CSE 564
Visualization & Visual Analytics
Applications and Basic Tasks

Klaus Mueller
Computer Science Department
Stony Brook University
<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intro, schedule, and logistics</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Applications of visual analytics</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Basic tasks, data types</td>
<td>Project #1 out</td>
</tr>
<tr>
<td>4</td>
<td>Data assimilation and preparation</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Introduction to D3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Bias in visualization</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Data reduction and dimension reduction</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Visual perception</td>
<td>Project #2(a) out</td>
</tr>
<tr>
<td>9</td>
<td>Visual cognition</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Visual design and aesthetics</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Cluster analysis: numerical data</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Cluster analysis: categorical data</td>
<td>Project #2(b) out</td>
</tr>
<tr>
<td>13</td>
<td>High-dimensional data visualization</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Dimensionality reduction and embedding methods</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Principles of interaction</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Midterm #1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Visual analytics</td>
<td>Final project proposal call out</td>
</tr>
<tr>
<td>18</td>
<td>The visual sense making process</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Maps</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Visualization of hierarchies</td>
<td>Final project proposal due</td>
</tr>
<tr>
<td>21</td>
<td>Visualization of time-varying and time-series data</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Foundations of scientific and medical visualization</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Volume rendering</td>
<td>Project 3 out</td>
</tr>
<tr>
<td>24</td>
<td>Scientific and medical visualization</td>
<td>Final Project preliminary report due</td>
</tr>
<tr>
<td>25</td>
<td>Visual analytics system design and evaluation</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Memorable visualization and embellishments</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Infographics design</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Midterm #2</td>
<td></td>
</tr>
</tbody>
</table>
Data Types Every CS Person Knows

Data type

Primitive
- char
- int
- float
- double
- void

Derived
- Array
- Pointer
- Function

User defined
- enum
- Structure
- Union
Data Types in Visual Analytics

Numeric
Categorical
Text
Time series
Graphs and networks
Hierarchies
Numeric variables
- measure a **quantity** as a number
- like: ‘how many’ or ‘how much’
- can be continuous (grey curve)
- or discrete (red steps)

Categorical variables
- describe a **quality** or characteristic
- like: ‘what type’ or ‘which category’
Numeric Variables

Most often the x-axis is ‘time’

- provides an intuitive & innate ordering of the data values
- the majority of people expect the x-axis to be ‘time’

But ‘time’ is not the only option

- engineers, statisticians, etc. will be receptive to this idea
- can you think of an example?
Another plot where ‘time’ is not the x-axis

- from the engineering / physics domain
- in some sense, it tells a story

Hooke's Law:

\[F_{spring} = -kx \]

Spring constant k
Variables in Statistics

Numeric variables
- measure a **quantity** as a number
- like: ‘how many’ or ‘how much’
- can be continuous (grey curve)
- or discrete (red steps)

Categorical variables
- describe a **quality** or characteristic
- like: ‘what type’ or ‘which category’
- can be ordinal = ordered, ranked (distances need not be equal)
 - clothing size, academic grades, levels of agreement
- or nominal = not organized into a logical sequence
 - gender, business type, eye color, brand
CATEGORICAL VARIABLES

Usually plotted as bar charts or pie charts

![Bar chart of M&M colors](image1)

Number of Colors in Bag of M&M Candies

- Green
- Red
- Yellow
- Blue
- Orange
- Brown

![Pie chart of customer satisfaction](image2)

Customer Satisfaction

- Very satisfied: 50%
- Somewhat satisfied: 14%
- Somewhat dissatisfied: 27%
- Very dissatisfied: 9%

nominal

ordinal

but of course you can plot either of them in either of these two representations
But not everything is expressed in numbers

- images
- video
- text
- web logs
- ...

Do **feature analysis** to turn these abstract things into numbers

- then apply your analysis as usual
- but keep the reference to the original data so you can return to the native domain where the analysis problem originated
Sensor Data

Characteristics
- often large scale
- time series

Feature Analysis
- example: Motif discovery
- encode into 5D data vector

% features discovered in stream
[0.12, 0.3, 0.41, 0.12, 0.05]
[feat. 1, feat. 2, .., feat. 5]
Sensor Data

Characteristics
- often large scale
- time series

Feature Analysis
- Fourier transform (FT, FFT)
- Wavelet transform (WT, FWT)

