
Professional Ethics for Computer Science

 Lecture 5: Software Development

Klaus Mueller

Computer Science Department

Stony Brook University

Course - Administrative Issues

NO lecture next week (October 21)

• prepare for presentations

Next lecture (October 28)

• first set of student presentations

Presentation format

• 6 students per session (10 minutes + 3 minutes Q+A each)

• we will use instantaneous online survey mechanism for peer review

Schedule

• full schedule has been announced on course website

• report time conflicts by next Tuesday (October 21)

• suggest alternative dates

• “too early” is not a good justification for conflict

Objectives

Why do companies require high-quality software in
business systems, industrial process control systems, and
consumer products?

What ethical issues do software manufacturers face in
making tradeoffs between project schedules, project
costs, and software quality?

Impact of Quality Software

Software errors can have minor or major consequences

• software in dryer may cause clothes not being dried enough

• software in X-ray scanner may overexpose patient to powerful X-rays

High-quality software systems

• operate safely and dependably

• have a high degree of availability

• required to support the fields of

- air traffic control

- nuclear power

- automobile safety

- health care

- military and defense

- space exploration

Key Issues in Software Development

Ethical decisions involve:

• tradeoff between quality and other factors, such as ease of use, time
to market, and development costs.

• some managers may have a short-term profit-oriented view

• others may prefer the more ethical view of delivering high-quality
software

• it is a reputation’s game

• need to also review legal implications of software errors

Liability

Software product liability

• accidents due to software errors may result in lawsuits and punitive
damages

• liability is commonly referred to as product liability

• there is no federal liability law, software liablity falls under common
law

• strict liabilty means manufacturer is responsible for regardless of
negligence or intent but there are lines of defsense against this

• responsibilty may be limited to harmful defects that could have been
detected through ‘reasonable’ software practices

• there is also the concept of ‘contributory’ negligence (e.g.,
accidentally cut finger using nail clippers)

• warranty also protects consumer, but may be hard to read

Rasons For Software Defects

Inexperienced or quality-ignorant software coding

• quality software evolves right from the start

• but few have the conscience to do it

Human error

• programmers inject one defect for every 10 lines of code

• e.g., Windows XT, 400 M lines of code, even if 99.9% was clean
there still would be 1 bug per 10,000 lines of code large software
still contains thousands of bugs

Time pressure

• competition requires fast roll-out with more features

• one can always patch..

• ‘testing’ done by customers..

• some avoid buying the first version (Windows OS NT was mature)

Quality Software

More and more users are demanding high-quality software

Software defect

• could cause a system to fail to meet users’ needs

• impact may be trivial or very serious

• even patches may contain (new) defects

Software quality

• degree to which software meets the needs of users

Software Development Process

Safer and cheaper to avoid software problems at the
beginning than to attempt to fix damages after the fact

• identify and remove errors early in the development process

- cost-saving measure

- most efficient way to improve software quality

- 100 times less cost when bug is detected early before product
roll-out

- bug effect (and its fix) may ripple through large pieces of the
software

Software Qualty Assurance (QA)

Dynamic testing

• Black-box testing

- want code to demonstrate expected output behavior for all input
data in test suite

- tester has no knowledge of code

• White-box testing (tester has knowledge of code)

- testing all possible logic paths through the software unit

- with thorough knowledge of the code’s logic paths

- make each program statement execute at least once

- for example, for program to calculate employee gross pay, want
test case for less than 40 hours and test case for more than 40
hours. Why?

Software Qualty Assurance (QA)

Dynamic testing

• Black-box testing

- want code to demonstrate expected output behavior for all input
data in test suite

- tester has no knowledge of code

• White-box testing (tester has knowledge of code)

- testing all possible logic paths through the software unit

- with thorough knowledge of the code’s logic paths

- make each program statement execute at least once

- for example, for program to calculate employee gross pay, want
test case for less than 40 hours and test case for more than 40
hours. Why?

 … to check calculations for overtime pay

Software Qualty Assurance (QA)

Static testing

• static analyzers are run against the new code

• looks for suspicious patterns in programs that might indicate a defect

Integration testing

• after successful unit testing

• software units are combined into an integrated subsystem

• ensures that all linkages among various subsystems work
successfully

Software Qualty Assurance (QA)

System testing

• after successful integration testing

• various subsystems are combined

• tests the entire system as a complete entity

User acceptance testing

• independent testing

• performed by trained end-users

• ensures that the system operates as they expect

Safety-Critical Systems

Consequences of software defects in certain systems can be
deadly

• companies must take special precautions

Safety-critical system

• failure may cause injury or death

• examples

- automobile’s antilock brakes

- nuclear power plant reactors

- airplane navigation

- roller coasters

- elevators

- medical devices

• example: bug in Therac-25 radiation therapy machine 1985-87

- wrong sequence of menu selections caused large radiation dose
to be delivered to the patient

Development of Safety-Critical Systems (continued)

Key assumption

• safety will not automatically result from following the organization’s
standard development methodology

Must go through a more rigorous and time-consuming
development process than other kinds of software

All tasks require

• additional steps

• more thorough documentation

• more checking and rechecking

Development of Safety-Critical Systems (continued)

Project safety engineer

• explicit responsibility for the system’s safety

• uses a logging and monitoring system to track hazards from the
project’s start to finish

Hazard log

• used at each stage of the software development process

• assesses how it has accounted for detected hazards

Development of Safety-Critical Systems (continued)

Safety reviews

• held throughout the development process

Robust configuration management system

• tracks all safety-related documentation

Formal documentation required

• including verification reviews and signatures

Key issue

• deciding when QA staff has performed enough testing

Development of Safety-Critical Systems (continued)

Risk

• probability of an undesirable event occurring times the magnitude of
the event’s consequences if it does happen

• consequences include

- damage to property

- loss of money

- injury to people

- death

Quality Management Standards

ISO 9000 standard

• guide to quality products, services, and management

• organization must submit to an examination by an external assessor

• requirements:

- written procedures for everything it does

- follow those procedures

- prove to the auditor the organization fulfilled the first two
requirements

Quality Management Standards (continued)

Failure mode and effects analysis (FMEA)

• important technique to develop an ISO 9000 compliant system

• used to evaluate reliability

• determine the effect of system and equipment failures

• goal: identify potential design and process failures early in a project

Quality Management Standards (continued)

Failure mode and effects analysis (FMEA)

• Failure mode:

- describes how a product or process could fail

• Effect

- adverse consequence that a customer might experience

• seldom is a one-to-one relationship between cause and effect

Quality Management Standards

DO-178B/EUROCCAE ED-128

• evaluation standard for the international aviation community

• developed by Radio Technical Commission for Aeronautics (RTCA)

Manager’s Checklist for Improving Software Quality

Summary

More and more users are demanding high quality software

Software product liability claims are frequently based on

• strict liability

 held responsible for injury regardless of negligence or intent

• negligence

• breach of warranty

• misrepresentation (of product quality or hide defect in product)

Summary (continued)

Software development methodology

• defines activities in the software development process

• defines individual and group responsibilities

• recommends specific techniques

• offers guidelines for managing the quality of products

CMMI: Capability Maturity Model Integration for software

• defines five levels of software development maturity

• identifies the issues most critical to software quality and process
improvement

• can serve as benchmark to compare companies in the awarding of
software contracts

Safety-critical system

• failure may cause injury or death

