CSE 564
Visualization & Visual Analytics
Cluster Analysis & Dimension Reduction

Klaus Mueller

Computer Science Department
Stony Brook University and SUNY Korea
<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intro, schedule, and logistics</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Applications of visual analytics, basic tasks, data types</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Introduction to D3, basic vis techniques for non-spatial data</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Data assimilation and preparation</td>
<td>Project #1 out</td>
</tr>
<tr>
<td>5</td>
<td>Bias in visualization</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Data reduction and dimension reduction</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Visual perception and cognition</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Visual design and aesthetics</td>
<td>Project #1 due/Project #2 out</td>
</tr>
<tr>
<td>9</td>
<td>High-dimensional data vis. & dimensionality reduction</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Visual design and aesthetics</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Cluster analysis and dimension reduction</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Cluster analysis and dimension reduction</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Foundations of scientific and medical visualization</td>
<td>Project #2 due / Project #3 out</td>
</tr>
<tr>
<td>14</td>
<td>Computer graphics and volume rendering</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Scientific and medical visualization</td>
<td>Project #3 due</td>
</tr>
<tr>
<td>16</td>
<td>Illustrative rendering</td>
<td>Final project proposal call out</td>
</tr>
<tr>
<td>17</td>
<td>Correlation visualization</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Principles of interaction</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Midterm #1</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Visual analytics and the visual sense making process</td>
<td>Final project proposal due</td>
</tr>
<tr>
<td>21</td>
<td>Evaluation and user studies</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Visualization of time-varying and time-series data</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Visualization of streaming data</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Visualization of graph data</td>
<td>Final Project preliminary report due</td>
</tr>
<tr>
<td>25</td>
<td>Visualization of text data</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Midterm #2</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Data journalism</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Final project presentations</td>
<td>Final Project slides and final report due</td>
</tr>
</tbody>
</table>
When to Use Cluster Analysis

Data summarization
- data reduction
- cluster centers, shapes, and statistics

Customer segmentation
- collaborative filtering

Social network analysis
- find similar groups of friends (communities)

Precursor to other analyses
- use as a preprocessing step for classification and outlier detection
- use it for sampling and data reduction
With 1,000s of attributes (dimensions) which ones are relevant and which one are not?

- **Avoid**
- **Keep**

Histogram of pairwise distances in N-D space

- (a) Uniform Data
- (b) Clustered data
- (c) Distance distribution (uniform)
- (d) Distance distribution (clustered)
How to measure attribute “worthiness”

- use entropy

Entropy

- originates in thermodynamics
- measures lack of order or predictability

Entropy in statistics and information theory

- has a value of 1 for uniform distributions (not predictable)
- knowing the value has a lot of information (high surprise)
- has a value of 0 for a constant signal (fully predicatable)
- knowing the value has zero information (low surprise)
Assume m bins, $1 \leq i \leq m$:

$$E = -\sum_{i=1}^{m} [p_i \log(p_i) + (1 - p_i) \log(1 - p_i)].$$

Algorithm:
- start with all attributes and compute distance entropy
- greedily eliminate attributes that reduce the entropy the most
- stop when entropy no longer reduces or even increases

![Binary source (e.g. coin)](image)
Two options for building the dendrogram on the left

- top down (divisive)
- bottom up (agglomerative)
Algorithm AgglomerativeMerge(Data: D)
begin
 Initialize $n \times n$ distance matrix M using D;
 repeat
 Pick closest pair of clusters i and j using M;
 Merge clusters i and j;
 Delete rows/columns i and j from M and create a new row and column for newly merged cluster;
 Update the entries of new row and column of M;
 until termination criterion;
 return current merged cluster set;
end

How to merge?
Single (best-case) linkage
- distance = minimum distance between all $m_i \cdot m_j$ pairs of objects
- joins the closest pair

Complete (worst-case) linkage
- distance = maximum distance between all $m_i \cdot m_j$ pairs of objects
- joins the pair furthest apart

Group-average linkage
- distance = average distance between all object pairs in the groups

Other methods:
- closest centroid, variance-minimization, Ward’s method
Centroid-based methods tend to merge large clusters.

Single linkage method can merge chains of closely related points to discover clusters of arbitrary shape:
- but can also (inappropriately) merge two unrelated clusters, when the chaining is caused by noisy points between two clusters.

(a) Good case with no noise
(b) Bad case with noise
Complete (worst-case) linkage method tends to create spherical clusters with similar diameter

- will break up the larger odd-shaped clusters into smaller spheres
- also gives too much importance to data points at the noisy fringes of a cluster
The group average, variance, and Ward’s methods are more robust to noise due to the use of multiple linkages in the distance computation.

