.375 2.35 94.77 

Eigenvalues 



How Many Axes Are Needed? 
• Does the (k+1)th principal axis represent 
more variance than would be expected 
by chance? 

• Several tests and rules have been 
proposed 

• A common “rule of thumb” when PCA is 
based on correlations is that axes with 
eigenvalues > 1 are worth interpreting 

• In our example 4 Eigenvectors fit this 
criterion (we shall keep 3 for simplicity) 

 



Baw Baw Frog - PCA of 16 Habitat Variables
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Interpreting Eigenvectors 

• Correlations 
between variables 
and the principal 
axes are known as 
loadings 

• Each element of 
the eigenvectors 
represents the 
contribution of a 
given variable to a 
component 

• The loadings of 
variables on the 
first three PCs 
are shown here 

  PC 1 PC 2 PC 3 

Altitude 0.3842 0.0659 -0.1177 

pH -0.1159 0.1696 -0.5578 

Cond -0.2729 -0.1200 0.3636 

TempSurf 0.0538 -0.2800 0.2621 

Relief -0.0765 0.3855 -0.1462 

maxERht 0.0248 0.4879 0.2426 

avERht 0.0599 0.4568 0.2497 

%ER 0.0789 0.4223 0.2278 

%VEG 0.3305 -0.2087 -0.0276 

%LIT -0.3053 0.1226 0.1145 

%LOG -0.3144 0.0402 -0.1067 

%W -0.0886 -0.0654 -0.1171 

H1Moss 0.1364 -0.1262 0.4761 

DistSWH -0.3787 0.0101 0.0042 

DistSW -0.3494 -0.1283 0.1166 

DistMF 0.3899 0.0586 -0.0175 



What’s a “Loading”? 
• The amount of weight a data dimension 

has on a principal component 

– petal length/width have a high loading on PC1 

– sepal width has a high loading on PC2 

 

• Another observation 

– projection into PC basis                                  

can also bring out                                            

clusters better 

– since spread is                                                 

maximized 

 

PC1 

PC2 



Significance of Variables 

• We can compute the significance of the 
variables as the sum of squared loadings on to the 
most significant Eigenvectors we selected (3 in our 
example)  

• The next slide shows the table of the last slide 
expanded with these squared loadings 

• We can then sort the table by the squared 
loadings and make a scree plot 

• The most significant variables are those above 
some chosen cutoff, for example 0.4 (marked in 
yellow in the table) 

 



Significance of Variables 
  PC 1 PC 2 PC 3 

sum of squared 
loadings   

Altitude 0.3842 0.0659 -0.1177 0.41 

pH -0.1159 0.1696 -0.5578 0.59 

Cond -0.2729 -0.1200 0.3636 0.47 

TempSurf 0.0538 -0.2800 0.2621 0.39 

Relief -0.0765 0.3855 -0.1462 0.42 

maxERht 0.0248 0.4879 0.2426 0.55 

avERht 0.0599 0.4568 0.2497 0.52 

%ER 0.0789 0.4223 0.2278 0.49 

%VEG 0.3305 -0.2087 -0.0276 0.39 

%LIT -0.3053 0.1226 0.1145 0.35 

%LOG -0.3144 0.0402 -0.1067 0.33 

%W -0.0886 -0.0654 -0.1171 0.16 

H1Moss 0.1364 -0.1262 0.4761 0.51 

DistSWH -0.3787 0.0101 0.0042 0.38 

DistSW -0.3494 -0.1283 0.1166 0.39 

DistMF 0.3899 0.0586 -0.0175 0.39 



Significance of Variables 

• Scree plot   

 

only eliminate  

very weak  

variables 

more aggressive  

reduction of variables 
variables considered  

significant 

chosen  

significance  

threshold  



Data reduction  

 notions of similarity and distance in high-D data spaces  

 clustering (k-means) and how to pick optimal k 

 sampling  

 

Dimension reduction  

 important vs. irrelevant dimensions 

 notion of principal components and Eigenvectors 

 scree plots to visualize explained variance and threshold it  

 principal component analysis (PCA) 

 using PCA loadings to find most important data dimensions 

 


