

Human-Computer Interaction

An Empirical Research Perspective

I. Scott MacKenzie

Chapter 6 Hypothesis Testing

Standard Deviation

Regression

Independent variable (x)

Regression is the attempt to explain the variation in a dependent variable using the variation in independent variables.

Regression is thus an explanation of causation.

If the independent variable(s) sufficiently explain the variation in the dependent variable, the model can be used for prediction.

Independent variable (x)

The output of a regression is a function that predicts the dependent variable based upon values of the independent variables.

Simple regression fits a straight line to the data.

The function will make a prediction for each observed data point. The observation is denoted by y and the prediction is denoted by \hat{y} .

For each observation, the variation can be described as:

$$y = \hat{y} + \varepsilon$$

Actual = Explained + Error

Regression

Independent variable (x)

A least squares regression selects the line with the lowest total sum of squared prediction errors.

This value is called the Sum of Squares of Error, or SSE.

Calculating SSR

Independent variable (x)

The Sum of Squares Regression (SSR) is the sum of the squared differences between the prediction for each observation and the population mean.

The Total Sum of Squares (SST) is equal to SSR + SSE.

Mathematically,

SSR = $\sum (\hat{y} - \overline{y})^2$ (measure of explained variation)

SSE = $\sum (y - \hat{y})$ (measure of unexplained variation)

SST = SSR + SSE = $\sum (y - \overline{y})^2$ (measure of total variation in y)

What is Hypothesis Testing?

- ... the use of statistical procedures to answer research questions
- Typical research question (generic):

Is the time to complete a task less using Method A than using Method B?

• For hypothesis testing, research questions are statements:

There is no difference in the mean time to complete a task using Method A vs. Method B.

- This is the *null hypothesis* (assumption of "no difference")
- Statistical procedures seek to reject or accept the null hypothesis (details to follow)

Statistical Procedures

- Two types:
 - Parametric
 - Data are assumed to come from a distribution, such as the normal distribution, *t*-distribution, etc.
 - Non-parametric
 - Data are not assumed to come from a distribution
 - Lots of debate on assumptions testing and what to do if assumptions are not met (avoided here, for the most part)
 - A reasonable basis for deciding on the most appropriate test is to match the type of test with the measurement scale of the data (next slide)

Measurement Scales vs. Statistical Tests

Measurement Scale	Defining Relations	Examples of Appropriate Statistics	Appropriate Statistical Tests
Nominal	• Equivalence	ModeFrequency	 Non-parametric
Ordinal	● Equivalence ● Order	MedianPercentile	tests
Interval	 Equivalence Order Ratio of intervals 	● Mean ● Standard deviation	• Parametric tests
Ratio	 Equivalence Order Ratio of intervals Ratio of values 	 Geometric mean Coefficient of variation 	 Non-parametric tests

- Parametric tests most appropriate for...
 - Ratio data, interval data
- Non-parametric tests most appropriate for...
 - Ordinal data, nominal data (although limited use for ratio and interval data)

Tests Presented Here

- Parametric
 - Analysis of variance (ANOVA)
 - Used for ratio data and interval data
 - Most common statistical procedure in HCI research
- Non-parametric
 - Chi-square test
 - Used for nominal data
 - Mann-Whitney U, Wilcoxon Signed-Rank, Kruskal-Wallis, and Friedman tests
 - Used for ordinal data

Analysis of Variance

- The *analysis of variance* (ANOVA) is the most widely used statistical test for hypothesis testing in factorial experiments
- Goal → determine if an independent variable has a significant effect on a dependent variable
- Remember, an independent variable has at least two levels (test conditions)
- Goal (put another way) → determine if the test conditions yield different outcomes on the dependent variable (e.g., one of the test conditions is faster/slower than the other)

Why Analyse the Variance?

• Seems odd that we analyse the variance, but the research question is concerned with the overall means:

Is the time to complete a task less using Method A than using Method B?

• Let's explain through two simple examples (next slide)

Example #2

Example #1 - Details

Note: SD is the square root of the variance

Example #1 – ANOVA¹

ANOVA Table for Task Completion Time (s)

¹ ANOVA table created by *StatView* (now marketed as *JMP*, a product of SAS; www.sas.com)

How to Report an *F*-statistic

The mean task completion time for Method A was 4.5 s. This was 20.1% less than the mean of 5.5 s observed for Method B. The difference was statistically significant ($F_{1,9}$ = 9.80, p < .05).

