Volume Data Generation

Often obtained by scanning
 - for example, X-ray CT
Which do you prefer: 2D or 3D
Volume Data – 3D Rendered View

Aortic Stent and Arterial Vessels

Carotid Stenosis
Another Source of Data: Numerical Simulation

Navier-Stokes equations for viscous, incompressible liquids.

\[\nabla \cdot \mathbf{u} = 0 \quad \text{Conversation of mass} \]

\[\mathbf{u}_t = - (\mathbf{u} \cdot \nabla) \mathbf{u} + \nu \nabla^2 \mathbf{u} - \frac{1}{\rho} \nabla p + \mathbf{f} \]

Advection Diffusion Pressure
Scientific Visualization

- Shock wave
- Virtual frog
- Spiral flow
- Transparent MRI head
- Semi-transparent tomato
- Wind flow
- Nerve cell
- MRI head
RAYCASTING CONCEPT

- Image Plane
- Data Set
- Numerical Integration
- Resampling

Eye
Estimate sample values via interpolation
Sampling via Trilinear Interpolation

\[f_v = f_1(1 - p)(1 - q)(1 - r) + f_2(p)(1 - q)(1 - r) + f_3(p)(q)(1 - r) + f_4(1 - p)(q)(1 - r) + f_5(1 - p)(1 - q)(r) + f_6(p)(1 - q)(r) + f_7(p)(q)(r) + f_8(1 - p)(q)(r) \]
Here is what it looks like in 2D for bi-linear interpolation

weights

interpolation result within one cell
We learned about RGB

There is one more channel – opacity (A)

- gives RGBA color
- opacity (A) = 1 – transparency (T)
- range [0.0 ... 1.0]

Opacity (A) multiplied by RGB creates a weighting effect
Opacity and Color Blending

\[C_{mix} = C_{back} A_{back} (1 - A_{front}) + C_{front} A_{front} \]

\[C_{mix} = C_R A_R (1 - A_B) + C_B A_B \]

\[T_R = 0.00, \quad A_R = 1.00 \]

\[C = R \cdot 0.75 + B \cdot 0.25 \]

\[T_B = 0.75, \quad A_B = 0.25 \]
Compositing – Merging the Samples

Back-to-front rendering

\[C'_i = C_i A_i + (1 - A_i) C'_{i-1} \]

Front-to-back rendering

\[C'_i = C'_{i-1} + (1 - A'_{i-1}) C_i A_i \]

\[A'_i = A'_{i-1} + (1 - A'_{i-1}) A_i \]

A: Opacity = 1 - Transparency = 1 - T

C: Color
Transfer Function

Determines what color & opacity a sample value should have

- input: an interpolated density value
- output: a color and opacity (RGBA)
A point P on a ray is given by:

$$P = \text{Eye} + t \cdot r_{i,j}$$

t: parametric variable

Spacing of pixels on image plane:

$$\Delta i = \frac{W}{Ni - 1} \quad \Delta j = \frac{H}{Nj - 1}$$

Ni, Nj: image dims. in pixels

A ray is specified by:

- eye position (Eye)
- screen pixel location $P_{i,j}$

\rightarrow ray direction vector $(r_{i,j})$ of unit length

$$r_{i,j} = \frac{P_{i,j} - \text{Eye}}{|P_{i,j} - \text{Eye}|}$$

Image-order projection:

- scan the image row by row, column by column:

$$P_{i,j} = P_{0,0} + i \cdot v \cdot \Delta j + j \cdot u \cdot \Delta i$$

- $P_{i,j}$: Location of image pixel (i, j) in world space

$0 \leq i < Ni \quad 0 \leq j < Nj$

- $P_{0,0}$: image (=screen) origin in world space

- u, v, n: orthonormal image plane vectors ($n = v \times u$)
Volume Rendering Modes

X-ray:
- rays sum volume contributions along their linear paths

Iso-surface:
- rays look for the object surfaces, defined by a certain volume value

Maximum Intensity Projection (MIP):
- a pixel value stores the largest volume value along its ray

Full volume rendering:
- rays composite volume contributions along their linear paths
PRACTICAL IMPLEMENTATION

- Everything handled in the fragment shader
- Procedural ray / bounding box intersection
- Ray is given by camera position and volume entry position
- Exit criterion needed
- Pro: simple and self-contained
- Con: full load on the fragment shader
GPU PROGRAM

