MIC-GPU: SPIE Medical Imaging **High-Performance Computing** for Medical Imaging on Programmable Graphics Hardware (GPUs)

CT Reconstruction Pipeline Components

Klaus Mueller

Computer Science Center for Visual Computing Stony Brook University

CT Reconstruction Pipeline

SPIE Medical Imaging

A CT reconstruction pipeline is typically composed of a number of serial components

Example 1: Filtered Backprojection

- projection filtering
- backprojection
- post-weighting

Example 2: Iterative 3D reconstruction in blocks

- backprojection of volume into set's views
- correction factor computation
- backprojection of correction factors
- post-weighting (normalization)

Course Schedule

1:30 - 2:00:	Introduction
2:00 - 2:30:	GPU architecture, programming model, and programming facilties
2:30 - 3:00:	GPU programming examples (image processing)
	Coffee Break
3:30 – 4:00:	CT reconstruction pipeline components
4:00 – 4:30:	GPU-acceleration of individual components
4:30 – 5:00:	Various CT reconstruction pipelines, load balancing and load estimation
5:00 - 5:30:	Reconstruction visualization and final remarks

SPIE Medical Imaging 2008

MIC-GPU

Kernel-Centric Decomposition

SPIE Medical Imaging

2

We can consider each of these steps to be a SIMD kernel, as follows:

Example 1: Filtered Backprojection

- projection filtering \rightarrow filtering kernel
- backprojection → backprojection kernel
- post-weighting \rightarrow post-weighting kernel

Example 2: Iterative 3D reconstruction in blocks

- backprojection of volume into set's views \rightarrow projection kernel
- correction factor computation \rightarrow correction factor kernel
- backprojection of correction factors \rightarrow backprojection kernel
- normalization \rightarrow normalization kernel

Kernel-Centric Decomposition

SPIE Medical Imaging

We can consider each of these steps to be a SIMD kernel, as follows:

Example 1: Filtered Backprojection

- projection filtering → filtering kernel
- backprojection → backprojection kernel
- post-weighting → post-weighting kernel

Example 2: Iterative 3D reconstruction in blocks

- backprojection of volume into set's views → projection kernel
- correction factor computation → correction factor kernel
- backprojection of correction factors → backprojection kernel
- normalization → normalization kernel

Kernel Scheduling

SIMD can only execute one kernel at a time

- · this prohibits kernel overlap, even if mathematically correct
- we may merge kernels if targets are identical → this favors load balancing and the reduction of passes

SPIE

Medical Imaging

but recall that scattering to multiple targets is undesirable

Therefore a decomposition of a reconstruction pipeline into components is advisable

- · develop an optimized kernel for each component
- overlap (=hide) the loading of data (if needed) with execution of a prior kernel (or within kernel)
- also optimize what platform to run the computations (CPU, GPU), but then consider transfer of data

SPIE Medical Imaging 2008

MIC-GPU

MIC-GPU

7

SPIE Medical Imaging

 $\mu(t)dt$

Forward projection (front-to-back):

- the energy arriving at a detector pixel is: p =c(s) eds
- $p \approx \sum_{i=0}^{L/\Delta s} c(i\Delta s) e^{-\sum_{j=0}^{i-1} \mu(j\Delta s)} = \sum_{j=0}^{L/\Delta s} c(i\Delta s) e^$ • in discrete terms: i-1 $=\sum_{i=1}^{n}c(i\Delta s)\prod_{i=1}^{n}e^{-\mu(j\Delta s)}$ attenuation u
- using a Taylor series approximation:

$$p \approx \sum_{i=0}^{L/\Delta s} c(i\Delta s) \prod_{j=0}^{i-1} (1 - \mu(j\Delta s))$$

note: all values are normalized to [0,1]

- as a recursive equation: $c_f = c_f + c_b t_f$ $t_f = t_f (1 \mu_b) = t_f t_b$
- equivalent back-to-front compositing:

SPIE Medical Imaging 2008

MIC-GPU

emission

 $c_h = c_h (1 - \mu_f) + c_f = c_h t_f + c_h$

SPIE

Medical Imaging

Attenuation Modeling: Practice

Backprojection (front-to-back traversal):

- initialize correction buffer C
- step from front to back, at each step:
 - spread (and add) C into emission volume affected by slice
 - interpolate attenuation slice T_s

23

21

Attenuation Modeling: Practice

Forward projection (back-to-front traversal):

- emission buffer C=0
- step from back to front, at each step: ٠
 - interpolate emission slice $C_{\rm S}$ and attenuation slice $T_{\rm S}$
 - composite $C = C \cdot T_S + C_S$

SPIE Medical Imaging 2008

MIC-GPU

Scatter Modeling: Theory

Idea:

- scattering can be modeled by a phase function resembling a Gaussian
- the anatomical density map determines the parameters (σ) of this Gaussian

Approach:

- scattering of emissions in forward projection is a back-to-front diffusion process (see figure)
- scattering of backprojected ٠ correction factors is a front-toback diffusion process

SPIE Medical Imaging

22

Medical Imaging

Scatter Modeling: Practice

Forward projection (back-to-front traversal):

- emission buffer C = 0
- step from back to front, at each step:
 - interpolate emission slice $C_{\rm S}$ and attenuation slice $T_{\rm S}$

SPIE

SPIE

Medical Imaging

Medical Imaging

- blur C using $T_{\rm S}$

Combining Both Effects

Forward projection (back-to-front traversal):

- emission buffer C=0
- step from back to front, at each step:
 - interpolate emission slice C_{s} and attenuation slice T_{s}
 - blur C using T_{s}
 - $-C = C \cdot T_{s} + C_{s}$

27

Scatter Modeling: Practice

Backprojection (front-to-back traversal):

- initialize correction buffer C
- step from front to back, at each step:
 - spread (and add) C into emission volume
 - interpolate attenuation slice $T_{\rm S}$
 - blur C using T_{S}

MIC-GPU

emission

attenuation u

C, T_S, C

SPIE

Medical Imaging

correction

SPIE

Medical Imaging

26

Backprojection (front-to-back traversal):

initialize correction buffer C

Combining Both Effects

- step from front to back, at each step: ٠
 - spread (and add) C into the emission volume
 - interpolate attenuation slice T_s
 - blur C using T_{s} - update $C = C \cdot T_{s}$

emission

attenuation u

 $C_{1}T_{S'}$

correction

1:30 - 2:00:	Introduction	
2:00 - 2:30:	GPU architecture, programming model, and programming facilties)
2:30 - 3:00:	GPU programming examples (image processing)	
	Coffee Break	
3:30 - 4:00:	CT reconstruction pipeline components	
4:00 – 4:30:	GPU-acceleration of individual components	
4:30 – 5:00:	Various CT reconstruction pipelines, load balancing and load estimation	
5:00 - 5:30:	Reconstruction visualization and final remarks	
E Medical Imaging 2	008 MIC-GPU	30