

Smoothing / Low-Pass Filter

SPIE Medical Imaging

Convolution with Gaussian Filter

- 2D filter → not practical
- 1D separable filter, 2 passes, about 10x-20x faster 10x10=100 tex Lookups / pixel vs. 10/pixel for 2 passes=total 20/pixel

Practical GPU Implementation

- 1. create a texture to store the convolution kernel.
 - \rightarrow set size to 2X radius of the filter
 - \rightarrow evaluate gaussian kernel at each pixel
- 2. create temp RenderBuffer to store intermediate result for 1st pass.
- 3. run program gaussianBlur_separable along X-direction
 - set glDrawBuffer(temp)
 - loop to sample all points along X direction and use tex for weighting
- 4. run program gaussianBlur_separable along Y-direction
 - set glDrawBuffer(result)
 - loop to sample all points along Y direction and use tex for weighting

SPIE

Medical Imaging

Smoothing / Low-Pass Filter

SPIE Medical Imaging

Edge Detection / High Pass Filter

Use simple 2D Sobel masks

$\mathbf{G}_{\mathbf{x}} =$	$\begin{bmatrix} -1 \\ -2 \\ -1 \end{bmatrix}$	0 0 0	$^{+1}_{+2}_{+1}$	$*\mathbf{A}$	and	$G_{\mathbf{y}} =$	$\begin{bmatrix} +1 \\ 0 \\ -1 \end{bmatrix}$	$^{+2}_{0}_{-2}$	$^{+1}_{0}_{-1}$	* A
-----------------------------	--	-------------	-------------------	---------------	-----	--------------------	---	------------------	------------------	-----

Three pass algorithm:

- 1. create tempX, tempY, and result RenderBuffers for intermediate results.
- 2. run program sobel along X-direction using GX mask
 - set glDrawBuffer(tempX)
 - weigh all 3x3 neighboring points according to mask
- 3. run program sobel along Y-direction using GY mask
 - set glDrawBuffer(tempY)
 - weigh all 3x3 neighboring points according to mask
- 4. run program sobel_combine
 - set glDrawBuffer(result)
 - for every pixel, result=sqrt(pixelFromX² + pixelFromY²)

SPIE Medical Imaging 2008

7

SPIE Medical Imaging 2008

Unrolling Loops

SPIE Medical Imaging

SPIE Medical Imaging

19

Memory Coalescence

To Probe Further

SPIE Medical Imaging

NVIDIA CUDA Zone:

- http://www.nvidia.com/object/cuda_home.html
- lots of information and code examples
- NVIDIA CUDA Programming Guide

GPGPU community:

- http://www.gpgpu.org
- user forums, tutorials, papers
- good source: Supercomputing 2007 CUDA tutorial <u>http://www.gpgpu.org/sc2007/</u>

CUDA occupancy calculator available at:

http://news.developer.nvidia.com/2007/03/cuda_occupancy_.html

SPIE Medical Imaging 2008 MIC-GPU 21 SPIE Medical Imaging 2008 MIC-GPU 22

Course Schedule

1:30 - 2:00:	Introduction							
2:00 – 2:30:	GPU architecture, programming model, and programming facilties)						
2:30 - 3:00:	GPU programming examples (image processing)							
Coffee Break								
3:30 - 4:00:	CT reconstruction pipeline components							
4:00 – 4:30:	GPU-acceleration of individual components							
4:30 – 5:00:	Various CT reconstruction pipelines, load balancing and load estimation							
5:00 – 5:30:	Reconstruction visualization and final remarks							