
CSE 528: Computer Graphics

Trackball Navigation

Klaus Mueller

Computer Science Department

Stony Brook University

Some material from Han-Wei Shen, Ohio State University and Steve Rottenberg, UCSD

Rotation Matrices Revisited

To build a general rotation matrix, we just multiply a sequence
of rotation matrices together, for example:

This matrix multiplication is not commutative
• the order of operations is important
• the multiplication is also a hierarchy: Rx [Ry [Rz object]]]
• this means Rx affects both Ry and Rz, and Ry affects Rz
• typically we rotate once per axis in some order

The rotation angles about x, y, z are also called Euler Angles

y z y z y

x y z x z x y z x z x y

x y z x z x y z x z x y

c c c s s
s s c c s s s s c c s c
c s c s s c s s s c c c

1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

y y z z

x y z x x z z

x x y y

c s c s
c s s c
s c s c

R R R

Gimbal Lock

The hierarchical rotation order causes problems
• consider Rz [Rx [Ry arrow]]] with 3 corresponding gimbals (axes) x, y, z

starting position Ry rotates axis
x and z as well

Rx rotates
axis z into the

already evaluated axis y
 gimbal lock

Rz can no longer tilt
arrow up and down
 loss of one degree

of freedom

see also
http://www.youtube.com/
watch?v=zc8b2Jo7mno

and
http://www.anticz.com/eularqua.htm

Solution: Quaternions

Invented by W.R. Hamilton in1843 as an extension to the
complex numbers

Used in computer graphics since 1985

Quaternions:
• provide an alternative method to specify rotations
• are most useful to us as a means of representing orientations
• can avoid the gimbal lock problem
• allow unique, smooth and continuous rotation interpolations

A quaternion has 4 components

• they are often written as the combination of a scalar value s and a
vector value v

where

 0 1 2 3q q q qq

,sq v

0

1 2 3

s q
q q q

v

Quaternions (Imaginary Space)

Quaternions are actually an extension to complex numbers
• of the 4 components, one is a ‘real’ scalar number, and the other 3

form a vector in imaginary ijk space!

0 1 2 3q iq jq kq q

2 2 2 1i j k ijk
i jk kj
j ki ik
k ij ji

Basic Operations

Conjugate:

Norm: q·q* = q1*·q1+q2*·q2+q3*·q3+q4*·q4

Inverse: q-1 = (1/Norm(q))·q*

Identity i = (0,1)

* ,s q v

Unit Quaternions and Rotations

For convenience, we will use only unit length quaternions, as
they will be sufficient for our purposes and make things a
little easier

A quaternion can represent a rotation by an angle θ around a
unit axis a:

• if a is unit length, then q will be also

2 2 2 2
0 1 2 3 1q q q q q

cos sin sin sin
2 2 2 2

cos , sin
2 2

x y za a a

or

q

q a

Steve Rottenberg, UCSD

Quaternions as Rotations

2 2 2 2
0 1 2 3

2 2 2 2 2 2 2 2 2 2 2 2

22 2 2 2

cos sin sin sin cos sin
2 2 2 2 2 2

cos sin cos sin 1 1
2 2 2 2

x y z x y z

q q q q

a a a a a a

q

a

To convert a quaternion to a rotation matrix:

There is also a method to convert the other way

2 2
2 3 1 2 0 3 1 3 0 2

2 2
1 2 0 3 1 3 2 3 0 1

2 2
1 3 0 2 2 3 0 1 1 2

1 2 2 2 2 2 2
2 2 1 2 2 2 2
2 2 2 2 1 2 2

q q q q q q q q q q
q q q q q q q q q q
q q q q q q q q q q

S Rottenberg, UCSD

Quaternions as Rotations

Concatenation is easy – just multiply all the quaternions q1, q2,
q3, …. together

There is a one-to-one mapping between a quaternion rotation
and 4x4 rotation matrix

From the vector-angle form:
• rotate about the unit vector u by angle θ:

b = (cos(θ/2), u sin(θ/2))

A point p in 3D space is represented by the quaternion
P = (0, p)