Fourier transform
Image Data

Characteristics
- array of pixels

Feature Analysis
- value histograms
- encode into a 256-D vector

[0, 0, 0, ..., 10, ..., 1200,]
Image Data

Characteristics
- array of pixels

Feature Analysis
- value histograms
- gradient histograms
- FFT, FWT
- Scale Invariant Feature Transform (SIFT)
- Bag of Features (BoF)
- visual words
Bag of Features (BoF)
1. Obtain the set of bags of features
 (i) Select a large set of images
 (ii) Extract the SIFT feature points of all the images in the set and obtain the SIFT descriptor for each feature point extracted from each image
 (iii) Cluster the set of feature descriptors for the amount of bags we defined and train the bags with clustered feature descriptors
 (iv) Obtain the visual vocabulary

2. Obtain the BoF descriptor for a given image/video frame
 (v) Extract SIFT feature points of the given image
 (vi) Obtain SIFT descriptor for each feature point
 (vii) Match the feature descriptors with the vocabulary we created in the first step
 (viii) Build the histogram

More information
Characteristics
- essentially a time series of images

Feature Analysis
- many of the above techniques apply albeit extension is non-trivial
Characteristics

- often raw and unstructured

Feature analysis

- first step is to remove stop words and stem the data
- perform **named-entity recognition** to gain atomic elements
 - identify names, locations, actions, numeric quantities, relations
 - understand the structure of the sentence and complex events
- example:
 - Jim bought 300 shares of Acme Corp. in 2006.
 - [Jim]_{Person} bought [300 shares]_{Quantity} of [Acme Corp.]_{Organiz.} in [2006]_{Time}
- distinguish between
 - application of grammar rules (old style, need experienced linguists)
 - statistical models (Google etc., need big data to build)
Create a term-document matrix

- turns text into a high-dimensional vector which can be compared
- use Latent Semantic Analysis (LSA) to derive a visualization

Term-Document Matrix

<table>
<thead>
<tr>
<th>Index Words</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
<th>T9</th>
</tr>
</thead>
<tbody>
<tr>
<td>book</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dads</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dummies</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>estate</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>guide</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>investing</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>market</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>real</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stock</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>value</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Word/document cluster

LSA
Train a shallow neural network (NN) on a corpus of text

- The NN weight vectors encode word similarity as a high-D vector
- Use a 2D embedding technique to display
WORD EMBEDDING ALGEBRA

Load up the word vectors

QUEEN [0.3, 0.9]
KING [0.5, 0.7]
WOMAN [0.3, 0.4]
MAN [0.5, 0.2]

gender = WOMAN – MAN
QUEEN = KING + gender

QUEEN = KING – MAN + WOMAN
Maps the frequency of words in a corpus to size

https://www.jasondavies.com/wordcloud/
Weblogs
- typically represented as text strings in a pre-specified format
- this makes it easy to convert them into multidimensional representation of categorical and numeric attributes

Network traffic
- characteristics of the network packets are used to analyze intrusions or other interesting activity
- a variety of features may be extracted from these packets
 - the number of bytes transferred
 - the network protocol used
 - IP ports used
Let’s Look at Some Essential Graphical Representations

And Do Some Advertising for D3
FUNCTION CALL TREE

gprof_function_call_tree_view_get_type
 gprof_function_call_tree_view_init
 gprof_function_call_tree_view_class_init
 gprof_function_call_tree_view_refresh
 gprof_profile_data_get_call_graph
 gprof_function_call_tree_view_add_function
 gprof_call_graph_block_get_first_child
 gprof_call_graph_block_is_recursive
 gprof_call_graph_block_entry_get_name
 gprof_call_graph_block_entry_get_next
 gprof_call_graph_block_get_next
 gprof_call_graph_block_get_first_child
 gprof_call_graph_find_block
 gprof_call_graph_block_entry_get_next
 gprof_view_get_data
 gprof_function_call_tree_view_finalize
 gprof_function_call_tree_view_get_widget
 gprof_function_call_tree_view_create_columns
 on_list_view_row_activated
 gprof_view_show_symbol_in_editor
 gprof_call_graph_block_get_next
 gprof_profile_data_get_call_graph
 gprof_call_graph_block_get_first_block
 gprof_call_graph_get_first_block
 gprof_call_graph_get_first_block
 gprof_view_get_data
 gprof_function_call_tree_view_refresh
 gprof_function_call_tree_view_class_init
 gprof_function_call_tree_view_get_type
Questions you might have

- how large is each group of stakeholders (or function)?
 - tree with quantities
- what fraction is each group with respect to the entire group?
 - partition of unity
- how is information disseminated among the stakeholders (or functions)?
 - information flow
- how close (or distant) are the individual stakeholders (functions) in terms of some metric?
 - force directed layout
More scalable tree, and natural with some randomness

http://animateddata.co.uk/lab/d3-tree/
A standard tree, but one that is scalable to large hierarchies