Hierarchical methods are sensitive to a small number of mistakes made during the merging process:
- can be due to noise
- no way to undo these mistakes
Highly-cited density-based hierarchical clustering algorithm (Ester et al. 1996)

- clusters are defined as density-connected sets
- epsilon-distance neighbor criterion (Eps)
 \[N_{\text{Eps}}(p) = \{ q \in D \mid \text{dist}(p,q) \leq \text{Eps} \} \]
- minimum point cluster membership and core point (MinPts)
 \[|N_{\text{Eps}}(q)| \geq \text{MinPts} \]
- notions of density-connected & density-reachable (direct, indirect)
- a point \(p \) is directly density-reachable from a point \(q \) wrt. \(\text{Eps}, \text{MinPts} \) if
 \[p \in N_{\text{Eps}}(q) \text{ and } |N_{\text{Eps}}(q)| \geq \text{MinPts} \text{ (core point condition)} \]

Ester et al. "A density-based algorithm for discovering clusters in large spatial databases with noise. KDD, 1996"
DBSCAN

(a) p: border point
q: core point

(b) p directly density-reachable from q
q not density-reachable from p

(c) p density-reachable from q
q not density-reachable from p

(d) p and q density-connected to each other by 0
Probabilistic Extension to K-Means

First a comparison:

Different cluster analysis results on "mouse" data set:

Original Data k-Means Clustering EM Clustering
The distance between a point X and a distribution D

- measures how many standard deviations X is away from the mean μ of D
- S is the covariance matrix of the distribution D
- the Mahalanobis distance D_M of a point x to a cluster center μ is

$$D_M(x) = \sqrt{(x - \mu)^T S^{-1} (x - \mu)}.$$

- x and μ are N-dimensional vectors
- S is the $N \times N$ covariance matrix
- the outcome $D_M(x)$ is a single-dimensional number
Probabilistic Clustering

Is a better match for point distributions
- overlapping clusters are now possible
- better match with real world?
- Gaussian mixtures

Need a probabilistic algorithm
- Expectation-Maximization
EM Algorithm (Mixture Model)

- Initialize K cluster centers
- Iterate between two steps
 - **Expectation step**: assign points to m clusters/classes

 \[P(d_i \in c_k) = \frac{w_k \Pr(d_i | c_k)}{\sum_j w_j \Pr(d_i | c_j)} \]

 \[w_k = \frac{\sum \Pr(d_i \in c_k)}{N} \]

 \(w_k \) = probability of class \(c_k \)

 - **Maximation step**: estimate model parameters

 \[\mu_k = \frac{1}{m} \sum_{i=1}^{m} \frac{d_i P(d_i \in c_k)}{\sum_k P(d_i \in c_j)} \]

 do similar also for covariance matrix \(S \)
Iteration 1

The cluster means are randomly assigned
Iteration 2

Mean Likelihood = -12.5011313295068318

0.23392524956122798

0.4801378834773863

0.2319996098003228
Iteraton 5

Mean Likelihood = -11.8798988828880106

0.23106035848418134

0.253623069491

0.4466042475192933
Iteration 25

Mean Likelihood = -11.13452288716779
LDA requires class labels, PCA does not

- having class labels enables better segmentation
Linear Discriminant Analysis (LDA)

Procedure
- maximize inter-class variance
 \[S_b = \sum_{i=1}^{g} N_i (\bar{x}_i - \bar{x})(\bar{x}_i - \bar{x})^T \]
- minimize intra-class variance
 \[S_w = \sum_{i=1}^{g} \sum_{j=1}^{N_i} (x_{i,j} - \bar{x}_i)(x_{i,j} - \bar{x}_i)^T \]
- using this ratio \(P_{lda} = \arg \max_P \left| \frac{P^T S_b P}{P^T S_w P} \right| \)
 - Fisher Criterion
 - P is low-Dim projection
- can be solved using Eigenvector decomposition
- finds a basis that maximally separates the classes
- \(\text{Dim}(P) \) is the # of classes \(g \)
t-distributed stochastic neighbor embedding
T-SNE Distance Metric

Uses the following density-based (probabilistic) distance metric

\[
P_{ji} = \frac{\exp\left(-\frac{|x_i-x_j|^2}{2\sigma_i^2}\right)}{\sum_{k\neq i} \exp\left(-\frac{|x_i-x_k|^2}{2\sigma_i^2}\right)}
\]

Measures how (relatively) close \(x_j\) is from \(x_i\), considering a Gaussian distribution around \(x_i\) with a given variance \(\sigma_i^2\).

- this variance is different for every point
- \(t\) is chosen such that points in dense areas are given a smaller variance than points in sparse areas

Use a symmetrized version of the conditional similarity:

\[p_{ij} = \frac{p_{ji} + p_{ij}}{2N} \]

Similarity (distance) metric for mapped points:

\[q_{ij} = \frac{f(|x_i - x_j|)}{\sum_{k \neq i} f(|x_i - x_k|)} \quad \text{with} \quad f(z) = \frac{1}{1+z^2} \]

This uses the t-student distribution with one degree of freedom, or Cauchy distribution, instead of a Gaussian distribution.
Can use mass-spring system enforcing minimum of $|p_{ij} - q_{ij}|$

The classic handwritten digits datasets. It contains 1,797 images with $8 \times 8 = 64$ pixels each.
See this webpage
SHORTCOMINGS OF t-SNE

t-SNE does not preserve global data structure
 ▪ only within cluster distances are meaningful
 ▪ while between cluster similarities are not guaranteed