- Notice in the parentheses
 - Uppercase for F
 - Lowercase for *p*
 - Italics for F and p
 - Space both sides of equal sign
 - Space after comma
 - Space on both sides of less-than sign
 - Degrees of freedom are subscript, plain, smaller font
 - Three significant figures for *F* statistic
 - No zero before the decimal point in the *p* statistic (except in Europe)

Example #2 - Details

Example #2 – ANOVA

ANOVA Table for Task Completion Time (s)

Example #2 - Reporting

The mean task completion times were 4.5 s for Method A and 5.5 s for Method B. As there was substantial variation in the observations across participants, the difference was not statistically significant as revealed in an analysis of variance $(F_{1,9} = 0.626, \text{ ns})$.

More Than Two Test Conditions

ANOVA

ANOVA Table for Dependent Variable (units)

	DF	Sum of Squares	Mean Square	F-Value	P-Value	Lambda	Pow er
Subject	15	81.109	5.407				
Test Condition	3	182.172	60.724	4.954	.0047	14.862	.896
Test Condition * Subject	45	551.578	12.257				

- There was a significant effect of Test Condition on the dependent variable ($F_{3,45} = 4.95, p < .005$)
- Degrees of freedom
 - If *n* is the number of test conditions and *m* is the number of participants, the degrees of freedom are...
 - Effect \rightarrow (n-1)
 - Residual $\rightarrow (n-1)(m-1)$
 - Note: single-factor, within-subjects design

Post Hoc Comparisons Tests

- A significant *F*-test means that at least one of the test conditions differed significantly from one other test condition
- Does not indicate which test conditions differed significantly from one another
- To determine which pairs differ significantly, a post hoc comparisons tests is used
- Examples:
 - Fisher PLSD, Bonferroni/Dunn, Dunnett, Tukey/Kramer, Games/Howell, Student-Newman-Keuls, orthogonal contrasts, Scheffé
- Scheffé test on next slide

Scheffé Post Hoc Comparisons

Scheffe for Dependent Variable (units) Effect: Test Condition Significance Level: 5 %

	Mean Diff.	Crit. Diff.	P-Value	
А, В	875	3.302	.9003	
A, C	-4.500	3.302	.0032	S
A, D	-1.813	3.302	.4822	
B, C	-3.625	3.302	.0256	S
B, D	938	3.302	.8806	
C, D	2.688	3.302	.1520	

• Test conditions A:C and B:C differ significantly (see chart three slides back)

Between-subjects Designs

- Research question:
 - Do left-handed users and right-handed users differ in the time to complete an interaction task?
- The independent variable (handedness) must be assigned between-subjects
- Example data set \rightarrow

Participant	Task Completion Time (s)	Handedness
1	23	L
2	19	L
3	22	L
4	21	L
5	23	L
6	20	L
7	25	L
8	23	L
9	17	R
10	19	R
11	16	R
12	21	R
13	23	R
14	20	R
15	22	R
16	21	R
Mean	20.9	
SD	2.38	

Summary Data and Chart

Handadhass	Task Completion Time (s)				
nanueuness	Mean	SD			
Left	22.0	1.93			
Right	19.9	2.42			

Handedness

ANOVA

ANOVA Table for Task Completion Time (s)

	DF	Sum of Squares	Mean Square	F-Value	P-Value	Lambda	Pow er
Handedness	1	18.063	18.063	3.7 <mark>8</mark> 1	.0722	3.781	.429
Residual	14	66.875	4.777				

- The difference was not statistically significant ($F_{1,14} = 3.78, p > .05$)
- Degrees of freedom:
 - Effect \rightarrow (n-1)
 - Residual \rightarrow (m-n)
 - Note: single-factor, between-subjects design

Two-way ANOVA

- An experiment with two independent variables is a *two-way design*
- ANOVA tests for
 - Two main effects + one interaction effect
- Example
 - Independent variables
 - Device \rightarrow D1, D2, D3 (e.g., mouse, stylus, touchpad)
 - Task \rightarrow T1, T2 (e.g., point-select, drag-select)
 - Dependent variable
 - Task completion time (or something, this isn't important here)
 - Both IVs assigned within-subjects
 - Participants: 12
 - Data set (next slide)

