
CSE 528: Computer Graphics

 Texture Mapping

Klaus Mueller

Computer Science Department

Stony Brook University

Some material from courses.csusm.edu/cs535xz/Lectures/texture.ppt

Texture Mapping - Realistic Detail for Boring Polygons

Leonard McMillan

Texture Mapping - Large Walls

Texture Mapping – Add Detail at Little Cost

shaded

polygons

texture

mapped

bump

mapped

environment

 mapped

would take lots of polygons to render by shading

Modeling an Orange – by Geometry

Let’s consider the problem of modeling an orange

Start with an orange-colored sphere

• too simple

Replace sphere with a more complex shape

• does not capture surface characteristics (small dimples)

• takes too many polygons to model all the dimples

Modeling an Orange – By Image

Take a picture of a real orange, scan it, and “paste” onto
simple geometric model

• this process is known as texture mapping

Still might not be sufficient because resulting surface will be
smooth

• need to change local shape

• Bump mapping

Texture Mapping Large Walls - OpenGL Program

Texture Mapping - Small Facets

Leonard McMillan

Texture Mapping Small Facets - OpenGL Program

Mapping Function

Need functions

• s = s (x, y, z)

• t = t (x, y, z)

Such functions are difficult to find in general

s

t

Polygon Texture Interpolation

For polygons, specify (s,t) coordinates at vertices

• s = s (x, y, z)

• t = t (x, y, z)

Linearly interpolate the mapping for other points in world
space

• straight lines in world space go to straight lines in texture space

Texture map
s

t

Triangle in world space

Barycentric Interpolation

Similar to linear interpolation

• just now for triangles

Computing Pixel Color in Texture Mapping

Associate texture with polygon

Map pixel onto polygon and then into texture map

Use weighted average of covered texture to compute color

2D Texturing

Enable 2D Texturing:
• glEnable(GL_TEXTURE_2D)

• texture mapping is disabled by default

Texture objects store texture data. Keep it readily available
for usage. Many texture objects can be generated.

Generate identifiers for texture objects first
• GLuint texids[n];

• glGenTextures(n, texids)

- n: the number of texture objects identifiers to generate

- texids: an array of unsigned integers to hold texture object identifiers

Bind a texture object as the current texture
• glBindTexture(target, identifier)

- Target: can be GL_TEXTURE_1D, GL_TEXTURE_2D, or GL_TEXTURE 3D

- Identifier: a texture object identifier

• following texture commands refer to the bound texture, e.g.
glTexImage2D()

Define Image as a Texture

Load image into a 2D Texture Map

•glTexImage2D(GL_TEXTURE_2D, level,
internalFormat, width, height, border,

format, type, texels)

-level: level of the texture resolutions. For now = 0

-internalFormat: number of color components used for
the texture. (integer value from 1 - 4, 3 for RGB)

-width, height: size of the texture map (should be power
of 2)

-border: with (1) or without (0) border

-format: format of the texture data, e.g. GL_RGB

-type: data type of the texture data, e.g. GL_BYTE

-textels: pointer to the actual texture image data

1D and 3D Textures

1D textures can be considered as 2D textures with a height
equal to 1. It is often used for drawing color stripes

•glTexImage1D(GL_TEXTURE_1D, level, components,
width, border, format, type, texels)

3D textures can be considered as a stack of 2D textures. It is
often used in visualization applications, e.g. medical
imaging.

•glTexImage3D(GL_TEXTURE_3D, level, components,
width, height, depth, border, format, type,
texels)

Texture Parameters

OpenGL has a variety of parameters that determine how
texture is applied

• wrapping parameters determine what happens if s and t are outside
the (0,1) range

• environment parameters determine how texture mapping interacts
with shading

• filter modes allow us to use area averaging instead of point samples

• Mipmapping allows us to use textures at multiple resolutions

Wrapping Mode

Clamping: if s,t > 1 use 1, if s,t <0 use 0

Wrapping: use s,t modulo 1

glTexParameteri(GL_TEXTURE_2D,

 GL_TEXTURE_WRAP_S, GL_CLAMP)

glTexParameteri(GL_TEXTURE_2D,

 GL_TEXTURE_WRAP_T, GL_REPEAT)

texture

s

t

GL_CLAMP

wrapping

GL_REPEAT

wrapping

Texture Functions

You can specify how the texture-map colors are used to
modify the pixel colors
• glTexEnvi(GL_TEXTURE_ENV,GL_TEXTURE_ENV_MODE, mode);

• mode values:

-GL_REPLACE: replace pixel color with texture color

-GL_DECAL: replace pixel color with texture color (for GL_RGB texture)

-GL_BLEND: C = Cf(1-Ct) + CcCt,

• Cf is the pixel color, Ct is the texture color, and Cc is some constant
color

-GL_MODULATE: C = CfCt

- More on OpenGL programming guide

Every point on a surface should have a texture coordinate (s,t)
in texture mapping

We often specify texture coordinates to polygon vertices and
interpolate texture coordinates with the polygon.
• glTexCoord*() specified at each vertex

s

t
1, 1

0, 1

0, 0 1, 0

(s, t) = (0.2, 0.8)

(0.4, 0.2)

(0.8, 0.4)

A

B C

a

b
c

Texture Space Object Space

Assign Texture Coordinates

Typical Code

glBegin(GL_POLYGON);

 glColor3f(r0, g0, b0); //if no shading used

 glNormal3f(u0, v0, w0); // if shading used

 glTexCoord2f(s0, t0);

 glVertex3f(x0, y0, z0);

 glColor3f(r1, g1, b1);

 glNormal3f(u1, v1, w1);

 glTexCoord2f(s1, t1);

 glVertex3f(x1, y1, z1);

 .

 .

glEnd();

Note that we can use vertex arrays to increase efficiency

Texture Filtering

A pixel may be mapped to a small portion of a texel or a collection of
texels from the texture map. How to determine the color of the pixel?

Magnification: when a pixel maps to a small portion of a texel
• glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, type);

-type: GL_NEAREST or GL_LINEAR

Minification: when a pixel maps to many texels
• glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, type);

-type: GL_NEAREST, GL_LINEAR,
GL_NEAREST_MIPMAP_LINEAR,
GL_LINEAR_MIPMAP_LINEAR, …

Texture Polygon

Magnification Minification

Polygon Texture

Texture Aliasing

Rasterized and

textured

Polygon to pixels Texture

map

Without filtering Using Mipmaping

Mipmaps

Use different resolution of texture image for
rendering different objects

• Level 0: original texture map

• Level 1: half size in width and height

Define mipmaps

• glTexImage2D(

GL_TEXTURE_2D, level, GL_RGB, …);

- Where level = 0, 1, 2, ..

Automatically generate mipmaps

• gluBuild2DMipmaps(GL_TEXTURE_2D,

GL_RGB, width, height, format, type,

texels);

 For near objects

For far objects

For middle objects

mipmap

Mipmap Filters

Mipmap minification filters

• GL_LINEAR_MIPMAP_NEAREST: use the nearest mipmap closest
to the polygon resolution, and use linear filtering

• GL_LINEAR_MIPMAP_LINEAR: use linear interpolation between the
two mipmaps closest to the polygon resolution, and use GL_LINEAR
filtering in each mipmap

Example Code:
•gluBuild2DMipmaps(GL_TEXTURE_2D, GL_RGB, 64, 64,
GL_RGB, GL_UNSIGNED_BYTE, texImage);

•glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MAG_FILTER, GL_LINEAR);

•glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);

Texture Matrix

Normally, the texture coordinates given at vertices are
interpolated and directly used to index the texture

The texture matrix applies a homogeneous transform to the
texture coordinates before indexing the texture

Like watching a slide projected onto the mapped polygon

Procedural Texture Mapping

Instead of looking up an image, pass the texture coordinates
to a function that computes the texture value on the fly

• hyper-textures

• Perlin noise functions

Near-infinite resolution with small storage cost

• can be slow to evaluate, but GPUs help

Perlin Noise Functions

texturing 3D solid object

http://freespace.virgin.net/hugo.elias/models/m_perlin.htm

Bump Mapping

Textures can be used to alter the surface normal of an object, but does
not change the actual shape of the surface – we are only shading it as
if it were a different shape!

Since the actual shape of the object does not change, the silhouette
edge of the object will not change. Bump Mapping also assumes that
the illumination model is applied at every pixel (as in Phong Shading).

Sphere w/Diffuse Texture

Swirly Bump Map

Sphere w/Diffuse Texture & Bump Map

Bump Map Examples

Cylinder w/Diffuse Texture Map

Bump Map

Cylinder w/Texture Map & Bump Map

Displacement Mapping

We use the texture map to actually move the surface point. This is called
displacement mapping. How is this fundamentally different than bump

mapping?

The geometry must be displaced before visibility is determined.

Environment Maps

We use the direction of the reflected ray to index a texture map.

We can simulate reflections. This approach is not completely
accurate. It assumes that all reflected rays begin from the same
point, and that all objects in the scene are the same distance
from that point.

Environment Mapping

Environment Mapping

Environment mapping produces
reflections of its environment on shiny
objects

Texture is transferred in the direction of
the reflected ray from the environment
map onto the object

In principle, trace a ray from eye to a
point P on the object surface,
determine the reflection ray, and then
trace the reflection ray until it hits the
surrounding sphere or cube. The color
from environment map at this hit-point
will be placed at point P

Reflected ray: R=2(N·V)N-V. R is used to
index the environment map.

Object

Viewer
Reflected ray

Environment Map

Environment Mapping

The environment map may take one of several forms:

• Cubic mapping: map resides on 6 faces of a cube

• Spherical mapping: map resides on a sphere surrounding the object

The map should contain a view of the world with the point of interest on
the object as the eye

• We can’t store a separate map for each point, so one map is used
with the eye at the center of the object

• Introduces distortions in the reflection, but the eye doesn’t notice

• Distortions are minimized for a small object in a large room

The object will not reflect itself

The mapping can be computed at each pixel, or only at the vertices

Spherical Mapping

Implemented in hardware

Single texture map

Problems:

• Highly non-uniform sampling

• Highly non-linear mapping

Cubic Mapping

The map resides on the surfaces of a cube
around the object

• Typically, align the faces of the cube with the
coordinate axes

To generate the map:

• For each face of the cube, render the world
from the center of the object with the cube
face as the image plane

- Rendering can be arbitrarily complex (it’s
off-line)

• Or, take 6 photos of a real environment with a
camera in the object’s position

- Actually, take many more photos from
different places the object might be

- Warp them to approximate map for all
intermediate points

Remember Terminator 2?

http://developer.nvidia.com/object/cube_map_og
l_tutorial.html

http://developer.nvidia.com/object/cube_map_ogl_tutorial.html
http://developer.nvidia.com/object/cube_map_ogl_tutorial.html

Cubic Map Example

Indexing Cubic Maps

Assume you have R and the
cube’s faces are aligned with
the coordinate axes, and have
texture coordinates in
[0,1]x[0,1]

• How do you decide which
face to use?

• How do you decide which
texture coordinates to use?

What is the problem using
cubic maps when texture
coordinates are only computed
at vertices?

OpenGL Spherical Map

We can use automatically generated texture coordinates in OpenGL. For example,
to generate the texture coordinates of spherical mapping

// Build the environment as a texture object

// Automatically generate the texture coordinates

glTexGenf(GL_S, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);

glTexGenf(GL_T, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);

glEnable(GL_TEXTURE_GEN_S);

glEnable(GL_TEXTURE_GEN_T);

// Bind the environment texture

…

// Draw object

…

Example

OpenGL Cubemap Texture

Enabling and disabling the cube map texture is done as follows:
glEnable(GL_TEXTURE_CUBE_MAP);
glDisable(GL_TEXTURE_CUBE_MAP);

 glGenTextures(1,&cubemap_id);

 glBindTexture(GL_TEXTURE_CUBE_MAP,cubemap_id);

Load images into a cube map. Each face in the example is a 64x64 RGB
image.

GLubyte face[6][64][64][3];

for (i=0; i<6; i++) {
 glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i,
 0, //level
 GL_RGB8, //internal format
 64, //width
 64, //height
 0, //border
 GL_RGB, //format
 GL_UNSIGNED_BYTE, //type
 &face[i][0][0][0]); // pixel data
}

OpenGL Implementation (cont.)

We can use automatically generated texture coordinates in OpenGL

glTexGenfv(GL_S, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP);
glTexGenfv(GL_T, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP);
glTexGenfv(GL_R, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP);
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);

 // Bind the environment texture

…

// Draw object

…

For the cube map to operate correctly, correct per-vertex normals must be
supplied

Rendering With Natural Light

Paul Debevec

link

http://www.youtube.com/watch?v=fW_GPCR9_GU&noredirect=1