More recently introduced: U-MAP
 ▪ follows the philosophy of t-SNE
 ▪ but introduces many improvements
 ▪ more info, for example, here

TIME SERIES DATA

Rectangular data set with a temporal component

- assume you have these data for each year
- how to handle that, you might ask?
Assume for now we have
- two attributes (burglary, theft)
- both observed over time

Can visualize
- but each point is a time series!
Similarity Measures

Needed it for clustering
- recall Euclidean, correlation, cosine distances

- similarity of two states
- similarity of two crimes
- similarity of two crimes in a given state over time
- similarity of two states for a given crime over time
- two time series

<table>
<thead>
<tr>
<th>State</th>
<th>Burglary</th>
<th>Larceny-theft</th>
<th>Motor Vehicle Theft</th>
<th>Arson2</th>
<th>Violent</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALIFORNIA</td>
<td>2,616</td>
<td>6,298</td>
<td>3,344</td>
<td>71</td>
<td>4:1</td>
</tr>
<tr>
<td>MICHIGAN</td>
<td>1,049</td>
<td>979</td>
<td>154</td>
<td>72</td>
<td>1:1</td>
</tr>
<tr>
<td>MICHIGAN</td>
<td>1,049</td>
<td>979</td>
<td>154</td>
<td>72</td>
<td>1:1</td>
</tr>
<tr>
<td>TENNESSEE</td>
<td>6,064</td>
<td>12,141</td>
<td>3,828</td>
<td>290</td>
<td>1:1</td>
</tr>
<tr>
<td>MISSOURI</td>
<td>1,960</td>
<td>6,432</td>
<td>1,542</td>
<td>79</td>
<td>1:1</td>
</tr>
<tr>
<td>MARYLAND</td>
<td>3,372</td>
<td>8,761</td>
<td>1,936</td>
<td>137</td>
<td>1:1</td>
</tr>
<tr>
<td>ALABAMA</td>
<td>1,942</td>
<td>3,964</td>
<td>451</td>
<td>21</td>
<td>1:1</td>
</tr>
<tr>
<td>OHIO</td>
<td>1,759</td>
<td>5,118</td>
<td>2,008</td>
<td>148</td>
<td>1:1</td>
</tr>
<tr>
<td>ILLINOIS</td>
<td>875</td>
<td>2,242</td>
<td>156</td>
<td>19</td>
<td>1:1</td>
</tr>
<tr>
<td>ARKANSAS</td>
<td>1,852</td>
<td>5,012</td>
<td>589</td>
<td>51</td>
<td>1:1</td>
</tr>
<tr>
<td>CALIFORNIA</td>
<td>2,022</td>
<td>4,450</td>
<td>1,100</td>
<td>43</td>
<td>1:1</td>
</tr>
<tr>
<td>WISCONSIN</td>
<td>2,619</td>
<td>7,622</td>
<td>1,719</td>
<td>120</td>
<td>1:1</td>
</tr>
</tbody>
</table>
What can be clustered with these measures?

- **crimes** (averaged over time, clustered by states)
- **states** (averaged over time, clustered by crimes)

Can we get more inclusive?

- cluster crimes but including the time series characteristics
- cluster states but including the time series characteristics

Capture more information about their time series when you compare two data points

- compute the similarity of two crimes by summing the times-series similarities for each state
- compute the similarity of two states by summing the times-series similarities for each crime
Time-series aware similarity S_{tsa} for a pair of states:

for each pair of states i, j

for each crime c

compute the time series similarity $\rightarrow \text{sim}_t(c)$

sum all $\text{sim}_t(c) \rightarrow S_{tsa}(i,j)$

If the time series are aligned for all crimes then the S_{tsa} will be high and the two states have very similar time behaviors.

Likewise, S_{tsa} for a pair of crimes:

for each pair of crimes i, j

for each state s

compute the time series similarity $\rightarrow \text{sim}_t(s)$

sum all $\text{sim}_t(s) \rightarrow S_{tsa}(i,j)$
Some Thoughts

The time series might not be aligned
- one crime might cause another
- can apply dynamic time warping (see next)

You may (also) have a geospatial component in your data
- can use them as a regular attribute (encoded by an ID)
- can you make them more continuous and linearly ordered?
- use a space filling curve (see next)
Standard pairwise distance

\[Dist(X, Y) = \left(\sum_{i=1}^{n} |x_i - y_i|^p \right)^{1/p} \]

Shortcomings:
- designed for time series of equal length
- cannot address distortions on the temporal (contextual) attributes

\[\text{Times Series A} \]

\[\text{Times Series B} \]
Can better accommodate local mismatches

Three constraints
- no skipping of beginning or ends of either sequence
- continuity – no jumps
- monotonicity – can’t go back in time
DTW – Find The Minimum Cost Path

Euclidian

DTW
DTW – Find The Minimum Cost Path

DTW

Compute using dynamic programming

Available in python
Convert a geographical map into a grid map

Linearize using a space-filling curve (Hilbert curve)
Learned about

- PCA and biplots
- LDA
- MDS
- T-SNE
- U-MAP

Can we use (deep) neural networks?
Dimension reduction with Neural Network approaches
Train a Variational Autoencoder (VAE)
- optimize the output reconstruction loss of the input
- also optimize the latent distribution to be standard normal

