EST 323 / CSE 524: CG-HCI

Graphics and Image Processing Basics

Klaus Mueller

Computer Science Department Stony Brook University

Optical Illusion: Sidewalk Art

Julian Beever

Optical Illusion: Sidewalk Art

Julian Beever

Explanation: 3D Graphics Trickery

Know The Input Device: The Eye

Know The Sensors: Cones and Rods

Two types of receptors on retina: rods and cones

Rods:

- spread all over the retinal surface (75 150 million)
- low resolution, no color vision, but very sensitive to low light (*scotopic* or dimlight vision)

Cones:

- a dense array around the central portion of the retina, the fovea centralis (6 - 7 million)
- high-resolution, color vision, but require brighter light (*photopic* or bright-light vision)

Color: Spectrum of Wavelengths

The human eye differentiates about 300 hues and 100-150 luminance variations

Color Perception

Tristimulus Theory:

• the eye has three types of color receptors: Red, Green, Blue.

Color reproduction:

 one can generate (almost) any color on a monitor by mixing three primaries, RGB

Color Spaces

Hue: color Saturation: peak from white light Value: overall integral across all λ

CIE Lαβ: equal distances mean equal perceptive differences

Alpha Compositing

Window manager

Inserting objects into scenes

Computer games

HUD Layer

2D elements reflecting state and receiving user input

Interactive Game Layer

3D elements with special alpha blending appear to be inside the scene

Invariable Background Layer Precalculated 3D animation

Cel Animation

Cel Animation: Concept

Alpha Compositing (Blending): The Math

- · It is the accumulation of colors weighted by opacities
- Compositing is commonplace in cartoon animations

- blend images of static objects with images of dynamic characters (so called *cel-animations*)

· Colors and opacities of back pixels are attenuated by opacities of front pixels:

 $rgb = RGB_{back} \cdot \alpha_{back} (1 - \alpha_{front}) + RGB_{front} \cdot \alpha_{front}$

- $\alpha = \alpha_{back} \left(1 \alpha_{front}\right) + \alpha_{front}$
- By using:

 $rgb_{back} = RGB_{back} \cdot \alpha_{back}$

 $rgb_{front} = RGB_{front} \cdot \alpha_{front}$

we get 2 recursive equations that can be used to composite any number of objects front-to-back:

 $rgb_{front} = rgb_{back} (1 - \alpha_{front}) + rgb_{front}$

 $\alpha_{\text{front}} = \alpha_{\text{back}} (1 - \alpha_{\text{front}}) + \alpha_{\text{front}}$

 Volume rendering uses this recursive expression to combine (=composite) the samples taken along the ray

Alpha Compositing (Blending): Numerical Example

Relax: Let's See Some Videos

The Difference Between 2D and 3D animation

How To Make an Animated Movie

Digital Image

Image:

• 2D matrix of pixels

Image resolution:

• number of pixels along each matrix dimension

Each pixel has a value:

- a single value if greylevel image
- a triple RGB if color image

Point Spread Function

Each pixel is not a sharp spike, but represented by a point spread function (PSF)

The PSFs overlap and form a continuous function (for the eye)

Smaller PSFs give sharper images

Dynamic Range

Each pixel is represented by a number of bits

Quantization:

• process of discretizing a continuous value into bits

Minimal number of bits = 6 (64 greylevels or 4 levels for R,G,B)

• most medical digital images have 12 bits (4096 grey levels)

8 bits

4 bits

not enough bits leads to quantization artifacts and loss of resolution

Histogram

A histogram counts the number of pixels at each greylevel

• h(v) = number of pixels having grey value v / total number of pixels

Good contrast requires a histogram with full bandwidth

Contrast

Difference of brightness in adjacent regions of the image

- grey-level (luminance) contrast
- color contrast

Lake

CHVOSN DSZNRK RHVZ ND CSONKH KNVDS

The M ars L etter Contrast Sensitivity Test. Form 1. © 2003-2004 The M ars Perceptrix Corporation. All rights reserved.

mars perceptrix

Classical Half Toning

Classical Half Toning

Use dots of varying size to represent intensities

• Area of dots proportional to intensity in image

Dithering

Distribute errors among pixels

- exploit spatial integration in our eye
- display greater range of perceptible intensities

Original (8 bits) Uniform Quantization (1 bit)

Floyd-Steinberg Dither (1 bit)

Random Dither

Randomize quantization errors

errors appear as noise

P(x, y) = round(I(x, y) + noise(x, y))

Floyd-Steinberg Dithering

Spread quantization error over neighbor pixels

- error dispersed to pixels right and below
- Floyd-Steinberg weights

3/16 + 5/16 + 1/16 + 7/16 = 1.0

Digital Halftone Patterns

Back to The Image Histogram

Grey Level Transformation: Basics

- Problem: We only have a fixed number of grey levels (256) that can be displayed or perceived
 - need to use this 'real estate' wisely to bring out the image features that we want

Use intensity transformations T_p

 enhance (remap) certain intensity ranges at the cost of compressing others

1000

2000

3000

4000

0

Grey Level Transformation: Enhancements

original

enhanced

Grey Level Transformation: Windowing

original lung CT image

Dedicate full contrast to either bone or lungs

bi-modal histogram

lung window

bone window

Color Image Processing

- Convert the image from RGB to HSV space
- Perform transformations of pixel H, S, V values via transfer functions
- Convert the transformed HSV image back into RGB space and display

Hue transformed

Original

Histogram Equalization

Equalize the V channel, and then convert back to RGB

before and after - guess which

Histogram Equalization

- Image contrast and brightness may be improved by modifying the histogram
- The 'contrast stretching' operation requires the user to manipulate the image's histogram
- Histogram equalization is an automatic procedure to spread out the value distribution

The discrete histogram equalization equation is: $p_{new}(k) = \sum_{i=0}^{k} \frac{n(p_{org}(j))}{n_{total}} \cdot p_{max}$

255

• For example, the equalization transformation for a dark image would be:

