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Previous Works 

Icon algebra [Kovalerchuk et al.] 

• visual language  

Semanticons [Setlur et al.] 

• create file icons by abstracting terms occurring in the file name 

Photo collages [Rother et al.] 

• automatic creation of collages from image collections   

Photo Clip Art [Lalonde et al.] 

• insert photo-realistic objects into new images 

Annotate text with 3D renderings [Coyne et al , Götze et al., 
Götzelmann et al.] 

• example: Word-Eye   

Story-Picturing-Engine [Joshi et al.] 

• index image search engines with exact lexical terms in the text 
• no semantic interpretation, integration, or visual abstraction  
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Types of Icons: Symbols 
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How to find that dominant set of attributes? 
• use internet image databases (Google Image, Flickr, …) 

Why is the internet a powerful resource? 
• it gauges public opinion and consensus 
• in some ways represents a huge user study 
• just type in desired concept and pick the majority 

Problems with this approach 
• lots of unwanted images (polysemy) 
     content-based image retrieval (CBIR) is largely an unsolved 

problem 
• so it will not be that easy 
• in fact, finding good visual representations for concepts is a 

‘commonsense’ problem 
• so is there any hope? 
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Polysemy: Observations and Outlook 

‘Gas guzzler’ has more consensus than travel 
• could use image clustering to find majority vote 

‘Travel’ has no consensus at all 
• clustering will not yield a strong majority 
• we say that ‘travel’ does not have good iconicity 

What next? 
• use textual databases in conjunction to image databases 
• Lexical Freenet, Wordnet, Basic English, … 
• encode the semantics better than CBIR (at least so far) 
• synonyms, specializations, generalizations, co-occurrences 

 Introduce the idea of Iconicity Bridge (I-Bridge) 
• uses textual commonsense to move the concept closer to 

something tangible for which a good icon can be found 
     object, substance, container, person, or some visual action 

  



Iconicity Bridge (I-Bridge) 

Travel 

Suitcase 

Space of Concepts  



Compare: Travel … 

very little consensus 



… Suitcase 

lots of consensus 
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Forms of I-Bridges 

Links in textual databases 
• relations found by word co-occurrences in millions of text 

documents on the web  

Utility or helper terms 
• ‘gear’, ‘device’, ‘supplies’ 
• these are combined with the original term 

Test resulting images with majority clustering 
• co-cluster with textual terms 
• consensus yields one or more prominent image clusters 
• pick the center of the largest cluster 
      icon  
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We focus mainly on shapes 
• determine edges using Canny edge detector 

Encode shape via an edge-based feature descriptor 
• Gist [Torralba et al. ‘03] 
• Shape Context [Belongie and Malik ‘00] 

Gist: 
• oriented edge responses at multiple scales within patches 
• used 6 oriented edge responses, 5 scales, 4x4 spatial resolution 

Shape Context: 
• finds edge orientation histograms in a circular neighborhood 
• used similar parameters than for Gist 

Both yield a high-dimensional feature vector per image 
• cluster these vectors via affinity clustering 
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• it can also be thought of as the average visual encoding 

Example: average car 
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Overall Framework: Block Diagram 



Interface 
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Visual Abstraction of Semantics 

We seek a picture of the given concept that: 
• unifies all of the concept’s known facts 
• abstracts away all unknown (or irrelevant)  facts 

In images, a ‘fact’ is expressed as a visual feature 

A set of images shares features (= facts) 
• but also contain a wide selection of other random features 

(unknown/irrelevant facts).  

Ultimate goal: construct an average image (exemplar)  for 
the given concept 

• preserve semantic level of detail (the concept category) 
• look for features that are common across a set of queries 
• abstract away those features not in common 
• do this at a low-level scale 

 

 



Example: Abstracted Blender 

After edge filtering: 
• randomly sample edge (feature) points  
• align using the Hungarian algorithm 
• determine shape-context vector vs 

• measure similarity between two points (Euclidian vs distance) 

Remove poor feature point matches based on: 
• low shape-context feature similarity 
• large distances in image space (indicating false matches 

between points in very different parts of the object) 

The green points above are those with no good match 
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Example: Abstracted Blender 

Building the average/exemplar from many examples: 
• here shown two 

Average 
Abstract based on 

final edge image Weighted edge  

image 

Blender 1: Blender 2: 

Average blender 



Example: Taxonomy of Small Appliances 



Conclusions 

Presented an approach for finding good visual information 
encodings for concepts 

 Required the integration of many fields  
• linguistics 
• vision 
• computer graphics 
• user interfaces (for the human in the loop) 

 We believe that our framework has great prospects for:  
• design of clip art for taxonomies, book illustrations, etc. 
• expressive augmentation of graphical node/link diagrams to 

make these much more engaging and informative 
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• give further insight into personal preferences 
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