Cavallo and Demiralp, “A Visual Interaction Framework for Dimensionality Reduction Based Data Exploration,” ACM CHI 2018
Dataset: 60,000 images of handwritten digits (MINST)
 - each image is $28 \times 28 \rightarrow 784$ D space
Result when not assuring a standard normal distribution in the latent space

\[l_i(\theta, \phi) = -\mathbb{E}_{z \sim q_\theta(z \mid x_i)}[\log p_\phi(x_i \mid z)] + \text{Kullback-Leibler divergence} \]
What’s the advantage of it?

- latent space allows easy interpolation
- move between samples in latent space and reconstruct novel instances by the decoder
- not easily possible using other non-linear layouts such as MDS, T-SNE

See example [here](#)
Assume you have MDS-projected a multivariate dataset of cars would like to know the N-D features of a hypothetical car X

Approach:
- train a deep neural network to predict the N-D coordinates of the known cars given their 2D MDS mappings
- use the trained network to predict the N-D coordinates of a hypothetical car X
- note: this approach will work for any mapping, not just MDS

Parallel Coordinates

Interaction is key

- https://bl.ocks.org/jasondavies/1341281
- http://bl.ocks.org/sebastian-meier/03df214f456fc100526a
WORD EMBEDDING
Approach

- Use word embedding to encode the similarity of attributes.
- Train a shallow NN with 10,000 unique words.
- Probabilities in the output layer are given by the word contexts in the training dataset.
Approach

- use word embedding to encode the similarity of attributes
- train a shallow NN with 10,000 unique words
- probabilities in the output layer are given by the word contexts in the training dataset
Using the weight matrix
- compute the distance of different words

- build 10,000 x 10,000 distance matrix
- lay out with MDS
- only plot the attribute labels

To reduce conflation of word sense
- use wordmover distance in conjunction with descriptive text for labels to compute the semantic attribute distance matrix
Semantic clusters and sub-clusters

Expenditures
- food
- utilities

Ownership
- electronics
- transport.
- appliances

Housing

Income
(a) control panel; (b) subspace dimensionality view; (c) semantic space; (d) subspace view (d) subspace grid view
User interaction is required to contextualize some words

- house age
- family income
- restaurant

Mahmood, Mueller “Semantic Subspace Clustering to Guide the Visual Exploration of High-Dimensional Data”
Biplot reveals two dimension clusters

- crop, bread, rice (basic staples)
- other foods

Distinguish these for further visual analysis
Make blue clusters less opaque to focus on “basic staples” households

- “Basic staples” households do not spend much on utilities
- medical care is different from other utilities, similar to a special occasion

Color high spenders in yellow
“High spender” households own more electronics and live in larger houses
“Basic staples” households own few electronics and smaller houses
No distinction in terms of house age
“Basic staples” households are more evenly distributed

“High spenders” seems to be older families

The overall finding:
In Filipino families Rice, Bread/Cereal and Crops make a major portion of the food consumption in households with less economic resources.
Using SURFING to observe exterior influences

- adding Electricity creates an extra cluster of households who do not use electricity
Electronics use electricity – are there differences?

- color the lower cluster in yellow

- “electricity-less” households nevertheless do own cell phones
Now to Categorical Variables
Let’s look first at application in text processing

Assume you are given a large corpus of documents and you wish to get an overview about what they contain

What can you do?
Singular Value Decomposition (SVD)

The same as PCA when the mean of each attribute is zero

SVD does not subtract the mean
- appropriate if values close to zero should not be influential
- PCA puts them at in the extreme negative side

SVD often used for text analysis
- values close to zero are frequent and should not affect the analysis
Decomposes C into the matrix:

$$Q_k \Sigma_k P_k^T$$

q_i and p_i are two column vectors with significance σ_i

$$Q_k \Sigma_k P_k^T = \sum_{i=1}^{k} q_i \sigma_i p_i^T = \sum_{i=1}^{k} \sigma_i (q_i p_i^T)$$

Example: in a user-item ratings matrix we wish to determine:

- a reduced representation of the users
- a reduced representation of the items
- SVD has the basis vectors for both of these reductions
Find the matrices \(\mathbf{U}, \mathbf{D}, \) and \(\mathbf{V} \) such that:

\[
\mathbf{C} = \mathbf{U} \mathbf{D} \mathbf{V}^T
\]

\(\mathbf{U} \) are the Eigenvectors of \(\mathbf{CC}^T \)

\(\mathbf{V} \) are the Eigenvectors of \(\mathbf{C}^T \mathbf{C} \)

\(\mathbf{D} \) a diagonal matrix of \(\sqrt{\lambda_k} \) where \(\lambda_k \) are Eigenvalues of \(\mathbf{CC}^T \)

\(k = \text{Rank} (\mathbf{C}) < \text{Min}(r-1,c-1) \)
Create an occurrence matrix (term-document matrix)