The rotated point p' is represented by the quaternion
P' = b * P * b-1

1 1 1
3 2 1 1 2 3q q q P q q q

Steve Rottenberg, UCSD

Quaternion Dot Products

The dot product of two quaternions works in the same way as
the dot product of two vectors:

The angle between two quaternions in 4D space is half the
angle one would need to rotate from one orientation to the
other in 3D space

0 0 1 1 2 2 3 3 cosp q p q p q p q p q p q

Steve Rottenberg, UCSD

Quaternion Multiplication

We can perform multiplication on quaternions if we expand
them into their complex number form

If q represents a rotation and q’ represents a rotation, then
qq’ represents q rotated by q’

This follows very similar rules as matrix multiplication (I.e.,
non-commutative)

Two unit quaternions multiplied together will result in another
unit quaternion

0 1 2 3q iq jq kq q

 0 1 2 3 0 1 2 3

,

q iq jq kq q iq jq kq

ss s s

qq

v v v v v v

Steve Rottenberg, UCSD

Linear Interpolation

If we want to do a linear interpolation between two points a
and b in normal space

Lerp(t,a,b) = (1-t)a + (t)b

where t ranges from 0 to 1

Note that the Lerp operation can be thought of as a weighted
average (convex)
• we could also write it in it’s additive blend form:

Lerp(t,a,b) = a + t(b-a)

Steve Rottenberg, UCSD

Spherical Linear Interpolation

If we want to interpolate between two points on a sphere (or
hypersphere), we don’t just want to Lerp between them
• instead, we will travel across the surface of the sphere by following a

‘great arc’

We define the spherical linear interpolation of two unit vectors
as:

Note, a and b can also be
quaternions
• then slerp interpolation will ensure constant angular speed

 1

sin 1 sin
(, ,)

sin sin

: cos

t t
Slerp t

where

a b a b

a b

a
b_|b

Quaternion Interpolation

Remember that there are two redundant vectors in quaternion
space for every unique orientation in 3D space

What is the difference between:

Slerp(t,a,b) and Slerp(t,-a,b) ?

One of these will travel less than 90 degrees while the other
will travel more than 90 degrees across the sphere

This corresponds to rotating the ‘short way’ or the ‘long way’

Usually, we want to take the short way, so we negate one of
them if their dot product is < 0

Steve Rottenberg, UCSD

3D Rotations with Trackball

Imagine the objects are
rotated along with a
imaginary hemi-sphere

Han-Wei Shen, OSU

Virtual Trackball

Allow the user to define 3D
rotation using mouse click in
2D windows

Work similarly like the
hardware trackball devices

Han-Wei Shen, OSU

Virtual Trackball

Superimpose a hemi-sphere
onto the viewport

This hemi-sphere is
projected to a circle
inscribed to the viewport

The mouse position is
projected orthographically to
this hemi-sphere

z

y

(x,y,0)

x

Han-Wei Shen, OSU

Virtual Trackball

Keep track of the previous mouse
position and the current position

Calculate their projection positions
p1 and p2 to the virtual hemi-sphere

We then rotate the sphere from p1 to
p2 by finding the proper rotation axis
and angle

This rotation (in eye space!) is then
applied to the object (call the rotation
before you define the camera with
gluLookAt())

You should also remember to
accumulate the current rotation to
the previous modelview matrix

x

y

z

Han-Wei Shen, OSU

Virtual Trackball

The axis of rotation is given by the normal to the plane
determined by the origin, p1 , and p2

The angle between p1 and p2 is given by

x

y

z

n = p1 p1

| sin | =
||||

||

21 pp
n

Han-Wei Shen, OSU

Virtual Trackball

How to calculate p1 and p2?