A tree that is scalable and has partial partition of unity

More space efficient since it’s radial, has partial partition of unity

https://observablehq.com/@kerryrodden/sequences-sunburst
Bubble Charts

No hierarchy information, just quantities

https://observablehq.com/@d3/bubble-chart
Circle Packing

Quantities and containment, but not partition of unity

Quantities, containment, and full partition of unity

Relationships among group fractions, not necessarily a tree

https://observablehq.com/@d3/chord-diagram
Hierarchical Edge Bundling

Relationships of individual group members, also in terms of quantitative measures such as information flow

Collapsible Force Layout

Relationships within organization members expressed as distance and proximity

Voronoi Tessellation

Shows the closest point on the plane for a given set of points... and a new point via interaction

DATA TYPE CONVERSIONS AND TRANSFORMATION
Solution 1:

- divide the numeric attribute values into φ equi-width ranges
- each range/bucket has the same width
- example: customer age

what is lost here?
Age ranges of customers could be unevenly distributed within a bin
- this could be an interesting anomaly
Solution 2:

- divide the numeric attribute values into φ **equi-depth** ranges
- same number of samples in each bin
- (again) example: customer age:

 - what is the disadvantage here?
 - extra storage needed: must store the start/end value for each bin
Entropy-based binning

Entropy is the amount of surprise to make a certain observation

\[H(X) = - \sum_{i=1}^{n} P(x_i) \log_b P(x_i) \]
The Data

<table>
<thead>
<tr>
<th>O-Ring Failure</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>53</td>
</tr>
<tr>
<td>Y</td>
<td>56</td>
</tr>
<tr>
<td>Y</td>
<td>57</td>
</tr>
<tr>
<td>N</td>
<td>63</td>
</tr>
<tr>
<td>N</td>
<td>66</td>
</tr>
<tr>
<td>N</td>
<td>67</td>
</tr>
<tr>
<td>N</td>
<td>68</td>
</tr>
<tr>
<td>N</td>
<td>69</td>
</tr>
<tr>
<td>N</td>
<td>70</td>
</tr>
<tr>
<td>Y</td>
<td>70</td>
</tr>
<tr>
<td>Y</td>
<td>70</td>
</tr>
<tr>
<td>Y</td>
<td>70</td>
</tr>
<tr>
<td>Y</td>
<td>70</td>
</tr>
<tr>
<td>N</td>
<td>72</td>
</tr>
<tr>
<td>N</td>
<td>73</td>
</tr>
<tr>
<td>N</td>
<td>75</td>
</tr>
<tr>
<td>N</td>
<td>75</td>
</tr>
<tr>
<td>N</td>
<td>75</td>
</tr>
<tr>
<td>N</td>
<td>76</td>
</tr>
<tr>
<td>N</td>
<td>76</td>
</tr>
<tr>
<td>N</td>
<td>76</td>
</tr>
<tr>
<td>N</td>
<td>78</td>
</tr>
<tr>
<td>N</td>
<td>79</td>
</tr>
<tr>
<td>N</td>
<td>80</td>
</tr>
<tr>
<td>N</td>
<td>81</td>
</tr>
</tbody>
</table>

from https://www.saedsayad.com/supervised_binning.htm
Aim:
- find the best split so that the bins are as pure as possible that is the majority of the values in a bin correspond to have the same class label
- formally, it is characterized by finding the split with the maximal information gain.

Step 1: Calculate "Entropy" for the target.

\[E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i \]

<table>
<thead>
<tr>
<th>O-Ring Failure</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>7</td>
</tr>
<tr>
<td>N</td>
<td>17</td>
</tr>
</tbody>
</table>

\[E \text{ (Failure)} = E(7, 17) = E(0.29, .71) = -0.29 \times \log_2(0.29) - 0.71 \times \log_2(0.71) = 0.871 \]
Step 2: Calculate "Entropy" for the target given a bin.

\[E(S,A) = \sum_{v \in A} \frac{|S_v|}{|S|} E(S_v) \]

<table>
<thead>
<tr>
<th>Temperature</th>
<th>O-Ring Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y</td>
</tr>
<tr>
<td><= 60</td>
<td>3</td>
</tr>
<tr>
<td>> 60</td>
<td>4</td>
</tr>
</tbody>
</table>

\[E(\text{Failure, Temperature}) = P(\leq 60) \times E(3,0) + P(>60) \times E(4,17) = \frac{3}{24} \times 0 + \frac{21}{24} \times 0.7 = 0.615 \]