- words (terms \(t \)) are the rows
- paragraphs (documents \(d \)) are the columns
- uses the term frequency–inverse document frequency (tf-idf) metric
- \(tf(t,d) \) = simplest form is frequency of \(t \) in \(d = f(t,d) \)
Create an occurrence matrix (term-document matrix)

- words (terms t) are the rows
- paragraphs (documents d) are the columns
- uses the term frequency–inverse document frequency (tf-idf) metric
- $tf(t,d) =$ simplest form is frequency of t in $d = f(t,d)$

- $idf(t,d) = \text{idf}(t, D) = \log \frac{N}{|\{d \in D : t \in d\}|}$

- $N =$ number of docs $= |D|$, D is the corpus of documents
- idf is a measure of term rareness, it’s 0 when term occurs in all of D
- important terms get a higher tf-idf

Use SVD to reduce the number of rows

- preserves similarity of columns
Co-Occurrence TF-IDT Matrix

$$
A = \begin{pmatrix}
D_1 & D_2 & D_3 & D_4 & D_5 & D_6 & \cdots & D_n \\
D_{11} & 0.00060 & 0.00012 & 0.00003 & 0.00003 & 0.00333 & 0.00048 & \cdots & a_{1n} \\
D_{12} & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & a_{2n} \\
D_{13} & 0 & 2.98862 & 0 & 0 & 0 & 1.49431 & \cdots & a_{3n} \\
D_{14} & 0 & 0 & 0 & 13.32555 & 0 & 0 & \cdots & a_{4n} \\
D_{15} & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & a_{5n} \\
D_{16} & 1.03442 & 1.03442 & 0 & 0 & 0 & 3.10326 & \cdots & a_{6n} \\
D_{1m} & \vdots & a_{mn}
\end{pmatrix}
$$
$U = \text{term-concept matrix}$

concept = latent (hidden) *topic*

sort and keep the k most significant rows/columns

$V = \text{concept-document matrix}$
How many concepts to use when approximating the matrix?
- if too few, important patterns are left out
- if too many, noise caused by random word choices will creep in
- can use the elbow method in the scree plot

Throw out the 1st dimension in U and V
- in U it is correlated with document length
- in V it correlates with the number of times a term was mentioned

Now we have a k-D concept space shared by both terms and documents
Visualizing The Concept Space

Project the k-D concept space into 2D and visualize as a map

- can cluster the map
- the cluster of documents are then labeled by the terms
- provides map semantics
LSA assumes a Gaussian distribution and Frobenius norm
 ▪ this may not fit all problems

LSA cannot handle polysemy effectively
 ▪ need LDA (Latent Dirichlet Allocation) for this

LSA depends heavily on SVD
 ▪ computationally intensive
 ▪ hard to update as new documents appear
 ▪ but faster algorithms have emerged recently
CATEGORICAL VARIABLES
You will need to use correspondence analysis (CA)

- CA is PCA for categorical variables
- related to factor analysis

Makes use of the χ^2 test

- what’s χ^2?
Chi-square Test (Nominal Data)

• A *chi-square test* is used to investigate relationships
• Relationships between categorical, or nominal-scale, variables representing attributes of people, interaction techniques, systems, etc.
• Data organized in a *contingency table* – cross tabulation containing counts (frequency data) for number of observations in each category
• A chi-square test compares the *observed values* against *expected values*
• Expected values assume “no difference”
• Research question:
 – *Do males and females differ in their method of scrolling on desktop systems?* (next slide)
Chi-square – Example #1

<table>
<thead>
<tr>
<th>Gender</th>
<th>Scrolling Method</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MW</td>
<td>CD</td>
</tr>
<tr>
<td>Male</td>
<td>28</td>
<td>15</td>
</tr>
<tr>
<td>Female</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>49</td>
<td>24</td>
</tr>
</tbody>
</table>

MW = mouse wheel
CD = clicking, dragging
KB = keyboard
Chi-square – Example #1

56.0 - 49.0 / 101 = 27.2

<table>
<thead>
<tr>
<th>Gender</th>
<th>Scrolling Method</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MW</td>
<td>CD</td>
</tr>
<tr>
<td>Male</td>
<td>27.2</td>
<td>13.3</td>
</tr>
<tr>
<td>Female</td>
<td>21.8</td>
<td>10.7</td>
</tr>
<tr>
<td>Total</td>
<td>49.0</td>
<td>24.0</td>
</tr>
</tbody>
</table>

\[
\frac{(E - O)^2}{E} = \frac{(28 - 27.2)^2}{27.2}
\]

\[
\chi^2 = 1.462
\]
Chi-square Critical Values

- Decide in advance on \(\alpha \) (typically .05)
- Degrees of freedom
 - \(df = (r - 1)(c - 1) = (2 - 1)(3 - 1) = 2 \)
 - \(r = \) number of rows, \(c = \) number of columns

\[
\chi^2 = 1.462 \text{ (} < 5.99 \text{ : not significant)}
\]