- Rasterize front faces of volume bounding box
- Texcoords are volume position in [0,1]
- Subtract camera position
- Repeatedly check for exit of bounding box
Why is front-to-back rendering better?
- early ray termination – terminate a ray when \(A > 0.90 \)
- empty-space skipping – jump across empty space quickly
ISO-SURFACE RENDERING

• A closed surface separates ‘outside’ from ‘inside’ (Jordan theorem)
• In iso-surface rendering we say that all voxels with values > some threshold are ‘inside’, and the others are ‘outside’
• The boundary between ‘outside’ and ‘inside’ is the iso-surface
• All voxels near the iso-surface have a value close to the iso-threshold or iso-value
• Example:

 cross-section of a smooth sphere
 iso-boundary
 iso-value = 50 will render a large sphere
 iso-value = 200 will render a small sphere
Iso-Surface Rendering

iso-value = 30

iso-value = 80

iso-value = 200
To render an iso-surface we cast the rays as usual...

but we stop, once we have interpolated a value iso-threshold

- We would like to illuminate (shade) the iso-surface based on its orientation to the light source
- Recall that we need a normal vector for shading
- The normal vector N is the local gradient, normalized
The gradient vector $\mathbf{g} = (g_x, g_y, g_z)^T$ at the sample position (x, y, z) is usually computed via central-differencing (for example, g_x is the volume density gradient in the x-direction):

$$g_x = \frac{f(x-1, y, z) - f(x+1, y, z)}{2}$$
$$g_y = \frac{f(x, y-1, z) - f(x, y+1, z)}{2}$$
$$g_z = \frac{f(x, y, z-1) - f(x, y, z+1)}{2}$$
SHADING THE ISO-SURFACE

- The normal vector is the *normalized* gradient vector \(\mathbf{g} \)

\[
\mathbf{N} = \frac{\mathbf{g}}{\|\mathbf{g}\|} \quad \text{(normal vector always has unit length)}
\]

- Once the normal vector has been calculated we shade the iso-surface at the sample point

- The color so obtained is then written to the pixel that is due to the ray

The color is calculated with the standard shading equation:

\[
C = C_{\text{obj}} (k_a \ I_A + k_d \ I_L \ \mathbf{N} \cdot \mathbf{L}) + k_s \ I_L \ (H \cdot N)^{\text{ns}}
\]

\(C_{\text{obj}} \) is obtained by indexing the color transfer function with the interpolated sample value
When hitting a surface set $A < 1.0$

- ray marches on
- inner structures can be seen
Classification

During Classification the user defines the "Look" of the data.

- Which parts are transparent?
- Which parts have which color?
During Classification the user defines the "Look" of the data.

- Which parts are transparent?
- Which parts have which color?

The user defines a Transferfunction.
Classification
Classification
Classification
Classification
Real-Time update of the transfer function necessary!!!
Classification
Transfer Functions: Multi-Dimensional

Boundaries in volume create arches in \((\text{value}, \text{gradient})\) domain \[\text{Kindlmann 98}\]

Arches guide placement of opacity to emphasize material interfaces \[\text{Kniss 01}\]
Transfer Functions: Multi-Dimensional

- Boundaries can be described in terms of:
 - maximum in 1st derivative
 - zero-crossing in 2nd derivative
- Semi-automatic classification possible in clean data
Transfer Functions: Multi-Dimensional

Dual-domain interaction:
[Kniss 01]

New Rendering

Changes to transfer function

Make features opaque by pointing at them

Actions in spatial domain

New transfer function
Multi-Dimensional Transfer Functions
Multi-Dimensional Transfer Functions
Transfer Functions: Clinical Practice

A single slider bar is most appreciated [Rezk-Salama Vis06]

Enables doctors to quickly fine-tune the transfer function for specific objects

- works since in CT usually only small deviations exist
- but these require complex interactions in the transfer function domain
Parameter Mapping Approach (1)

Typical transfer function parameterization:

Datasets typically only deviate modestly from this:
 • but in complex ways
 • meaning, lots of tweaking is required

[Rezk-Salama Vis06]
We can learn these deviations by observing a few datasets

- encode the parameters into an N-D vector
- find the principal component of the vectors (the main Eigenvector)
- project all other vectors onto this Eigenvector
- the min and max then represent the min and max of the slider

[Rezk-Salama Vis06]