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Introduction

Sampling is the process of discretizing a continuous function
into an array/matrix of data points
¢ the matrix values are some function of the sampled real-life object
¢ this function is given by the sampling filter (more to follow)

sampling result

sampling the object

Importance of the Fourier Domain

Visual artifacts are also often easier understood in the Fourier
domain

We can use the Fourier domain to:
¢ gain insight into the spatial / temporal frequency content of the data
(see last lecture)

¢ from this, gain insight into how much a continuous signal must be
sampled when it is discretized

* design proper filters to avoid an important phenomenon: aliasing

We usually do not use the Fourier domain to:
¢ perform the actual signal filtering, sampling, resampling,
reconstruction (there are exceptions, however)

¢ these real operations are usually performed in the original signal
domain (spatial, temporal)

Sampling: Spatial Domain

Definition:
* a continuous signal s(x) is measured at fixed instances spaced apart
by an interval Ax
* the data points so obtained form a discrete signal s;[n4x] = sy(n4x)
* here, Ax is called the sampling period (distance), and K = 1/4x the
sampling frequency o _
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Sam_pling is the multiplication of the signal with an impulse
rain: s (x) = s(x) - TTT(x)

TTT(x)= Y| 8(x—nAx), TTT(x) is the comb function
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Sampling: Frequency Domain

Using the convolution theorem of the Fourier transform:

S, (k) = S(k) * F{TTT(x)}, where F{TTT(x)}=K i Sk — 1K)
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* the smaller Ax the wider K (recall the Fourier scaling theorem)

¢ sampling (the convolution of TTT(k) and S(k)) replicates the signal
spectrum S(K) at integer multiples of sampling frequency K
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* Knax IS maximum frequency occuring in the signal K
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Terminology:

main spectrum S(k)
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. side spectra = copies (aliases) of S(k)

However, if we choose K < 2 k.., the aliases overlap and we

get aliaSing aliased S(k)
¢ what does aliasing look like? k
* let's see some examples o I Wi
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Aliasing: A Commonly Observed Phenomenon

Ever wondered about the wagon wheels in old Western
movies:

Aliasing: A Commonly Observed Phenomenon

+ Wagon wheel in old Western movies:
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wheel appears to turn counter-clockwise at a slow rate...
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but in reality turns clockwise at a much faster rate...




Aliasing: A More Analytical Example (1)

+ Frequency of original signal: 0.5 (oscillations per time unit)

+ Sampling frequency: 0.5 (samples per time unit)

sample points x[n] o )
/ ! original signal x,
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Aliasing: A More Analytical Example (2)

* TFrequency of original signal: 0.5 (oscillations per time unit)

« Sampling frequency: 0.7 (samples per time unit)

+ Looking at the sample points x[n]. they appear to originate from a sine wave X, ..
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lower frequency —» again, the original sine wave is lost and can not be recovered

sample points x[n]

original signal x,
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Aliasing: A More Analytical Example (3)

Aliasing: A More Analytical Example (4)

« Frequency of original signal: 0.5 (oscillations per time unit)

« Sampling frequency: 1.0 (sample per time unit)

» original signal can be recovered

« We learn that we need to sample each oscillation period twice for good reconstruction

sample points x[n]

original signal x,
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non-aliased signal X, o0 aliased

reconstructed from the sample points x[n]

+ In practice, it is best to use more than 2 samples per oscillation period

- else one may get wrong reconstructions for some special sample alignments

sample points x[n]

+ Thus, to be on the safe side:
- sample each oscillatior

+ Next: a closer look onto the

original signal x,
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1 period more than twice

whole process




Aliasing: Prevention

So must choose:
K>K,=2-k,,, K, isthe Nyquist rate

In other words:
* the samples only uniquely define the signal if:

SK)=0  V|k|> Ky
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* this assumes that the signal is band-limited (S(k)=0 above K,

Anti-Aliasing

Usually signals are not band-limited
¢ recall the infinite spectrum of a sharp edge (for example: a bone)
To prevent the inevitable aliasing we must perform anti-
aliasing before sampling the signal
* for example: when digitizing a radiograph of a bone or a chest

Anti-aliasing is done by low-pass filtering (blurring)
* band-limit the signal prior to sampling

* we shall see later, how S(K)
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Higher Dimensions

All of these concepts readily extend to higher dimensions
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Main spectrum (S(k,l) must fit into the center box to prevent
overlap with side-spectra (and aliasing)
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Anti-Aliasing: Practical Examples (1)
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Anti-Aliasing: Practical Examples (2)

Nine survivors, 1 body removed from Cuban
plane in Gulf of Mexico

Nine survivors and one hody have been pulled from the blur
wreckage of a Cuban airplane by a merchant ship in the Guif
of Mexico, about B0 riles (96 kilometers) off the western tip
of Cuba, the 1.5, Coast Guard said. The rescue at 1:45 pm.
Tuesday came a few hours after officials in Havana, Cuba,

reported the plane hijacked. " o
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looks more pleasing

We observe: Anti-aliasing (i.e., blurring, lowpassing) must be applied before sampling

Image Representation

We know that a discrete image is a matrix of pixels
¢ do keep this in mind, however:

an image is NOT a matrix
of solid squares

rather, each pixel is a Dirac ©
impulse, with the pixel's - &
value asits height ., . . 4

So, why do we not see isolated dots on the screen or paper?

* a monitor or printer “splats” the pixels onto the screen or paper.
* each pixels assumes the shape of a screen, paper

Gaussian n
blend
—
¢ the Gaussians blend together and form

a continuous image

Interpolation

Often we want to estimate the formerly continuous function from the
discretized function represented by the matrix of sample points

This is done via interpolation

Concept: ‘ ,
interpolation kemel h .
newly interpolated sample

oK ‘

|’ \

[} I I
=P -1 OT 1 2 3
0.2

f(x)

X

¢ center the interpolation kernel (filter) h at the sample position and
superimpose it onto the grid

* multiply the values of the grid samples with the kernel value at the
superimposed position

* add all the products > this gives the value of the newly interpolated
sample

* in the shown case:

f(0.2) = h(-0.2) f(0) + h(-1.2) f(-1) + h(0.8) f(1) + h(1.8) f(2)

Interpolation Kernels (1)

¢ Nearest Neighbor:

interpolated function
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- simply pick the value of the nearest grid point: £(0.2) = f(trunc(0.2+0.5) = f(round(0.2))

kernel

+ Linear filter:

mterpolated function

kernel
1.0 \‘
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- use a linear combination of the two neighboring grid values: £(0.2) = 0.2-f{(1) + 0.8-f(0)




Interpolation Kernels (2)

* Cubic filter:

mterpolated function

kernel
1.0 \
\ f(x)
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An additional popular filter is the Gaussian function

Discussion:

* nearest neighbor is fastest to compute (just one add), gives sharp edges, but
sometimes jagged lines

¢ linear interpolation takes 2 mults and 1 add and gives a piecewise smooth
function

¢ cubic filter takes 4 mults and 3 adds, but gives an overall smooth interpolated
function

¢ linear interpolation is most popular in many application

Interpolation in Higher Dimensions

+ All interpolation kernels shown here are separable

hix,y)=h(x)-h(y) and h(x, v, z) = h(x) - h(y) - h(z)

* Linear interpolation

assume: grid distance = 1.0 S
P, is the location of the sample value [ l -
Py and P, are neighboring grid points Py Tm P

then: u=P,-P, Py
f(x) = f(P,) = (1 - u)  f(Py) +u- f(P,) >

+ Bilinear interpolation Pro = PLi
f(Pg) = (1 -u) - f(Py o) Tu- 1Py ) 1-v B
(P ) =(1-w) f{P o) +u- f(Py ;) \

; Poo up 1-u Poy
f(Py) = (1-v) - f(Pg ) +v- (P ) Pou

— f(x, y) = (Pyy) = (1-v) (1-u) f(Pg o) + (I-v) u (P ;) + v (1-0) f(Py o) + vuf(Py )

Interpolation Quality

Example:
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» resampling of a portion of the star image onto a —— & —
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Computation of the Fourier Transform

The analytical form of the Fourier transform (and its laws) is
convenient for theoretical, fundamental considerations

* examples: filter design, sampling rates, image resolutions
But in practical applications (for example, low-passing and

other filtering) we require a means to compute a discretized
signal’s Fourier transform:

= —27i( TR, 9)
S(mAK,,nAk,) =" > s(pAx, pAy)e M N
q=0 p=0
A 27i(T2 19
s(pAX,gAy) =D S(mAk,,nAk e M N
n=0 m=0

Assume M=N, then this is an O(N#) algorithm
* the Fast Fourier Transform (FFT) brings this down to O(N2logN)




