CSE 332
Intro to Visualization

Visualizing Volumetric Data

Klaus Mueller

Computer Science Department
Stony Brook University
<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intro, schedule, and logistics</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Applications of visual analytics, data, and basic tasks</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Data preparation and reduction</td>
<td>Project 1 out</td>
</tr>
<tr>
<td>4</td>
<td>Data preparation and reduction</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Data reduction and similarity metrics</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Dimension reduction</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Introduction to D3</td>
<td>Project 2 out</td>
</tr>
<tr>
<td>8</td>
<td>Bias in visualization</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Perception and cognition</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Visual design and aesthetics</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Cluster and pattern analysis</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>High-Dimensional data visualization: linear methods</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>High-D data vis.: non-linear methods</td>
<td>Project 3 out</td>
</tr>
<tr>
<td>14</td>
<td>High-D data vis.: categorical data</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Principles of interaction</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Visual analytics and the visual sense making process</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>VA design and evaluation</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Visualization of graphs and hierarchies</td>
<td>Project 4 out</td>
</tr>
<tr>
<td>19</td>
<td>Midterm</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Visualization of time-varying and time-series data</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Maps and geo-vis</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Computer graphics and volume rendering</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Techniques to visualize spatial (3D) data</td>
<td>Project 4 halfway report due</td>
</tr>
<tr>
<td>24</td>
<td>Scientific and medical visualization</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Non-photorealistic rendering</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Memorable visualizations, visual embellishments</td>
<td>Project 5 out</td>
</tr>
<tr>
<td>27</td>
<td>Infographics design</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Projects Hall of Fame demos</td>
<td></td>
</tr>
</tbody>
</table>
Volume Data Generation

Often obtained by scanning
- for example, X-ray CT
Volume Data – 2D Slice View

<table>
<thead>
<tr>
<th>Image 1</th>
<th>Image 2</th>
<th>Image 3</th>
<th>Image 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image 5</td>
<td>Image 6</td>
<td>Image 7</td>
<td>Image 8</td>
</tr>
<tr>
<td>Image 9</td>
<td>Image 10</td>
<td>Image 11</td>
<td>Image 12</td>
</tr>
<tr>
<td>Image 13</td>
<td>Image 14</td>
<td>Image 15</td>
<td>Image 16</td>
</tr>
<tr>
<td>Image 17</td>
<td>Image 18</td>
<td>Image 19</td>
<td>Image 20</td>
</tr>
<tr>
<td>Image 21</td>
<td>Image 22</td>
<td>Image 23</td>
<td>Image 24</td>
</tr>
<tr>
<td>Image 25</td>
<td>Image 26</td>
<td>Image 27</td>
<td>Image 28</td>
</tr>
<tr>
<td>Image 29</td>
<td>Image 30</td>
<td>Image 31</td>
<td>Image 32</td>
</tr>
<tr>
<td>Image 33</td>
<td>Image 34</td>
<td>Image 35</td>
<td>Image 36</td>
</tr>
<tr>
<td>Image 37</td>
<td>Image 38</td>
<td>Image 39</td>
<td>Image 40</td>
</tr>
</tbody>
</table>

Note: The images represent different slices of a volume dataset.
Volume Data – 3D Rendered View

aneurism broken jaw carotid arteries

Which do you prefer: 2D or 3D
Raycasting Concept

Image Plane

Data Set

Numerical Integration

Resampling
Sampling Along the Ray

Estimate sample values via interpolation
Sampling via Trilinear Interpolation

\[f_v = f_1(1 - p)(1 - q)(1 - r) + f_2(p)(1 - q)(1 - r) + f_3(p)(q)(1 - r) + f_4(1 - p)(q)(1 - r) + f_5(1 - p)(1 - q)(r) + f_6(p)(1 - q)(r) + f_7(p)(q)(r) + f_8(1 - p)(q)(r) \]
WHAT DOES THIS EXACTLY MEAN?

Here is what it looks like in 2D for bi-linear interpolation

weights

interpolation result within one cell
We learned about RGB

There is one more channel – opacity (A)

- gives RGBA color
- opacity (A) = 1 – transparency (T)
- range [0.0 ... 1.0]

Opacity (A) multiplied by RGB creates a weighting effect
\[C_{\text{mix}} = C_{\text{back}} A_{\text{back}} (1 - A_{\text{front}}) + C_{\text{front}} A_{\text{front}} \]

\[C_{\text{mix}} = C_{R} A_{R} (1 - A_{B}) + C_{B} A_{B} \]

\[T_{R} = 0.00, \quad A_{R} = 1.00 \]

\[C = R \cdot 0.75 + B \cdot 0.25 \]

\[T_{B} = 0.75, \quad A_{B} = 0.25 \]
Compositing – Merging the Samples

Back-to-front rendering

\[C'_i = C_i A_i + (1 - A_i) C'_{i-1} \]

Front-to-back rendering

\[C'_i = C'_{i-1} + (1 - A'_{i-1}) C_i A_i \]
\[A'_i = A'_{i-1} + (1 - A'_{i-1}) A_i \]

A: Opacity = 1 - Transparency = 1 - T

C: Color
Determined what color & opacity a sample value should have

- input: an interpolated density value
- output: a color and opacity (RGBA)

Transfer Function
Raycasting Specifics

A point P on a ray is given by:

$$P = Eye + t \cdot r_{i,j}$$

t: parametric variable

Spacing of pixels on image plane:

$$\Delta i = \frac{W}{Ni - 1} \quad \Delta j = \frac{H}{Nj - 1}$$

Ni, Nj: image dims. in pixels

A ray is specified by:

- eye position (Eye)
- screen pixel location $P_{i,j}$

\rightarrow ray direction vector $(r_{i,j})$ of unit length

$$r_{i,j} = \frac{P_{i,j} - Eye}{|P_{i,j} - Eye|}$$

Image-order projection:

- scan the image row by row, column by column:

$$P_{i,j} = P_{0,0} + i \cdot v \cdot \Delta j + j \cdot u \cdot \Delta i$$

- $P_{i,j}$: Location of image pixel (i, j) in world space

- $P_{0,0}$: image (=screen) origin in world space

- u, v, n: orthonormal image plane vectors ($n = v \times u$)
Volume Rendering Modes

- **X-ray:**
 rays sum volume contributions along their linear paths

- **Iso-surface:**
 rays look for the object surfaces, defined by a certain volume value

- **Maximum Intensity Projection (MIP):**
 a pixel value stores the largest volume value along its ray

- **Full volume rendering:**
 rays composite volume contributions along their linear paths
PRACTICAL IMPLEMENTATION

- Everything handled in the fragment shader
- Procedural ray / bounding box intersection

- Ray is given by camera position and volume entry position
- Exit criterion needed

- Pro: simple and self-contained
- Con: full load on the fragment shader
GPU PROGRAM

- Rasterize front faces of volume bounding box
- Texcoords are volume position in [0,1]
- Subtract camera position
- Repeatedly check for exit of bounding box
Why is front-to-back rendering better?

- early ray termination – terminate a ray when $A > 0.90$
- empty-space skipping – jump across empty space quickly
ISO-SURFACE RENDERING

- A closed surface separates ‘outside’ from ‘inside’ (Jordan theorem)
- In iso-surface rendering we say that all voxels with values > some threshold are ‘inside’, and the others are ‘outside’
- The boundary between ‘outside’ and ‘inside’ is the iso-surface
- All voxels near the iso-surface have a value close to the iso-threshold or iso-value
- Example:

 cross-section of a smooth sphere

 iso-boundary

 inside

 iso-value = 50
 will render a large sphere

 iso-value = 200
 will render a small sphere
ISO-SURFACE RENDERING

iso-value = 30 iso-value = 80 iso-value = 200
To render an iso-surface we cast the rays as usual...

but we stop, once we have interpolated a value iso-threshold

We would like to illuminate (shade) the iso-surface based on its orientation to the light source

Recall that we need a normal vector for shading

The normal vector \mathbf{N} is the local gradient, normalized
The gradient vector $\mathbf{g} = (g_x, g_y, g_z)^T$ at the sample position (x, y, z) is usually computed via central-differencing (for example, g_x is the volume density gradient in the x-direction):

$$
\begin{align*}
 g_x &= \frac{f(x-1, y, z) - f(x+1, y, z)}{2} \\
 g_y &= \frac{f(x, y-1, z) - f(x, y+1, z)}{2} \\
 g_z &= \frac{f(x, y, z-1) - f(x, y, z+1)}{2}
\end{align*}
$$

The x and y component of the gradient vector for the smooth sphere.

- voxel value = iso-threshold
- voxel value < iso-threshold
- extra sample points interpolated to estimate gradient
SHADING THE ISO-SURFACE

- The normal vector is the *normalized* gradient vector \(g \)

\[
N = g / |g| \quad \text{(normal vector always has unit length)}
\]

- Once the normal vector has been calculated we shade the iso-surface at the sample point

- The color so obtained is then written to the pixel that is due to the ray

The color is calculated with the standard shading equation:

\[
C = C_{\text{obj}} (k_a I_A + k_d I_L \cdot N \cdot L) + k_s I_L (H \cdot N)^{\text{ns}}
\]

\(C_{\text{obj}} \) is obtained by indexing the color transfer function with the interpolated sample value
When hitting a surface set $A < 1.0$

- ray marches on
- inner structures can be seen
During Classification the user defines the "Look" of the data.

- Which parts are transparent?
- Which parts have which color?
During Classification the user defines the "Look" of the data.
- Which parts are transparent?
- Which parts have which color?
- The user defines a Transferfunction.
Classification
Classification
Classification
Classification
Classification

Real-Time update of the transfer function necessary!!!
Classification
Transfer Functions: Multi-Dimensional

Boundaries in volume create arches in (value, gradient) domain [Kindlmann 98]

Arches guide placement of opacity to emphasize material interfaces [Kniss 01]
Transfer Functions: Multi-Dimensional

- Boundaries can be described in terms of:
 - maximum in 1st derivative
 - zero-crossing in 2nd derivative
- Semi-automatic classification possible in clean data
Transfer Functions: Multi-Dimensional

Dual-domain interaction:

[Kniss 01]

New Rendering

Changes to transfer function

Make features opaque by pointing at them

Actions in spatial domain

New transfer function
Multi-Dimensional Transfer Functions
Multi-Dimensional Transfer Functions
A single slider bar is most appreciated [Rezk-Salama Vis06]

Enables doctors to quickly fine-tune the transfer function for specific objects

- works since in CT usually only small deviations exist
- but these require complex interactions in the transfer function domain
Parameter Mapping Approach (1)

Typical transfer function parameterization:

Datasets typically only deviate modestly from this
• but in complex ways
• meaning, lots of tweaking is required

[Rezk-Salama Vis06]
We can learn these deviations by observing a few datasets

- encode the parameters into an N-D vector
- find the principal component of the vectors (the main Eigenvector)
- project all other vectors onto this Eigenvector
- the min and max then represent the min and max of the slider

[Rezk-Salama Vis06]