Data Set

Dortioinant	Device 1		Dev	ice 2	Dev	ice 3
Participart	Task 1	Task 2	Task 1	Task 2	Task 1	Task 2
1	11	18	15	13	20	14
2	10	14	17	15	11	13
3	10	23	13	20	20	16
4	18	18	11	12	11	10
5	20	21	19	14	19	8
6	14	21	20	11	17	13
7	14	16	15	20	16	12
8	20	21	18	20	14	12
9	14	15	13	17	16	14
10	20	15	18	10	11	16
11	14	20	15	16	10	9
12	20	20	16	16	20	9
Mean	15.4	18.5	15.8	15.3	15.4	12.2
SD	4.01	2.94	2.69	3.50	3.92	2.69

Summary Data and Chart

	Task 1	Task 2	Mean
Device 1	15.4	18.5	17.0
Device 2	15.8	15.3	15.6
Device 3	15.4	12.2	13.8
Mean	15.6	15.3	15.4

Device

ANOVA

ANOVA Table for Task Completion Time (s)

	DF	Sum of Squares	Mean Square	F-Value	P-Value	Lambda	Pow er
Subject	11	134.778	12.253				
Device	2	121.028	60.514	5.865	.0091	11.731	.831
Device * Subject	22	226.972	10.317				
Task	1	.889	. <mark>889</mark> .	.076	.7875	.076	.057
Task * Subject	11	128.111	11.646				
Device * Task	2	121.028	60.514	5.435	.0121	10.869	.798
Device * Task * Subject	22	244.972	11.135				

Can you pull the relevant statistics from this chart and craft statements indicating the outcome of the ANOVA?

ANOVA - Reporting

The grand mean for task completion time was 15.4 seconds. Device 3 was the fastest at 13.8 seconds, while device 1 was the slowest at 17.0 seconds. The main effect of device on task completion time was statistically significant ($F_{2,22} = 5.865$, p < .01). The task effect was modest, however. Task completion time was 15.6 seconds for task 1. Task 2 was slightly faster at 15.3 seconds; however, the difference was not statistically significant ($F_{1,11} = 0.076$, ns). The results by device and task are shown in Figure x. There was a significant Device × Task interaction effect ($F_{2,22}$ = 5.435, p < .05), which was due solely to the difference between device 1 task 2 and device 3 task 2, as determined by a Scheffé post hoc analysis.

Anova2 Software

- HCI:ERP web site includes analysis of variance Java software: Anova2
- Operates from command line on data in a text file
- Extensive API with demos, data files, discussions, etc.
- Download and demonstrate

CMD	
text>java Anova2	_
Usage: java Anova2 file p f1 f2 f3 [-a] [-d] [-m] [-h]	
<pre>file = data file (comma or space delimited) p = # of rows (participants) in data file f1 = # of levels, 1st within-subjects factor ("." if not used) f2 = # of levels, 2nd within-subjects factor ("." if not used) f3 = # of levels, between-subjects factor ("." if not used) -a = output anova table -d = output debug data -m = output main effect means -h = data file includes header lines (see API for details) (Note: default is no output)</pre>	
text>	_

Dix et al. Example¹

- Single-factor, withinsubjects design
- See API for discussion

CMD	- 🗆 🗵
book≻type dix-example-10x2.txt 656,702	
259,339 612,658 609,645	
1049,1129 1135,1179 542,604	
495,551 905,893 715,803	
book>	- -

CMD						
book>java Anova2 c	dix-example	e-10x2.txt 10 2	?a			<u> </u>
Effect	df	\$\$	MS	F	р	=
Participant F1 F1_x_Par	9 1 9	1231492.000 13833.800 3732.200	136832.444 13833.800 414.689	33.359	2.7E-4	_
book> ↓						- - -

¹ Dix, A., Finlay, J., Abowd, G., & Beale, R. (2004). *Human-computer interaction* (3rd ed.). London: Prentice Hall. (p. 337)