<table>
<thead>
<tr>
<th>Significance Threshold ((\alpha))</th>
<th>Degrees of Freedom</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>.1</td>
<td>2.71</td>
</tr>
<tr>
<td>.05</td>
<td>3.84</td>
</tr>
<tr>
<td>.01</td>
<td>6.64</td>
</tr>
<tr>
<td>.001</td>
<td>10.83</td>
</tr>
</tbody>
</table>
Correspondence Analysis (CA)

Example:

<table>
<thead>
<tr>
<th>Staff Group</th>
<th>Smoking Category</th>
<th>(1) None</th>
<th>(2) Light</th>
<th>(3) Medium</th>
<th>(4) Heavy</th>
<th>Row Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Senior Managers</td>
<td></td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>(2) Junior Managers</td>
<td></td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>(3) Senior Employees</td>
<td></td>
<td>25</td>
<td>10</td>
<td>12</td>
<td>4</td>
<td>51</td>
</tr>
<tr>
<td>(4) Junior Employees</td>
<td></td>
<td>18</td>
<td>24</td>
<td>33</td>
<td>13</td>
<td>88</td>
</tr>
<tr>
<td>(5) Secretaries</td>
<td></td>
<td>10</td>
<td>6</td>
<td>7</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Column Totals</td>
<td></td>
<td>61</td>
<td>45</td>
<td>62</td>
<td>25</td>
<td>193</td>
</tr>
</tbody>
</table>

There are two high-D spaces

- 4D (column) space spanned by smoking habits – plot staff group
- 5D (row) space spanned by staff group – plot smoking habits

Are these two spaces (the rows and columns) independent?

- this occurs when the χ^2 statistics of the table is insignificant
Let’s do some plotting

- compute distance matrix of the rows CC^T
- compute Eigenvector matrix U and the Eigenvalue matrix D
- sort eigenvectors by values, pick two major vectors, create 2D plot

-- senior employees most similar to secretaries
Next:
- compute distance matrix of the columns $\mathbf{C}^T\mathbf{C}$
- compute Eigenvector matrix \mathbf{V} (gives the same Eigenvalue matrix \mathbf{D})
- sort eigenvectors by value
- pick two major vectors
- create 2D plot of smoking categories

Following (next slide):
- combine the plots of \mathbf{U} and \mathbf{V}
- if the χ^2 statistics was significant we should see some dependencies
Interpretation sample (using the χ^2 frequentist mindset)

- relatively speaking, there are more non-smoking senior employees
Extending to Cases

<table>
<thead>
<tr>
<th>Case Number</th>
<th>Senior Manager</th>
<th>Junior Manager</th>
<th>Senior Employee</th>
<th>Junior Employee</th>
<th>Secretary</th>
<th>None</th>
<th>Light</th>
<th>Medium</th>
<th>Heavy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>191</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>192</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>193</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Plot would now show 193 cases and 9 variables
Extension where there are more than 2 categorical variables

<table>
<thead>
<tr>
<th>Case No.</th>
<th>SURVIVAL</th>
<th>AGE</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO</td>
<td>YES</td>
<td>LESST50</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>762</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>763</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>764</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Let’s call it matrix X
Multiple Correspondence Analysis

Compute $X'X$ to get the Burt Table

<table>
<thead>
<tr>
<th></th>
<th>SURVIVAL</th>
<th>AGE</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO</td>
<td>YES</td>
<td><50</td>
</tr>
<tr>
<td>SURVIVAL:NO</td>
<td>210</td>
<td>0</td>
<td>68</td>
</tr>
<tr>
<td>SURVIVAL:YES</td>
<td>0</td>
<td>554</td>
<td>212</td>
</tr>
<tr>
<td>AGE:UNDER_50</td>
<td>68</td>
<td>212</td>
<td>280</td>
</tr>
<tr>
<td>AGE:A_50TO69</td>
<td>93</td>
<td>258</td>
<td>0</td>
</tr>
<tr>
<td>AGE:OVER_69</td>
<td>49</td>
<td>84</td>
<td>0</td>
</tr>
<tr>
<td>LOCATION:TOKYO</td>
<td>60</td>
<td>230</td>
<td>151</td>
</tr>
<tr>
<td>LOCATION:BOSTON</td>
<td>82</td>
<td>171</td>
<td>58</td>
</tr>
<tr>
<td>LOCATION:GLAMORGAN</td>
<td>68</td>
<td>153</td>
<td>71</td>
</tr>
</tbody>
</table>

Compute Eigenvectors and Eigenvalues
- keep top two Eigenvectors/values
- visualize the attribute loadings of these two Eigenvectors into the Burt table plot (the loadings are the coordinates)
Results of a survey of car owners and car attributes

