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Introduction

Sampling is the process of discretizing a continuous function 
into an array/matrix of data points
• the matrix values are some function of the sampled real-life object
• this function is given by the sampling filter (more to follow)
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Importance of the Fourier Domain

Visual artifacts are also often easier understood in the Fourier 
domain

We can use the Fourier domain to:
• gain insight into the spatial / temporal frequency content of the data 

(see last lecture)
• from this, gain insight into how much a continuous signal must be 

sampled when it is discretized
• design proper filters to avoid an important phenomenon: aliasing

We usually do not use the Fourier domain to:
• perform the actual signal filtering, sampling, resampling, 

reconstruction (there are exceptions, however)
• these real operations are usually performed in the original signal 

domain (spatial, temporal)

Sampling: Spatial Domain

Definition:
• a continuous signal s(x) is measured at fixed instances spaced apart 

by an interval x
• the data points so obtained form a discrete signal ss[nx] = ss(nx)  
• here, x is called the sampling period (distance), and K = 1/x the 

sampling frequency

Sampling is the multiplication of the signal with an impulse 
train:
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Sampling: Frequency Domain

Using the convolution theorem of the Fourier transform:

• the smaller x the wider  (recall the Fourier scaling theorem)
• sampling (the convolution of TTT(k) and S(k)) replicates the signal 

spectrum S(k) at integer multiples of sampling frequency K

• kmax is maximum frequency occuring in the signal
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Aliasing

Terminology:

However, if we choose K < 2 kmax the aliases overlap and we 
get aliasing
• what does aliasing look like?
• let’s see some examples 
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Aliasing: A Commonly Observed Phenomenon

Ever wondered about the wagon wheels in old Western 
movies:

Aliasing: A Commonly Observed Phenomenon



Aliasing: A More Analytical Example (1)

ss(x)
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Aliasing: A More Analytical Example (2)

Aliasing: A More Analytical Example (3) Aliasing: A More Analytical Example (4)



Aliasing: Prevention

So must choose:

In other words:
• the samples only uniquely define the signal if:

• this assumes that the signal is band-limited (S(k)=0 above Ks

max2 ,    is the s sK K k K Nyquist rate  
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Anti-Aliasing

Usually signals are not band-limited
• recall the infinite spectrum of a sharp edge (for example: a bone)

To prevent the inevitable aliasing we must perform anti-
aliasing before sampling the signal 
• for example: when digitizing a radiograph of a bone or a chest

Anti-aliasing is done by low-pass filtering (blurring)
• band-limit the signal prior to sampling
• we shall see later, how 
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Higher Dimensions

All of these concepts readily extend to higher dimensions

Main spectrum (S(k,l) must fit into the center box to prevent 
overlap with side-spectra (and aliasing)
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Anti-Aliasing: Practical Examples (1) 



Anti-Aliasing: Practical Examples (2) Image Representation

We know that a discrete image is a matrix of pixels
• do keep this in mind, however:

So, why do we not see isolated dots on the screen or paper?
• a monitor or printer “splats” the pixels onto the screen or paper.
• each pixels assumes the shape of a                                               

Gaussian

• the Gaussians blend together and form                                                       
a continuous image  

an image is NOT a matrix 
of solid squares

rather, each pixel is a Dirac 
impulse, with the pixel’s 

value as its height

Interpolation

Often we want to estimate the formerly continuous function from the 
discretized function represented by the matrix of sample points

This is done via interpolation

Concept:

• center the interpolation kernel (filter) h at the sample position and 
superimpose it onto the grid

• multiply the values of the grid samples with the kernel value at the 
superimposed position

• add all the products  this gives the value of the newly interpolated 
sample

• in the shown case:
f(0.2) = h(-0.2) f(0) + h(-1.2) f(-1) + h(0.8) f(1) + h(1.8) f(2)

Interpolation Kernels (1)



Interpolation Kernels (2)

An additional popular filter is the Gaussian function

Discussion:
• nearest neighbor is fastest to compute (just one add), gives sharp edges, but 

sometimes jagged lines
• linear interpolation takes 2 mults and 1 add and gives a piecewise smooth 

function
• cubic filter takes 4 mults and 3 adds, but gives an overall smooth interpolated 

function
• linear interpolation is most popular in many application

Interpolation in Higher Dimensions

Interpolation Quality

Example:

• resampling of a portion of the star image onto a 
high resolution grid

• magnification factor ~20

Computation of the Fourier Transform

The analytical form of the Fourier transform (and its laws) is 
convenient for theoretical, fundamental considerations
• examples: filter design, sampling rates, image resolutions

But in practical applications (for example, low-passing and 
other filtering) we require a means to compute a discretized 
signal’s Fourier transform: 

Assume M=N, then this is an O(N4) algorithm
• the Fast Fourier Transform (FFT) brings this down to O(N2logN) 
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