
MICMIC--GPU: GPU:
HighHigh--Performance ComputingPerformance Computing
for Medical Imagingfor Medical Imaging
on Programmable Graphics on Programmable Graphics
Hardware (Hardware (GPUsGPUs))

GPU Programming Examples

Klaus Mueller
Computer Science

Center for Visual Computing

Stony Brook University
MIC-GPU 2SPIE Medical Imaging 2008

OverviewOverview

Again, we will discuss two different programming models:
• graphics-style (first)
• GPGPU-style (second)

Both use the same underlying architecture (for example
GeForce 8800 series)

MIC-GPU 3SPIE Medical Imaging 2008

Part 1Part 1

Graphics Style GPU Programming
• using fragment programs

MIC-GPU 4SPIE Medical Imaging 2008

GPU Image Processing ExamplesGPU Image Processing Examples

Smoothing / low-pass filter:
• Gaussian blur
• 2-Pass using separable X, Y

Edge detection / high pass filter:
• using Sobel filter
• 3-Pass approach, Sobel_X, Sobel_Y, combine

Unsharp masking: combination of the above
• combination of results of both above filters

Recall: all operations are done for each pixel in parallel
• this is unlike traditional CPU programming, where pixels are

operated on sequentially

MIC-GPU 5SPIE Medical Imaging 2008

Smoothing / LowSmoothing / Low--Pass FilterPass Filter

Convolution with Gaussian Filter
• 2D filter not practical
• 1D separable filter, 2 passes, about 10x-20x faster

10x10=100 tex Lookups / pixel vs. 10/pixel for 2 passes=total 20/pixel

Practical GPU Implementation
1. create a texture to store the convolution kernel.

set size to 2X radius of the filter
evaluate gaussian kernel at each pixel

2. create temp RenderBuffer to store intermediate result for 1st pass.
3. run program gaussianBlur_separable along X-direction

• set glDrawBuffer(temp)
• loop to sample all points along X direction and use tex for weighting

4. run program gaussianBlur_separable along Y-direction
• set glDrawBuffer(result)
• loop to sample all points along Y direction and use tex for weighting

MIC-GPU 6SPIE Medical Imaging 2008

Smoothing / LowSmoothing / Low--Pass FilterPass Filter

float4 convolve_1D(
uniform samplerRECT image : TEXUNIT0, // the input image
uniform samplerRECT kernel : TEXUNIT1, // the kernel texture
uniform int kernel_width, // kernel width
uniform float2 texel_size,
float2 pos : TEXCOORD0 // position in image
) : COLOR

{
float4 c = 0;
for(int x=0; x<kernel_width; x++) {

float weight = texRECT(kernel, float2(x, 0)).r;
c += texRECT(image, pos + (float2(x, x)) * texel_size) * weight;

}
return c;

}

Main fragment program listing Input Texture0 for Image
Use Texture1 to store the

pre-computed kernel

Texel Size is set to (1,0)
for the first pass, along X and

(0,1) for the second pass, along Y

Lookup the appropriate Kernel Value
and use as weight

Lookup the appropriate Image Value
and add to the weighted sum

MIC-GPU 7SPIE Medical Imaging 2008

Edge Detection / High Pass FilterEdge Detection / High Pass Filter

Use simple 2D Sobel masks

Three pass algorithm:
1. create tempX, tempY, and result RenderBuffers for intermediate results.
2. run program sobel along X-direction using GX mask

• set glDrawBuffer(tempX)
• weigh all 3x3 neighboring points according to mask

3. run program sobel along Y-direction using GY mask
• set glDrawBuffer(tempY)
• weigh all 3x3 neighboring points according to mask

4. run program sobel_combine
• set glDrawBuffer(result)
• for every pixel, result=sqrt(pixelFromX2 + pixelFromY2)

MIC-GPU 8SPIE Medical Imaging 2008

fragout applyMask(float4 TexCoords : TEXCOORD0,
float4 WinPos : WPOS,
uniform samplerRECT inputTexture : TEXUNIT0,
uniform float3x3 mask)

{
fragout OUT;
float sum=0;
float2 bottomLeft=WinPos.xy - float2(-1,-1);
int x,y;
for(x=0; x<3; x++){

for(y=0; y<3; y++){
sum+=mask[x][y] * texRECT(inputTexture, float2(x,y)+bottomLeft).x;
}

}
OUT.col.rgba=sum;
return OUT;

}

Main fragment program listing

Mask is provided as 3x3
parameter from the calling
program.
float Gx[]= {-1, 0, +1,

-2, 0, +2,
-1, 0, +1};

Edge Detection / High Pass FilterEdge Detection / High Pass Filter

MIC-GPU 9SPIE Medical Imaging 2008

UnsharpUnsharp MaskingMasking

Unsharp masking is a
combination of filters

Here,
Umask=

To implement, we can use
the results of the
smoothing operation and
use a second pass to
apply the combinations.