<table>
<thead>
<tr>
<th></th>
<th>American</th>
<th>European</th>
<th>Japanese</th>
<th>Large</th>
<th>Medium</th>
<th>Small</th>
<th>Family</th>
<th>Sporty</th>
<th>Work</th>
<th>1 Income</th>
<th>2 Incomes</th>
<th>Own</th>
<th>Rent</th>
<th>Married</th>
<th>Married with Kids</th>
<th>Single</th>
<th>Single with Kids</th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>American</td>
<td>125</td>
<td>0</td>
<td>0</td>
<td>36</td>
<td>60</td>
<td>29</td>
<td>81</td>
<td>24</td>
<td>20</td>
<td>58</td>
<td>67</td>
<td>93</td>
<td>32</td>
<td>37</td>
<td>50</td>
<td>32</td>
<td>6</td>
<td>58</td>
<td>67</td>
</tr>
<tr>
<td>European</td>
<td>0</td>
<td>44</td>
<td>0</td>
<td>4</td>
<td>20</td>
<td>20</td>
<td>17</td>
<td>23</td>
<td>4</td>
<td>18</td>
<td>26</td>
<td>38</td>
<td>6</td>
<td>13</td>
<td>15</td>
<td>15</td>
<td>1</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>Japanese</td>
<td>0</td>
<td>0</td>
<td>165</td>
<td>2</td>
<td>61</td>
<td>102</td>
<td>76</td>
<td>39</td>
<td>30</td>
<td>74</td>
<td>91</td>
<td>111</td>
<td>54</td>
<td>51</td>
<td>44</td>
<td>62</td>
<td>8</td>
<td>70</td>
<td>95</td>
</tr>
<tr>
<td>Large</td>
<td>36</td>
<td>4</td>
<td>2</td>
<td>42</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>1</td>
<td>11</td>
<td>20</td>
<td>22</td>
<td>35</td>
<td>7</td>
<td>9</td>
<td>21</td>
<td>11</td>
<td>1</td>
<td>17</td>
<td>25</td>
</tr>
<tr>
<td>Medium</td>
<td>60</td>
<td>20</td>
<td>61</td>
<td>0</td>
<td>141</td>
<td>0</td>
<td>09</td>
<td>39</td>
<td>13</td>
<td>57</td>
<td>04</td>
<td>106</td>
<td>35</td>
<td>42</td>
<td>51</td>
<td>40</td>
<td>0</td>
<td>70</td>
<td>71</td>
</tr>
<tr>
<td>Small</td>
<td>29</td>
<td>20</td>
<td>102</td>
<td>0</td>
<td>0</td>
<td>151</td>
<td>55</td>
<td>66</td>
<td>30</td>
<td>73</td>
<td>78</td>
<td>101</td>
<td>50</td>
<td>50</td>
<td>37</td>
<td>58</td>
<td>6</td>
<td>62</td>
<td>89</td>
</tr>
<tr>
<td>Family</td>
<td>81</td>
<td>17</td>
<td>76</td>
<td>30</td>
<td>89</td>
<td>55</td>
<td>174</td>
<td>0</td>
<td>0</td>
<td>69</td>
<td>105</td>
<td>130</td>
<td>44</td>
<td>50</td>
<td>79</td>
<td>35</td>
<td>10</td>
<td>83</td>
<td>91</td>
</tr>
<tr>
<td>Sporty</td>
<td>24</td>
<td>23</td>
<td>59</td>
<td>1</td>
<td>39</td>
<td>66</td>
<td>0</td>
<td>106</td>
<td>0</td>
<td>55</td>
<td>51</td>
<td>71</td>
<td>35</td>
<td>35</td>
<td>12</td>
<td>57</td>
<td>2</td>
<td>44</td>
<td>62</td>
</tr>
<tr>
<td>Work</td>
<td>20</td>
<td>4</td>
<td>30</td>
<td>11</td>
<td>13</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>54</td>
<td>26</td>
<td>28</td>
<td>41</td>
<td>13</td>
<td>16</td>
<td>18</td>
<td>17</td>
<td>3</td>
<td>22</td>
<td>32</td>
</tr>
<tr>
<td>1 Income</td>
<td>58</td>
<td>18</td>
<td>74</td>
<td>20</td>
<td>57</td>
<td>73</td>
<td>69</td>
<td>53</td>
<td>26</td>
<td>150</td>
<td>00</td>
<td>80</td>
<td>70</td>
<td>10</td>
<td>27</td>
<td>99</td>
<td>14</td>
<td>47</td>
<td>103</td>
</tr>
<tr>
<td>2 Incomes</td>
<td>67</td>
<td>26</td>
<td>91</td>
<td>22</td>
<td>94</td>
<td>78</td>
<td>105</td>
<td>51</td>
<td>20</td>
<td>00</td>
<td>104</td>
<td>162</td>
<td>22</td>
<td>91</td>
<td>02</td>
<td>10</td>
<td>1</td>
<td>102</td>
<td>62</td>
</tr>
<tr>
<td>Own</td>
<td>93</td>
<td>38</td>
<td>111</td>
<td>35</td>
<td>106</td>
<td>101</td>
<td>130</td>
<td>71</td>
<td>41</td>
<td>80</td>
<td>162</td>
<td>242</td>
<td>0</td>
<td>76</td>
<td>106</td>
<td>52</td>
<td>8</td>
<td>114</td>
<td>126</td>
</tr>
<tr>
<td>Rent</td>
<td>32</td>
<td>6</td>
<td>54</td>
<td>7</td>
<td>35</td>
<td>50</td>
<td>44</td>
<td>35</td>
<td>13</td>
<td>70</td>
<td>22</td>
<td>0</td>
<td>92</td>
<td>25</td>
<td>3</td>
<td>57</td>
<td>7</td>
<td>35</td>
<td>57</td>
</tr>
<tr>
<td>Married</td>
<td>37</td>
<td>13</td>
<td>51</td>
<td>9</td>
<td>42</td>
<td>50</td>
<td>50</td>
<td>35</td>
<td>16</td>
<td>10</td>
<td>91</td>
<td>76</td>
<td>25</td>
<td>101</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>53</td>
<td>46</td>
</tr>
<tr>
<td>Married with Kids</td>
<td>50</td>
<td>15</td>
<td>44</td>
<td>21</td>
<td>51</td>
<td>37</td>
<td>79</td>
<td>12</td>
<td>13</td>
<td>27</td>
<td>82</td>
<td>106</td>
<td>3</td>
<td>0</td>
<td>109</td>
<td>0</td>
<td>0</td>
<td>48</td>
<td>61</td>
</tr>
<tr>
<td>Single</td>
<td>32</td>
<td>15</td>
<td>52</td>
<td>11</td>
<td>40</td>
<td>58</td>
<td>32</td>
<td>57</td>
<td>17</td>
<td>99</td>
<td>10</td>
<td>52</td>
<td>57</td>
<td>0</td>
<td>0</td>
<td>109</td>
<td>0</td>
<td>35</td>
<td>74</td>
</tr>
<tr>
<td>Single with Kids</td>
<td>64</td>
<td>16</td>
<td>27</td>
<td>17</td>
<td>41</td>
<td>52</td>
<td>32</td>
<td>71</td>
<td>37</td>
<td>107</td>
<td>126</td>
<td>166</td>
<td>25</td>
<td>44</td>
<td>34</td>
<td>44</td>
<td>8</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>Female</td>
<td>58</td>
<td>21</td>
<td>70</td>
<td>17</td>
<td>70</td>
<td>62</td>
<td>83</td>
<td>44</td>
<td>22</td>
<td>47</td>
<td>102</td>
<td>114</td>
<td>35</td>
<td>53</td>
<td>48</td>
<td>35</td>
<td>13</td>
<td>149</td>
<td>0</td>
</tr>
<tr>
<td>Male</td>
<td>67</td>
<td>23</td>
<td>95</td>
<td>25</td>
<td>71</td>
<td>89</td>
<td>91</td>
<td>62</td>
<td>32</td>
<td>103</td>
<td>82</td>
<td>128</td>
<td>57</td>
<td>48</td>
<td>61</td>
<td>74</td>
<td>2</td>
<td>0</td>
<td>185</td>
</tr>
</tbody>
</table>
MCA Example (2)

Summary table:

<table>
<thead>
<tr>
<th>Singular Value</th>
<th>Principal Inertia</th>
<th>Chi-Square</th>
<th>Percent</th>
<th>Cumulative Percent</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.56934</td>
<td>0.32415</td>
<td>970.77</td>
<td>18.91</td>
<td>18.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.48352</td>
<td>0.23380</td>
<td>700.17</td>
<td>13.64</td>
<td>32.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.42716</td>
<td>0.18247</td>
<td>546.45</td>
<td>10.64</td>
<td>43.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.41215</td>
<td>0.16987</td>
<td>508.73</td>
<td>9.91</td>
<td>53.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.38773</td>
<td>0.15033</td>
<td>450.22</td>
<td>8.77</td>
<td>61.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.38520</td>
<td>0.14838</td>
<td>444.35</td>
<td>8.66</td>
<td>70.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.34066</td>
<td>0.11605</td>
<td>347.55</td>
<td>6.77</td>
<td>77.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.32983</td>
<td>0.10879</td>
<td>325.79</td>
<td>6.35</td>
<td>83.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.31517</td>
<td>0.09933</td>
<td>297.47</td>
<td>5.79</td>
<td>89.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.28069</td>
<td>0.07879</td>
<td>235.95</td>
<td>4.60</td>
<td>94.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.26115</td>
<td>0.06820</td>
<td>204.24</td>
<td>3.98</td>
<td>98.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.18477</td>
<td>0.03414</td>
<td>102.24</td>
<td>1.99</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.71429</td>
<td>5133.92</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Degrees of Freedom = 324
Most influential column points (loadings):
MCA Example (4)

Burt table plot:
Plot Observations

Top-right quadrant:
- categories single, single with kids, 1 income, and renting a home are associated

Proceeding clockwise:
- the categories sporty, small, and Japanese are associated
- being married, owning your own home, and having two incomes are associated
- having children is associated with owning a large American family car

Such information could be used in market research to identify target audiences for advertisements
A Gartner Magic Quadrant is a culmination of research in a specific market, providing a wide-angle view of the relative positions of the market's competitors.

This concept can be used for other dimension pairs as well:

- essentially require to think of a segmentation of the 4 quadrants
Gartner
Magic Quadrant
Business Intelligence
2013 vs. 2014