(YT

MIC-GPU: Megical Imag
High-Performance Computing

for Medical Imaging

on Programmable Graphics

Hardware (GPUSs)

GPU Programming Examples

Klaus Mueller
Computer Science
Center for Visual Computing >
Stony Brook University [izger

. SPIE i
Overview Medical Imaging

Again, we will discuss two different programming models:
+ graphics-style (first)
* GPGPU-style (second)

Both use the same underlying architecture (for example
GeForce 8800 series)

SPIE Medical Imaging 2008 MIC-GPU 2

Part 1 Medical Imaging

Graphics Style GPU Programming

« using fragment programs

SPIE
Medical Imaging

GPU Image Processing Examples

Smoothing / low-pass filter:
+ Gaussian blur
» 2-Pass using separable X, Y
Edge detection / high pass filter:
+ using Sobel filter
+ 3-Pass approach, Sobel_X, Sobel_Y, combine
Unsharp masking: combination of the above
+ combination of results of both above filters
Recall: all operations are done for each pixel in parallel

+ this is unlike traditional CPU programming, where pixels are
operated on sequentially

SPIE Medical Imaging 2008 MIC-GPU 3

SPIE Medical Imaging 2008 MIC-GPU 4

SPIE
Medical Imaging

Smoothing / Low-Pass Filter

Convolution with Gaussian Filter

« 2D filter - not practical

* 1D separable filter, 2 passes, about 10x-20x faster
10x10=100 tex Lookups / pixel vs. 10/pixel for 2 passes=total 20/pixel

Practical GPU Implementation

1. create a texture to store the convolution kernel.
- set size to 2X radius of the filter
-> evaluate gaussian kernel at each pixel

2. create temp RenderBuffer to store intermediate result for 1st pass.
3. run program gaussianBlur_separable along X-direction
+ set glDrawBuffer(temp)
» loop to sample all points along X direction and use tex for weighting
4. run program gaussianBlur_separable along Y-direction
set glDrawBuffer(result)
* loop to sample all points along Y direction and use tex for weighting

SPIE
Medical Imaging

Smoothing / Low-Pass Filter

Input TextureO for Image
Use Texturel to store the
pre-computed kernel

Main fragment program listing

float4 convolve_1D()) Texel Size is set to (1,0)
uniform samplerRECT image : TEXUNITO, //theinpu for the first pass, along X and

uniform samplerRECT kernel : TEXUNIT1, // (0,1) for the second pass, along Y
uniform int kernel_width, i ' ’

uniform float2 texel_size, o Lookup the appropriate Kernel Value
float2 pos : TEXCOORDO /I position in image and use as weight

): COLOR

{ [

eer) @ S0) Lookup the appropriate Image Value
for(int x=0; x<kernel_width; x++) { and add to the weighted sum
float weight = texRECT(kernel, float2(x, 0)).r;

SPIE Medical Imaging 2008 MIC-GPU 5

¢ += texRECT(image, pos + (float2(x,)) * texel_size) * weight=——""
}
return c;
}
SPIE Medical Imaging 2008 MIC-GPU 6

SPIE
Medical Imaging

Edge Detection / High Pass Filter

Use simple 2D Sobel masks

-1 0 +1 1 +2 41
Ge=[-2 0 42| *A and Gy= 0 0 0f=xA
-1 0 +1 -1 -2 -1

Three pass algorithm:
1. create tempX, tempY, and result RenderBuffers for intermediate results.
2. run program sobel along X-direction using GX mask
« set gIDrawBuffer(tempX)
» weigh all 3x3 neighboring points according to mask
3. run program sobel along Y-direction using GY mask
» set glDrawBuffer(tempY)
weigh all 3x3 neighboring points according to mask
4. run program sobel_combine
« set giDrawBuffer(result)
- for every pixel, result=sqrt(pixelFromX2 + pixelFromY?)

SPIE
Medical Imaging

Edge Detection / High Pass Filter

Main fragment program listing

fragout applyMask(float4 TexCoords : TEXCOORDO,
float4 WinPos : WPOS,
uniform samplerRECT inputTexture : TEXUNITO, J
uniform float3x3 mask) Mask is provided as 3x3
{ parameter from the calling
fragout OUT; program.
float sum=0; float Gx[]={-1, 0, +1,
float2 bottomLeft=WinPos.xy - float2(-1,-1); -2,0, +2,
int x,y; -1, 0, +1};

for(x=0; x<3; x++){
for(y=0; y<3; y++){
sum+=mask[x][y] * texRECT(inputTexture, float2(x,y)+bottomLeft).x;

OUT.col.rgha=sum;
return OUT;

SPIE Medical Imaging 2008 MIC-GPU 7

SPIE Medical Imaging 2008 MIC-GPU 8

SPIE sy

SPIE sy

Unsharp Masking Medical Imaging Part 2 Medical Imaging
GPGPU Style GPU Programming
Unsharp masking is a * using CUDA
combination of filters
Here,
Umask= g+#/+(1+a)l-g*1)
To implement, we can use ;
the results of the I-g#l gxl+(+a)I-g=I)
smoothing operation and
use a second pass to I Original Image
app|y the combinations. g #I 2 Smoothed with Gaussian
& 2> Edge Enhancement Parameter
SPIE Medical Imaging 2008 MIC-GPU 9 SPIE Medical Imaging 2008 MIC-GPU 10
; SPIE A ; SPIE A
Convolution (2D) Mecical Imaging Convolution (2D) Mecical Imaging
5|6 5|6
5|6 4127 5156 412 | 7
v -
a2 7| 1" = 13 a2 7|17 i 13
51216 * A 5/21|6 * A
210 2 /f 210 2
-1/0 (1 \ / =i @] \
9D inlo 2|02
_ . \ output / _ . \ output
Inputimage fitor mask | -4 | 0 |12 image apron Inputimage fior mask | -4 12 image
-4 7 + 13 -4 7 + 13
each thread will compute one X\‘ each thread will compute one X\‘
output pixel -10] 0 |12 output pixel -10 12
SPIE Medical Imaging 2008 MIC-GPU 11 SPIE Medical Imaging 2008 MIC-GPU 12

