CSE 528: Computer Graphics

Sampling

Klaus Mueller

Computer Science Department Stony Brook University

Introduction

Sampling is the process of discretizing a continuous function into an array/matrix of data points

- the matrix values are some function of the sampled real-life object
- this function is given by the sampling filter (more to follow)

sampling result

object

Importance of the Fourier Domain

Visual artifacts are also often easier understood in the Fourier domain

We can use the Fourier domain to:

- gain insight into the spatial / temporal frequency content of the data (see last lecture)
- from this, gain insight into how much a continuous signal must be sampled when it is discretized
- design proper filters to avoid an important phenomenon: aliasing

We usually do not use the Fourier domain to:

- perform the actual signal filtering, sampling, resampling, reconstruction (there are exceptions, however)
- these real operations are usually performed in the original signal domain (spatial, temporal)

Sampling: Spatial Domain

sampling the object

Definition:

- a continuous signal s(x) is measured at fixed instances spaced apart by an interval Δx
- the data points so obtained form a discrete signal $s_s[n \Delta x] = s_s(n \Delta x)$
- here, Δx is called the sampling period (distance), and K = $1/\Delta x$ the sampling frequency

Sampling is the multiplication of the signal with an impulse train: $s_s(x) = s(x) \cdot TTT(x)$

$$\text{TTT}(x) = \sum_{n=-\infty}^{+\infty} \delta(x - n\Delta x), \text{ TTT}(x) \text{ is the comb function}$$

Sampling: Frequency Domain

Using the convolution theorem of the Fourier transform:

$$S_s(k) = S(k) * F\{TTT(x)\}, \text{ where } F\{TTT(x)\} = K \sum_{l=-\infty}^{+\infty} \delta(k - lK)$$

- the smaller Δx the wider *K* (recall the Fourier scaling theorem)
- sampling (the convolution of *TTT*(*k*) and *S*(*k*)) replicates the signal spectrum *S*(*k*) at integer multiples of sampling frequency *K*

• k_{max} is maximum frequency occuring in the signal

Aliasing: A Commonly Observed Phenomenon

Ever wondered about the wagon wheels in old Western movies:

Aliasing

Terminology:

However, if we choose $K < 2 k_{max}$ the aliases overlap and we get *aliasing* aliased S(k)

- what does aliasing look like?
- let's see some examples

Aliasing: A Commonly Observed Phenomenon

Aliasing: A More Analytical Example (1)

- · Frequency of original signal: 0.5 (oscillations per time unit)
- Sampling frequency: 0.5 (samples per time unit) \rightarrow original signal can not be recovered

Aliasing: A More Analytical Example (3)

- · Frequency of original signal: 0.5 (oscillations per time unit)
- Sampling frequency: 1.0 (sample per time unit) → original signal can be recovered
- · We learn that we need to sample each oscillation period twice for good reconstruction

non-aliased signal $x_{c_non_aliased}$ reconstructed from the sample points x[n]

Aliasing: A More Analytical Example (2)

- · Frequency of original signal: 0.5 (oscillations per time unit)
- · Sampling frequency: 0.7 (samples per time unit)
- Looking at the sample points x[n], they appear to originate from a sine wave x_{c_aliased} of much lower frequency → again, the original sine wave is lost and can not be recovered

aliased signal $x_{c_aliased}$ reconstructed from the sample points x[n]

Aliasing: A More Analytical Example (4)

· In practice, it is best to use more than 2 samples per oscillation period

- else one may get wrong reconstructions for some special sample alignments

· Thus, to be on the safe side:

- sample each oscillation period more than twice

· Next: a closer look onto the whole process

Aliasing: Prevention

So must choose:

$$K > K_s = 2 \cdot k_{\text{max}}, K_s$$
 is the Nyquist rate

In other words:

• the samples only uniquely define the signal if:

$$S(k) = 0 \quad \forall |k| > k_{\max}$$

$$\frac{1}{\Delta x} > 2k_{\max} = K_s$$

$$S(k)$$

$$-K_s \quad 2k_{\max} \quad K_s$$

к

• this assumes that the signal is band-limited (S(k)=0 above K_s

Anti-Aliasing

Usually signals are not band-limited

• recall the infinite spectrum of a sharp edge (for example: a bone)

