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Rotation Matrices Revisited

To build a general rotation matrix, we just multiply a sequence 
of rotation matrices together, for example: 

This matrix multiplication is not commutative
• the order of operations is important
• the multiplication is also a hierarchy: Rx [ Ry [Rz object]]]
• this means Rx affects both Ry and Rz, and Ry affects Rz
• typically we rotate once per axis in some order

The rotation angles about x, y, z are also called Euler Angles
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Gimbal Lock

The hierarchical rotation order causes problems
• consider Rz [ Rx [Ry arrow]]] with 3 corresponding gimbals (axes) x, y, z

starting position Ry rotates  axis 
x and z as well

Rx rotates 
axis z into the 

already evaluated axis  y
 gimbal lock

Rz can no longer tilt 
arrow up and down
 loss of one degree 

of freedom

see also 
http://www.youtube.com/
watch?v=zc8b2Jo7mno

and 
http://www.anticz.com/eularqua.htm



Solution: Quaternions

Invented by W.R. Hamilton in1843 as an extension to the 
complex numbers

Used in computer graphics since 1985 

Quaternions: 
• provide an alternative method to specify rotations 
• are most useful to us as a means of representing orientations
• can avoid the gimbal lock problem
• allow unique, smooth and continuous rotation interpolations

A quaternion has 4 components

• they are often written as the combination of a scalar value s and a 
vector value v
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Quaternions (Imaginary Space)

Quaternions are actually an extension to complex numbers
• of the 4 components, one is a ‘real’ scalar number, and the other 3 

form a vector in imaginary ijk space!
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Basic Operations

Conjugate: 

Norm: q·q* = q1*·q1+q2*·q2+q3*·q3+q4*·q4

Inverse: q-1 = (1/Norm(q))·q*  

Identity i = (0,1)

* ,s q v



Unit Quaternions and Rotations

For convenience, we will use only unit length quaternions, as 
they will be sufficient for our purposes and make things a 
little easier

A quaternion can represent a rotation by an angle θ around a 
unit axis a:

• if a is unit length, then q will be also
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Quaternions as Rotations

 

2 2 2 2
0 1 2 3

2 2 2 2 2 2 2 2 2 2 2 2

22 2 2 2

cos sin sin sin cos sin
2 2 2 2 2 2

cos sin cos sin 1 1
2 2 2 2

x y z x y z

q q q q

a a a a a a     

   

   

       

     

q

a

To convert a quaternion to a rotation matrix:

There is also a method to convert the other way
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Quaternions as Rotations

Concatenation is easy – just multiply all the quaternions q1, q2, 
q3, …. together

There is a one-to-one mapping between a quaternion rotation 
and 4x4 rotation matrix 

From the vector-angle form:
• rotate about the unit vector u by angle θ:

b = (cos(θ/2), u sin(θ/2))

A point p in 3D space is represented by the quaternion           
P = (0, p)

The rotated point p' is represented by the quaternion             
P' = b * P * b-1
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Quaternion Dot Products

The dot product of two quaternions works in the same way as 
the dot product of two vectors:

The angle between two quaternions in 4D space is half the 
angle one would need to rotate from one orientation to the 
other in 3D space
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Quaternion Multiplication

We can perform multiplication on quaternions if we expand 
them into their complex number form

If q represents a rotation and q’ represents a rotation, then 
qq’ represents q rotated by q’

This follows very similar rules as matrix multiplication (I.e., 
non-commutative)

Two unit quaternions multiplied together will result in another 
unit quaternion
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Linear Interpolation

If we want to do a linear interpolation between two points a
and b in normal space

Lerp(t,a,b) = (1-t)a + (t)b

where t ranges from 0 to 1

Note that the Lerp operation can be thought of as a weighted 
average (convex)
• we could also write it in it’s additive blend form:

Lerp(t,a,b) = a + t(b-a)
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Spherical Linear Interpolation

If we want to interpolate between two points on a sphere (or 
hypersphere), we don’t just want to Lerp between them
• instead, we will travel across the surface of the sphere by following a 

‘great arc’

We define the spherical linear interpolation of two unit vectors 
as:

Note, a and b can also be                                                               
quaternions
• then slerp interpolation will ensure constant angular speed
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Quaternion Interpolation

Remember that there are two redundant vectors in quaternion 
space for every unique orientation in 3D space

What is the difference between:

Slerp(t,a,b)    and    Slerp(t,-a,b)  ?