Assuming the mouse position is (x,y), then the sphere point
P also has x and y coordinates equal to x and y

Assume the radius of the hemi-sphere is 1. So the z
coordinate of P is

Note: normalize viewport y extend

to -1 to 1

If a point is outside the circle, project
it to the nearest point on the circle
(set z to 0 and renormalize (x,y))

22 yx1
z

y

(x,y,0)

x

Han-Wei Shen, OSU

Trackball Visualization

Using the quaternion representation at some point in the
process will enable convenient specification of the rotation
matrix, apart from the other advantages
• could keep internal quaternion representation throughout the

navigation and only convert to update the Modelview Matrix

Example

Example from Ed Angel’s OpenGL Primer

In this example, the virtual trackball is used to rotate a color
cube

The code for the colorcube function is omitted

I will not cover the following code, but I am sure you will find it
useful

Han-Wei Shen, OSU

Initialization

#define bool int /* if system does not support
bool type */

#define false 0
#define true 1
#define M_PI 3.14159 /* if not in math.h */

int winWidth, winHeight;

float angle = 0.0, axis[3], trans[3];

bool trackingMouse = false;
bool redrawContinue = false;
bool trackballMove = false;

float lastPos[3] = {0.0, 0.0, 0.0};
int curx, cury;
int startX, startY; Han-Wei Shen, OSU

The Projection Step

voidtrackball_ptov(int x, int y, int width, int height, float v[3])
{

float d, a;
/* project x,y onto a hemisphere centered within width, height ,

note z is up here*/
v[0] = (2.0*x - width) / width;
v[1] = (height - 2.0F*y) / height;
d = sqrt(v[0]*v[0] + v[1]*v[1]);
v[2] = cos((M_PI/2.0) * ((d < 1.0) ? d : 1.0));
a = 1.0 / sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
v[0] *= a; v[1] *= a; v[2] *= a;

}

Han-Wei Shen, OSU

glutMotionFunc (1)

Void mouseMotion(int x, int y)
{

float curPos[3],
dx, dy, dz;
/* compute position on hemisphere */
trackball_ptov(x, y, winWidth, winHeight, curPos);
if(trackingMouse)
{

/* compute the change in position
on the hemisphere */

dx = curPos[0] - lastPos[0];
dy = curPos[1] - lastPos[1];
dz = curPos[2] - lastPos[2];

Han-Wei Shen, OSU

glutMotionFunc (2)

if (dx || dy || dz)
{
/* compute theta and cross product */
angle = 90.0 * sqrt(dx*dx + dy*dy + dz*dz);
axis[0] = lastPos[1]*curPos[2] –

lastPos[2]*curPos[1];
axis[1] = lastPos[2]*curPos[0] –

lastPos[0]*curPos[2];
axis[2] = lastPos[0]*curPos[1] –

lastPos[1]*curPos[0];
/* update position */
lastPos[0] = curPos[0];
lastPos[1] = curPos[1];
lastPos[2] = curPos[2];

}
}
glutPostRedisplay();} Han-Wei Shen, OSU

Idle and Display Callbacks

void spinCube()
{

if (redrawContinue) glutPostRedisplay();
}

void display()
{ glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
if (trackballMove)
{

glRotatef(angle, axis[0], axis[1], axis[2]);
}
colorcube();
glutSwapBuffers();
}

Han-Wei Shen, OSU

Mouse Callback

void mouseButton(int button, int state, int x, int y)
{
if(button==GLUT_RIGHT_BUTTON) exit(0);

/* holding down left button
allows user to rotate cube */

if(button==GLUT_LEFT_BUTTON) switch(state)
{

case GLUT_DOWN:
y=winHeight-y;
startMotion(x,y);
break;

case GLUT_UP:
stopMotion(x,y);
break;

}
} Han-Wei Shen, OSU

Start Function

void startMotion(int x, int y)
{
trackingMouse = true;
redrawContinue = false;
startX = x;
startY = y;
curx = x;
cury = y;
trackball_ptov(x, y, winWidth, winHeight, lastPos);
trackballMove=true;

}

Han-Wei Shen, OSU

Stop Function

void stopMotion(int x, int y)
{

trackingMouse = false;
/* check if position has changed */
if (startX != x || startY != y)

redrawContinue = true;
else
{

angle = 0.0;
redrawContinue = false;
trackballMove = false;

}
}

Han-Wei Shen, OSU