Dix et al. Example

- With counterbalancing
- Treating "Group" as a between-subjects factor¹
- Includes header lines

book>type dix-example-h10x2b.txt	
DV: Completion Time (s)	
F1: Icon Type, Natural, Abstract	
F2: .	
F3: Group	
656.702.NA	
259.339.NA	
612 658 NA	-
609 645 NA	
1049 1129 NA	
1135 1179 AN	
542 604 AN	
695 551 AN	
905 893 AN	
715 803 ON	
110,000,00	
hook	
	ЪĹ

<mark>∝⊂™D</mark> book>java Anova2 dix-0	example	e-h10x2b.txt 10	2.2-h-a			_
ANOVA_table_for_Comple	etion	Fime (s)				
Effect	df	\$\$	MS	F	р	
Group Participant(Group)	1	67744.800	67744.800	0.466	0.51424	
Icon Type	1	13833.800	13833.800	30.680	3.6E-4	
Icon Type_x_P(Group)	8	3607.200	450.900	0.211	0.01201	
book>						

¹ See API and **HCI:ERP** for discussion on "counterbalancing and testing for a group effect".

Chi-square Test (Nominal Data)

- A *chi-square test* is used to investigate relationships
- Relationships between categorical, or nominal-scale, variables representing attributes of people, interaction techniques, systems, etc.
- Data organized in a *contingency table* cross tabulation containing counts (frequency data) for number of observations in each category
- A chi-square test compares the *observed values* against *expected values*
- Expected values assume "no difference"
- Research question:
 - Do males and females differ in their method of scrolling on desktop systems? (next slide)

Chi-square – Example #1

Observed Number of Users					
Condor	Scro	lling M	lethod	Total	
Gender	MW CD KB				
Male	28	15	13	56	
Female	21	45			
Total	49	24	28	101	

MW = mouse wheel CD = clicking, dragging KB = keyboard

Chi-square – Example #1

Expected Number of Users					
Condor	Scrolling Method				
Gender	MW CD KB				
Male	27.2	13.3	15.5	56.0	
Female	21.8	10.7	12.5	45.0	
Total	49.0	24.0	28.0	101	

Chi Squares						
Condor	Scr	olling M	lethod	Total		
Gender	MW CD KB					
Male	0.025	0.215	0.411	0.651		
Female	0.032	0.268	0.511	0.811		
Total	0.057	0.483	0.922	1.462		

Significant if it exceeds critical value (next slide)

 $\chi^2 = 1.462$

(See HCI:ERP for calculations)

Chi-square Critical Values

- Decide in advance on *alpha* (typically .05)
- Degrees of freedom

$$- df = (r-1)(c-1) = (2-1)(3-1) = 2$$

-r = number of rows, c = number of columns

Significance		Degrees of Freedom						
Threshold (a)	1	2	3	4	5	6	7	8
.1	2.71	4.61	6.25	7.78	9.24	10.65	12.02	13.36
.05	3.84	5.99	7.82	9.49	11.07	12.59	14.07	15.51
.01	6.64	9.21	11.35	13.28	15.09	16.81	18.48	20.09
.001	10.83	13.82	16.27	18.47	20.52	22.46	24.32	26.13

 χ^2 = 1.462 (< 5.99 ∴ not significant)

ChiSquare Software

- Download ChiSquare software from HCI:ERP
- Note: calculates p (assuming $\alpha = .05$)

```
text>type chisquare-ex1.txt
28 15 13
21 9 15
text>java ChiSquare chisquare-ex1.txt
Chi-square(2) = 1.462
p = 0.4814
text>_____
```

Chi-square – Example #2

- Research question:
 - Do students, professors, and parents differ in their responses to the question: Students should be allowed to use mobile phones during classroom lectures?
- Data:

Observed Number of People						
Oninion		Total				
Opinion	Student Professor Parent					
Agree	10	12	98	120		
Disagree	30	48	102	180		
Total	40	60	200	300		