Step 3: Calculate "Information Gain" given a bin.

\[\text{Information Gain} = E(S) - E(S,A) \]

Information Gain (Failure, Temperature) = \textbf{0.256}
Entropy Based Binning (EBB)

[<=60, >60] turns out to be the best split

Iterate for further splits for bins with highest entropies
Solution 3:

- what if all the bars have seemingly the same height
- or are dominated by one large peak

- switch to log scaling of the y-value
Dang and Wilkinson, “Transforming Scagnostics to Reveal Hidden Features”, TVCG 2014
Ever tried to reduce the size of an image and you got this?

This is aliasing
But what you really wanted is this:

This is *anti-aliasing*
Why Is This Happening?

The smaller image resolution cannot represent the image detail captured at the higher resolution
 - skipping this small detail leads to these undesired artifacts
Procedure

- either sample at a higher rate
- or smooth the signal before sampling it
- the latter is called *filtering*
ANTI-ALIASING VIA SMOOTHING
ANTI-ALIASING VIA SMOOTHING
Slide a window across the signal

- stop at each discrete sample point
- average the original data points that fall into the window
- store this average value at the sample point
- move the window to the next sample point
- repeat

What is Smoothing?
looks sharper, but has “jaggies” a bit blurred, but no more jaggies
What is the filter we just used called?
- it’s called a box filter

There are other filters
- for example, Gaussian filter
- yields a smoother result
- box filtering is simplest
Can you see some patterns?

It’s another form of aliasing.

Box Filter vs. Gaussian Filter
What's the underlying problem?
- detail can't be refined upon zoom
- can just be replicated or blurred

The solution...
- represent detail as a function that can be mathematically refined
- replace raster graphics by vector graphics
Scalable Vector Graphics (SVG)

- Painting with pixels
- Drawing with vectors

Vector graphics vs. bitmapped (raster) graphics.
Vector graphics tends to have an “cartoonish” look

raster graphics

vector graphics
Photographs and Images in SVG
D3 USES SVG

The Wealth & Health of Nations

1835
Smoothing for De-Noising

Filtering/smoothing also eliminates noise in the data.
In some ways, bar charts reduce noise and uncertainties in the data

- the bins do the smoothing

Example:
- obesity over age (group)
Of course, bar charts can also hold categorical data

- smoothing by semantic grouping
- for example, Europe vs. \{France, Spain, Italy, Germany, \ldots\}
Bar Charts vs. Histograms

Histograms
- bars show the frequency of numerical data
- quantitative data
- elements are grouped together, so that they are considered as ranges
- bars cannot be reordered
- width of bars need not be the same

Bar charts
- uses bars to compare different categories of data
- comparison of discrete variables
- elements are taken as individual entities
- bars can be reordered
- width of bars need to be the same
How many bars are too many (in a chart)

- if individual categories are the focus? 12 is a good rule
- if the overall trend is the important factor? 50 or even more
- eventually you can switch to a line chart

- sort bars by height and use ‘other’ to aggregate the bar chart tails into a single bar
- find a grouping that can semantically aggregate bars, for example aggregate countries into continents

more information
Bar Charts in D3

https://observablehq.com/@d3/bar-chart

Working with bar charts and histograms is the topic of Lab 1
- the next two slides offer some help with calculations
Determine bin size

- min(data) is optional, can also use 0 or some reasonable value
- max(data) is optional, can also use some reasonable value

\[
bin\ size = \frac{\text{max}(data) - \text{min}(data)}{\text{number of bins}}
\]

Given a data value \(val \) increment (++) the bin value

- but first initialize bin val array to 0

\[
bin\ val\ array\left[\left\lfloor \frac{val - \text{min}(data)}{bin\ size} \right\rfloor \right] + +
\]
Histogram Calculations – Plotting

Determine bin size on the screen

\[
\text{bin size on screen} = \frac{\text{chart width}}{\text{number of bins}}
\]

Center of a bar for bin with index \(\text{bin index} \)

\[
\text{bar center on screen} = (\text{bin index} \cdot \text{bin size on screen}) + 0.5
\]

Height of the bar for a bin with index \(\text{bin index} \)

\[
\text{bar height}(\text{bin index}) = \text{bin val array}(\text{bin index}) \cdot \frac{\text{chart height}}{\max(\text{bin val array})}
\]

Do not forget that the origin of a web page is the top left corner.