One of these will travel less than 90 degrees while the other 
will travel more than 90 degrees across the sphere

This corresponds to rotating the ‘short way’ or the ‘long way’

Usually, we want to take the short way, so we negate one of 
them if their dot product is < 0
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3D Rotations with Trackball 

Imagine the objects are 
rotated along with a 
imaginary hemi-sphere
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Virtual Trackball

Allow the user to define 3D 
rotation using mouse click in 
2D windows 

Work similarly like the 
hardware trackball devices
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Virtual Trackball 

Superimpose a hemi-sphere 
onto the viewport 

This hemi-sphere is 
projected to a circle 
inscribed to the viewport

The mouse position is 
projected orthographically to 
this hemi-sphere 
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Virtual Trackball

Keep track of the previous mouse 
position and the current position 

Calculate their projection positions 
p1 and p2 to the virtual hemi-sphere 

We then rotate the sphere from p1 to 
p2 by finding the proper rotation axis 
and angle 

This rotation (in eye space!) is then 
applied to the object (call the rotation 
before you define the camera with 
gluLookAt())

You should also remember to 
accumulate the current rotation to 
the previous modelview matrix
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Virtual Trackball 

The axis of rotation is given by the normal to the plane 
determined by the origin, p1 , and p2

The angle between p1 and p2 is given by
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Virtual Trackball

How to calculate p1 and p2? 

Assuming the mouse position is (x,y), then the sphere point 
P also has x and y coordinates equal to x and y 

Assume the radius of the hemi-sphere is 1. So the z 
coordinate of P is 

Note: normalize viewport y extend 

to -1 to 1

If a point is outside the circle, project                                             
it to the nearest point on the circle                                                 
(set z to 0 and renormalize (x,y))
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Trackball Visualization

Using the quaternion representation at some point in the 
process will enable convenient specification of the rotation 
matrix, apart from the other advantages 
• could keep internal quaternion representation throughout the 

navigation and only convert to update the Modelview Matrix



Example

Example from Ed Angel’s OpenGL Primer 

In this example, the virtual trackball is used to rotate a color 
cube

The code for the colorcube function is omitted

I will not cover the following code, but I am sure you will find it 
useful
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Initialization

#define bool int  /* if system does not support
bool type */

#define false 0
#define true 1
#define M_PI 3.14159 /* if not in math.h */

int winWidth, winHeight;

float angle = 0.0, axis[3], trans[3];

bool trackingMouse = false;
bool redrawContinue = false;
bool    trackballMove = false;

float lastPos[3] = {0.0, 0.0, 0.0};
int curx, cury;
int startX, startY; Han-Wei Shen, OSU



The Projection Step

voidtrackball_ptov(int x, int y, int width, int height, float v[3])
{

float d, a;
/* project x,y onto a hemisphere centered within width, height , 

note z is up here*/
v[0] = (2.0*x - width) / width;
v[1] = (height - 2.0F*y) / height;    
d = sqrt(v[0]*v[0] + v[1]*v[1]);
v[2] = cos((M_PI/2.0) * ((d < 1.0) ? d : 1.0));
a = 1.0 / sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
v[0] *= a;    v[1] *= a;    v[2] *= a;

}
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glutMotionFunc (1)

Void mouseMotion(int x, int y)
{    

float curPos[3],
dx, dy, dz;
/* compute position on hemisphere */
trackball_ptov(x, y, winWidth, winHeight, curPos);
if(trackingMouse)
{    

/* compute the change in position 
on the hemisphere */

dx = curPos[0] - lastPos[0];
dy = curPos[1] - lastPos[1];
dz = curPos[2] - lastPos[2];
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glutMotionFunc (2)

if (dx || dy || dz) 
{
/* compute theta and cross product */
angle = 90.0 * sqrt(dx*dx + dy*dy + dz*dz);
axis[0] = lastPos[1]*curPos[2] –

lastPos[2]*curPos[1];
axis[1] = lastPos[2]*curPos[0] –

lastPos[0]*curPos[2];
axis[2] = lastPos[0]*curPos[1] –

lastPos[1]*curPos[0];
/* update position */
lastPos[0] = curPos[0];
lastPos[1] = curPos[1];
lastPos[2] = curPos[2];

}
}     
glutPostRedisplay();} Han-Wei Shen, OSU



Idle and Display Callbacks

void spinCube()
{    

if (redrawContinue) glutPostRedisplay();
}

void display()
{    glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
if (trackballMove) 
{

glRotatef(angle, axis[0], axis[1], axis[2]);
}
colorcube();
glutSwapBuffers();
}

Han-Wei Shen, OSU



Mouse Callback

void mouseButton(int button, int state, int x, int y)
{
if(button==GLUT_RIGHT_BUTTON) exit(0);

/* holding down left button 
allows user to rotate cube */

if(button==GLUT_LEFT_BUTTON) switch(state)
{

case GLUT_DOWN:
y=winHeight-y;
startMotion( x,y);
break;

case GLUT_UP:
stopMotion( x,y);
break;

}
} Han-Wei Shen, OSU



Start Function

void startMotion(int x, int y)
{
trackingMouse = true;
redrawContinue = false;
startX = x;
startY = y;
curx = x;
cury = y;
trackball_ptov(x, y, winWidth, winHeight, lastPos);
trackballMove=true;

}
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Stop Function

void stopMotion(int x, int y)
{

trackingMouse = false;
/* check if position has changed */
if (startX != x || startY != y)

redrawContinue = true;
else 
{

angle = 0.0;
redrawContinue = false;
trackballMove = false;

}
}
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