Chi-square – Example #2

- Result: significant difference in responses ($\chi^2 = 20.5, p < .0001$)
- Post hoc comparisons reveal that opinions differ between students:parents and professors:parents (students:professors do not differ significantly in their responses)

```
      Image: CMD
      Image: CMD

      text>type chisquare-ex2.txt
      10

      10
      12
      98

      30
      48
      102

      text>java ChiSquare chisquare-ex2.txt -ph
      Chi-square(2) = 20.500

      p = 0.0000
      Image: Comparisons (using contrasts) ------

      Pair 1:2
      --->

      Chi-square(2) = 0.340, p = 0.8437

      Pair 1:3
      --->

      Chi-square(2) = 9.702, p = 0.0078

      Pair 2:3
      --->

      Chi-square(2) = 21.475, p = 0.0000
```

1 = students, 2 = professors, 3 = parents

Non-parametric Tests for Ordinal Data

- Non-parametric tests used most commonly on ordinal data (ranks)
- See HCI:ERP for discussion on limitations
- Type of test depends on
 - Number of conditions $\rightarrow 2 \mid 3+$
 - Design \rightarrow between-subjects | within-subjects

Design	Conditions			
Design	2	3 or more		
Between-subjects (independent samples)	Mann-Whitney U	Kruskal-Wallis		
Within-subjects (correlated samples)	Wilcoxon Signed-Rank	Friedman		

Non-parametric – Example #1

- Research question:
 - Is there a difference in the political leaning of Mac users and PC users?
- Method:
 - 10 Mac users and 10 PC users randomly selected and interviewed
 - Participants assessed on a 10-point linear scale for political leaning
 - 1 = very left
 - 10 = very right
- Data (next slide)

Data (Example #1)

- Means:
 - 3.7 (*Mac* users)
 - 4.5 (*PC* users)
- Data suggest *PC* users more rightleaning, but is the difference statistically significant?
- Data are ordinal (at least), ∴ a non-parametric test is used
- Which test? (see below)

Docian	Conditions			
Design	2	3 or more		
Between-subjects (independent samples)	Mann-Whitney U	Kruskal-Wallis		
Within-subjects (correlated samples)	Wilcoxon Signed-Rank	Friedman		

Mac Users	PC Users
2	4
3	6
2	5
4	4
9	8
2	3
5	4
3	2
4	4
3	5
3.7	4.5

Mann Whitney U Test¹

See HCI:ERP for complete details and discussion

¹ Output table created by *StatView* (now marketed as *JMP*, a product of SAS; www.sas.com)

MannWhitneyU Software

• Download MannWhitneyU Java software from HCI:ERP web site¹

Non-parametric – Example #2

- Research question:
 - Do two new designs for media players differ in "cool appeal" for young users?
- Method:
 - 10 young tech-savvy participants recruited and given demos of the two media players (MPA, MPB)
 - Participants asked to rate the media players for "cool appeal" on a 10-point linear scale
 - 1 = not cool at all
 - 10 = really cool
- Data (next slide)

Data (Example #2)

- Means
 - 6.4 (MPA)
 - 3.7 (MPB)
- Data suggest MPA has more "cool appeal", but is the difference statistically significant?
- Data are ordinal (at least), ∴ a non-parametric test is used
- Which test? (see below)

Docian	Conditions			
Design	2	3 or more		
Between-subjects (independent samples)	Mann-Whitney U	Kruskal-Wallis		
Within-subjects (correlated samples)	Wilcoxon Signed-Rank	Friedman		

Participant	MPA	MPB
1	3	3
2	6	6
3	4	3
4	10	3
5	6	5
6	5	6
7	9	2
8	7	4
9	6	2
10	8	3

6.4 3.7

Wilcoxon Signed-Rank Test

#0 Differences Test statistic: Normalized z score # Ties 2 -2.2407-Value .0251 P-Value *p* (probability of the observed data, -2.254 Tied Z-Value given the null hypothesis) .0242 Tied P-Value Conclusion: The null hypothesis is rejected: Wilcoxon Rank Info for MPA, MPB Media player A has more "cool Sum Ranks Mean Rank Count appeal" than media player B # Ranks < 02.000 2.000 (z = -2.254, p < .05).7 # Ranks > 034.000 4.857