Implementation Medical Imaging
apron
//
\ - I e pixel block
image
pixel

Load a block of the image into shared memory - load-threads
* block size is determined by available shared memory

Compute convolution sum for all block pixels (exclusive apron pixels) >
compute-threads

* then write result to shared memory

SPIE Medical Imaging 2008 MIC-GPU

13

SPIE
Medical Imaging

Thread Management

For large masks, will get large aprons

+ will lead to many idle (load)-threads once computing begins
 leads to under utilization of the processors - poor performance

Reduce this problem by loading more than one pixel per

thread
+ for example, a column of pixels, which is easy to compute an index
for

+ ideally have the same number of
load threads than compute threads

\

SPIE Medical Imaging 2008 MIC-GPU 14

Separable Filters Medical maging

Nevertheless, a pixel may be loaded 9 times in total due to
overlapping block-apron tiles

Again, replacing a 2D convolution into two orthogonal 1D
convolutions can help

+ will shrink the number of reloads to 6 = but effect is not large due
to the relatively small tile sizes

however, convolution along x eliminates the need for aprons in the

y-direction and convolution along y eliminates the need for aprons
in the x-direction

-> percentage of apron data much smaller
-> more pixels can be loaded for processing
+ limitations are in thread block size, not in shared memory
- need to perform more computation within a thread
-> process more pixels within a thread (arithmetic intensity 1)

SPIE Medical Imaging 2008 MIC-GPU

15

SPIE
Medical Imaging

Memory Access Conflicts

Constant Memory (contains filter mask):

no conflict = all threads will access the same location (storing the
same filter coefficient)

Shared Memory (contains data):

» consecutive threads access consecutive memory locations - since
there are 16 banks there is no shared memory bank conflict

SPIE Medical Imaging 2008 MIC-GPU 16

SPIE e
Medical Imaging

Unrolling Loops

Original loop:
for(int k = -KERNEL_RADIUS; k <= KERNEL_RADIUS; k++)
sum += data[sharMemPos + k] * d_Kernel[KERNEL_RADIUS - k];
Loop body has very few operations
» overhead by loop/branching is relatively high

Solution: loop unrolling

sum = data[sharMemPos - 1] * d_Kernel[2]
+ data[sharMemPos + 0] * d_Kernel[1]
+ data[sharMemPos + 1] * d_Kernel[0];

Results in 2-fold performance increase

SPIE e
Medical Imaging

Memory Coalescence

Bandwidth to off-chip (“device”) DRAM is much higher than on
a host CPU memory.

However, in order to achieve high memory throughput, the
GPU seeks to coalesce accesses from multiple threads into
a single memory transaction:
« if all threads within a warp (32 threads) simultaneously read

consecutive words then single large read of the 32 values can be
performed at optimum speed

* however, if 32 random addresses are read, then only a fraction of
the total DRAM bandwidth can be achieved, and performance will
be much lower.

SPIE Medical Imaging 2008 MIC-GPU 17

SPIE Medical Imaging 2008 MIC-GPU 18

SPIE st
Medical Imaging

Summary: CUDA Optimizations

Coalesce memory operations

» coordinate reads (by a half-warp)

+ greatly improves throughput (can yield speedups of >10)
Hide latency

» more threads/block - better memory latency hiding

* however, more threads/block - fewer registers/thread

» choose threads/block as multiple of warp size

* minimum: 64 threads/block, 128-256 better choice (experiment!)
Prevent shared memory bank conflicts

+ conflict-free shared memory as fast as registers

Metrics
* Performance measured in GFlops,

SPIE st
Medical Imaging

Summary: CUDA Optimizations

Maximize arithmetic intensity
» unroll loops
+ often computing is better than caching (data transfer costly)
Optimize memory coherence
» exploit spatial locality
+ coalesce
Distribute load well
+ keep processors equally busy
* minimize idle threads
Maximize occupancy

* minimize latency
» optimize number of threads running on each multiprocessor

SPIE Medical Imaging 2008 MIC-GPU 19

SPIE Medical Imaging 2008 MIC-GPU 20

SPIE SPIE s
To Probe Further Mecical Imaging Course Schedule Mecical Imaging
NVIDIA CUDA Zone: 1:30 — 2:00: Introduction
° GPU hitect i del d i
+ lots of information and code examples 2:00 — 2:30: faonti:src FECTHIE, PIOGIAMITING moe, and programming

* NVIDIA CUDA Programming Guide
GPGPU community:

2:30 — 3:00: GPU programming examples (image processing)

Coffee Break

 user forums, tutorials, papers 3:30 — 4:00:

;) CT reconstruction pipeline components
» good source: Supercomputing 2007 CUDA tutorial

4:00 — 4:30: GPU-acceleration of individual components

CUDA occupancy calculator available at: 430 — 5:00- Various CT reconstruction pipelines, load balancing and
+ http://news.developer.nvidia.com/2007/03/cuda_occupancy_.html ' 7" load estimation

5:00 - 5:30: Reconstruction visualization and final remarks

SPIE Medical Imaging 2008 MIC-GPU 21 SPIE Medical Imaging 2008 MIC-GPU 22