To prevent the inevitable aliasing we must perform antialiasing before sampling the signal

• for example: when digitizing a radiograph of a bone or a chest

Anti-aliasing is done by low-pass filtering (blurring)

- band-limit the signal prior to sampling
- we shall see later, how (ideal) lowpasss filter S(k) $K_s/2$ S(k)lowpassed and sampled signal K_s K_s K_s

Higher Dimensions

All of these concepts readily extend to higher dimensions

Main spectrum (S(k,l) must fit into the center box to prevent overlap with side-spectra (and aliasing)

$$\frac{1}{\Delta x} > 2 \cdot k_{x \max} \qquad \frac{1}{\Delta y} > 2 \cdot k_{y \max}$$

Anti-Aliasing: Practical Examples (1)

Image Representation

We know that a discrete image is a matrix of pixels

• do keep this in mind, however:

			an image is NOT a matrix of solid squares	0	0	0	0	0	0
				0	0	•	•		0
			rather, each pixel is a Dirac	0	0	•	•	•	0
			impulse, with the pixel's	0	0				0
			value as its height	0	0	0	0	0	0

So, why do we not see isolated dots on the screen or paper?

- a monitor or printer "splats" the pixels onto the screen or paper.
- each pixels assumes the shape of a Gaussian

• the Gaussians blend together and form a continuous image

Interpolation

Often we want to estimate the formerly continuous function from the discretized function represented by the matrix of sample points

This is done via interpolation

Concept:

- center the interpolation kernel (filter) *h* at the sample position and superimpose it onto the grid
- multiply the values of the grid samples with the kernel value at the superimposed position
- add all the products \rightarrow this gives the value of the newly interpolated sample
- in the shown case:

Interpolation Kernels (1)

· Nearest Neighbor:

- simply pick the value of the nearest grid point: f(0.2) = f(trunc(0.2+0.5) = f(round(0.2))

• Linear filter:

- use a linear combination of the two neighboring grid values: $f(0.2) = 0.2 \cdot f(1) + 0.8 \cdot f(0)$

Interpolation Kernels (2)

· Cubic filter:

An additional popular filter is the Gaussian function

Discussion:

- nearest neighbor is fastest to compute (just one add), gives sharp edges, but sometimes jagged lines
- · linear interpolation takes 2 mults and 1 add and gives a piecewise smooth function
- · cubic filter takes 4 mults and 3 adds, but gives an overall smooth interpolated function
- linear interpolation is most popular in many application

Interpolation in Higher Dimensions

• All interpolation kernels shown here are separable

 $h(x, y) = h(x) \cdot h(y)$ and $h(x, y, z) = h(x) \cdot h(y) \cdot h(z)$

- Linear interpolation
 - assume: grid distance = 1.0
 - P_u is the location of the sample value

P₀ and P₁ are neighboring grid points

then: $u = P_u - P_0$

$$\mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{P}_{\mathbf{u}}) = (1 - \mathbf{u}) \cdot \mathbf{f}(\mathbf{P}_{0}) + \mathbf{u} \cdot \mathbf{f}(\mathbf{P}_{1})$$

• Bilinear interpolation

Interpolation Quality

Example:

 resampling of a portion of the star image onto a high resolution grid

magnification factor ~20

Computation of the Fourier Transform

The analytical form of the Fourier transform (and its laws) is convenient for theoretical, fundamental considerations

- · examples: filter design, sampling rates, image resolutions
- But in practical applications (for example, low-passing and other filtering) we require a means to compute a discretized signal's Fourier transform:

$$S(m\Delta k_x, n\Delta k_y) = \sum_{q=0}^{N-1} \sum_{p=0}^{M-1} s(p\Delta x, p\Delta y) e^{-2\pi i (\frac{mp}{M} + \frac{nq}{N})}$$
$$s(p\Delta x, q\Delta y) = \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} S(m\Delta k_x, n\Delta k_y) e^{2\pi i (\frac{mp}{M} + \frac{nq}{N})}$$

Assume M=N, then this is an O(N^4) algorithm

• the Fast Fourier Transform (FFT) brings this down to O(N²logN)