Wilcoxon Signed Rank Test for MPA, MPB

See HCI:ERP for complete details and discussion

WilcoxonSignedRank Software

• Download WilcoxonSignedRank Java software from HCI:ERP web site¹

Non-parametric – Example #3

- Research question:
 - Is age a factor in the acceptance of a new GPS device for automobiles?
- Method
 - 8 participants recruited from each of three age categories: 20-29, 30-39, 40-49
 - Participants demo'd the new GPS device and then asked if they would consider purchasing it for personal use
 - They respond on a 10-point linear scale
 - 1 = definitely no
 - 10 = definitely yes
- Data (next slide)

Data (Example #3)

- Means
 - 7.1 (20-29)
 - 4.0 (30-39)
 - 2.9 (40-49)
- Data suggest differences by age, but are differences statistically significant?
- Data are ordinal (at least), ∴ a nonparametric is used
- Which test? (see below)

Decign	Conditions	
Design	2	3 or more
Between-subjects (independent samples)	Mann-Whitney U	Kruskal-Wallis
Within-subjects (correlated samples)	Wilcoxon Signed-Rank	Friedman

A20-29	A30-39	A40-49
9	7	4
9	3	5
4	5	5
9	3	2
6	2	2
3	1	1
8	4	2
9	7	2
71	4 0	29

Kruskal-Wallis Test

See HCI:ERP for complete details and discussion

KruskalWallis Software

• Download KruskalWallis Java software from **HCI:ERP** web site¹

Post Hoc Comparisons

- As with the analysis of variance, a significant result only indicates that at least one condition differs significantly from one other condition
- To determine which pairs of conditions differ significantly, a post hoc comparisons test is used
- Available using -ph option (see below)

CMD	
book>java KruskalWallis kruskalwallis-ex1.txt -ph H = 9.421, p = 0.0090 H' = 9.605, p' = 0.0082	A
Multiple Comparisons Test (alpha = .05)	
Pair 1:2> 7.4375 >= 7.6103 ? - Pair 1:3> 10.5625 >= 7.6103 ? * (significant) Pair 2:3> 3.1250 >= 7.6103 ? -	
book>	- -

Non-parametric – Example #4

- Research question:
 - Do four variations of a search engine interface (A, B, C, D) differ in "quality of results"?
- Method
 - 8 participants recruited and demo'd the four interfaces
 - Participants do a series of search tasks on the four search interfaces (Note: counterbalancing is used, but this isn't important here)
 - Quality of results for each search interface assessed on a linear scale from 1 to 100
 - 1 = very poor quality of results
 - 100 = very good quality of results
- Data (next slide)

Data (Example #4)

- Means
 - 71.0 (A), 68.1 (B), 60.9 (C),
 69.8 (D)
- Data suggest a difference in quality of results, but are the differences statistically significant?
- Data are ordinal (at least), : a non-parametric test is used
- Which test? (see below)

Decign	Conditions	
Design	2	3 or more
Between-subjects (independent samples)	Mann-Whitney U	Kruskal-Wallis
Within-subjects (correlated samples)	Wilcoxon Signed-Rank	Friedman

Participant	А	В	С	D
1	66	80	67	73
2	79	64	61	66
3	67	58	61	67
4	71	73	54	75
5	72	66	59	78
6	68	67	57	69
7	71	68	59	64
8	74	69	69	66

71.0 68.1 60.9 69.8

Friedman Test

Friedman Test for 4 Variables

Friedman Rank Info for 4 Variables

	Count	Sum Ranks	Mean Rank
А	8	24.500	3.063
В	8	19.500	2.438
С	8	11.500	1.438
D	8	24.500	3.063

Conclusion:

The null hypothesis is rejected: There is a difference in the quality of results provided by the search interfaces ($\chi^2 = 8.692$, p < .05).

See HCI:ERP for complete details and discussion

Friedman Software

• Download Friedman Java software from HCI:ERP web site¹

Post Hoc Comparisons

• As with KruskalWallis application, available using the -ph option...

CMD	-미즈
book>java Friedman friedman-ex1.txt -ph H(3) = 8.475, p = 0.0372 H'(3) = 8.692, p' = 0.0337	•
Pairwise Comparisons (using Conover's F)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
book>	•

Points of Discussion

- Reporting the mean vs. median for scaled responses
- Non-parametric tests for multi-factor experiments
- Non-parametric tests for ratio-scale data

See HCI:ERP for complete details and discussion

Thank You