Original Image
Smoothed with Gaussian
Edge Enhancement Parameter

MIC-GPU 10SPIE Medical Imaging 2008

Part 2Part 2

GPGPU Style GPU Programming
• using CUDA

MIC-GPU 11SPIE Medical Imaging 2008

Convolution (2D) Convolution (2D)

2 5 6

4 2 7

5 2 6

2 5 6

4 2 7

5 2 6

-2 0 2

-1 0 1

-2 0 2

-4 0 12

-4 0 7

-10 0 12

13

13

input image filter mask

*

x
+

output
image

each thread will compute one
output pixel

MIC-GPU 12SPIE Medical Imaging 2008

Convolution (2D) Convolution (2D)

2 5 6

4 2 7

5 2 6

2 5 6

4 2 7

5 2 6

-2 0 2

-1 0 1

-2 0 2

-4 0 12

-4 0 7

-10 0 12

13

13

filter mask

*

x
+

output
image

each thread will compute one
output pixel

input image
apron

MIC-GPU 13SPIE Medical Imaging 2008

ImplementationImplementation

Load a block of the image into shared memory load-threads
• block size is determined by available shared memory

Compute convolution sum for all block pixels (exclusive apron pixels)
compute-threads
• then write result to shared memory

apron

pixel block

image

pixel

MIC-GPU 14SPIE Medical Imaging 2008

Thread ManagementThread Management

For large masks, will get large aprons
• will lead to many idle (load)-threads once computing begins
• leads to under utilization of the processors poor performance

Reduce this problem by loading more than one pixel per
thread

• for example, a column of pixels, which is easy to compute an index
for

• ideally have the same number of
load threads than compute threads

MIC-GPU 15SPIE Medical Imaging 2008

Separable FiltersSeparable Filters

Nevertheless, a pixel may be loaded 9 times in total due to
overlapping block-apron tiles

Again, replacing a 2D convolution into two orthogonal 1D
convolutions can help

• will shrink the number of reloads to 6 but effect is not large due
to the relatively small tile sizes

• however, convolution along x eliminates the need for aprons in the
y-direction and convolution along y eliminates the need for aprons
in the x-direction

percentage of apron data much smaller
more pixels can be loaded for processing

• limitations are in thread block size, not in shared memory
need to perform more computation within a thread
process more pixels within a thread (arithmetic intensity ↑)

MIC-GPU 16SPIE Medical Imaging 2008

Memory Access Conflicts Memory Access Conflicts

Constant Memory (contains filter mask):
• no conflict all threads will access the same location (storing the

same filter coefficient)

Shared Memory (contains data):
• consecutive threads access consecutive memory locations since

there are 16 banks there is no shared memory bank conflict

MIC-GPU 17SPIE Medical Imaging 2008

Unrolling LoopsUnrolling Loops

Original loop:
for(int k = -KERNEL_RADIUS; k <= KERNEL_RADIUS; k++)

sum += data[sharMemPos + k] * d_Kernel[KERNEL_RADIUS - k];

Loop body has very few operations
• overhead by loop/branching is relatively high

Solution: loop unrolling
sum = data[sharMemPos - 1] * d_Kernel[2]

+ data[sharMemPos + 0] * d_Kernel[1]
+ data[sharMemPos + 1] * d_Kernel[0];

Results in 2-fold performance increase

MIC-GPU 18SPIE Medical Imaging 2008

Memory Coalescence

Bandwidth to off-chip (“device”) DRAM is much higher than on
a host CPU memory.

However, in order to achieve high memory throughput, the
GPU seeks to coalesce accesses from multiple threads into
a single memory transaction:

• if all threads within a warp (32 threads) simultaneously read
consecutive words then single large read of the 32 values can be
performed at optimum speed

• however, if 32 random addresses are read, then only a fraction of
the total DRAM bandwidth can be achieved, and performance will
be much lower.

MIC-GPU 19SPIE Medical Imaging 2008

Summary: CUDA OptimizationsSummary: CUDA Optimizations

Coalesce memory operations
• coordinate reads (by a half-warp)
• greatly improves throughput (can yield speedups of >10)

Hide latency
• more threads/block better memory latency hiding
• however, more threads/block fewer registers/thread
• choose threads/block as multiple of warp size
• minimum: 64 threads/block, 128-256 better choice (experiment!)

Prevent shared memory bank conflicts
• conflict-free shared memory as fast as registers

Metrics
• Performance measured in GFlops,

MIC-GPU 20SPIE Medical Imaging 2008

Summary: CUDA OptimizationsSummary: CUDA Optimizations

Maximize arithmetic intensity
• unroll loops
• often computing is better than caching (data transfer costly)

Optimize memory coherence
• exploit spatial locality
• coalesce

Distribute load well
• keep processors equally busy
• minimize idle threads

Maximize occupancy
• minimize latency
• optimize number of threads running on each multiprocessor

MIC-GPU 21SPIE Medical Imaging 2008

To Probe FurtherTo Probe Further

NVIDIA CUDA Zone:
• http://www.nvidia.com/object/cuda_home.html
• lots of information and code examples
• NVIDIA CUDA Programming Guide

GPGPU community:
• http://www.gpgpu.org
• user forums, tutorials, papers
• good source: Supercomputing 2007 CUDA tutorial

http://www.gpgpu.org/sc2007/

CUDA occupancy calculator available at:
• http://news.developer.nvidia.com/2007/03/cuda_occupancy_.html

MIC-GPU 22SPIE Medical Imaging 2008

Course ScheduleCourse Schedule

Reconstruction visualization and final remarks5:00 – 5:30:

Various CT reconstruction pipelines, load balancing and
load estimation4:30 – 5:00:

GPU-acceleration of individual components4:00 – 4:30:

CT reconstruction pipeline components3:30 – 4:00:

Coffee Break

GPU programming examples (image processing)2:30 – 3:00:

GPU architecture, programming model, and programming
facilties2:00 – 2:30:

Introduction1:30 – 2:00:

