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CT Reconstruction PipelineCT Reconstruction Pipeline

A CT reconstruction pipeline is typically composed of a p p yp y p
number of serial components

Example 1: Filtered Backprojection
• projection filtering
• backprojection
• post-weighting

Example 2: Iterative 3D reconstruction in blocks
• forward projection of volume into set’s views

ti f t t ti• correction factor computation
• backprojection of correction factors
• post-weighting (normalization) 
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KernelKernel--Centric DecompositionCentric Decomposition

By locating parallelism, we can consider each of these steps y g p p
to be a SIMD kernel, as follows:       

Example 1: Filtered Backprojection
• projection filtering  filtering kernel
• backprojection backprojection kernel
• post-weighting  post-weighting kernel

Example 2: Iterative 3D reconstruction in blocks
• backprojection of volume into set’s views  projection kernel

ti f t t ti  ti f t k l• correction factor computation  correction factor kernel
• backprojection of correction factors  backprojection kernel
• normalization  normalization kernel
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vector operations projector with interpolation

Kernel SchedulingKernel Scheduling

SIMD can only execute one kernel at a timey
• this prohibits kernel overlap, even if mathematically correct
• we may merge kernels if targets are identical  this favors load 

balancing and the reduction of passes g p

Therefore a decomposition of a reconstruction pipeline into 
components is advisable

• develop an optimized kernel for each component
• overlap (=hide) the loading of data (if needed) with execution of a 

prior kernel (or within kernel)
l ti i h t l tf t th t ti (CPU GPU)• also optimize what platform to run the computations (CPU, GPU), 

but then consider transfer of data
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Popular CT Reconstruction PipelinesPopular CT Reconstruction Pipelines

We will discuss:
• analytical schemes (Feldkamp)
• iterative schemes (SART, SIRT, EM)
• in terms of anatomical and metabolic (functional) CT

The projection/backprojection is typically the most expensive 
operation

• it is part of every algorithm and applicationit is part of every algorithm and application
• with variations in

- beam geometry
- modeling of tissue (attenuation, scattering) and detector effectg ( , g)
- each is implemented with a dedicated kernel 
- each such kernel is loaded into the GPU on demand
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TerminologyTerminology

We shall discuss all material in terms of 3D reconstruction
• the reduction to 2D slice reconstruction is straightforward

Pixels: the basis elements (point samples) of the projection image               
(the photon measurements)( p )

Voxels: the basis elements (point samples) of the reconstruction volume          
(the attenuation densities or the tracer photon emissions) 

voxelpixel

projection operator

reconstructed 
i t l ti

projection 
image
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volumeinterpolation                                
(nearest neighbor, bilinear)

Transmission CTTransmission CT

X-ray 
sourcesource

detector
attenuating 

object
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Transmission CTTransmission CT

A typical reconstruction algorithm                                                   yp g
is Filtered Backprojection 

X-ray 
sourcesource

detector
attenuating 

object

Projection filteringProjection filtering
FFT                          

multiply by ramp 
inverse FFT            
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pre-weighting Backprojections Post-weighting



ExampleExample

Feldkamp-Davis-Kress (FDK) Cone-beam reconstruction
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FDK: FilteringFDK: Filtering
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ramp filter
circular pre-weighting projection data

FDK: FDK: BackprojectionBackprojection
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voxelprojection mapping projection coordinates of mapped voxel

FDK: Accumulation, DepthFDK: Accumulation, Depth--WeightingWeighting
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depth-weightingaccumulation for all projections



Other Analytical AlgorithmsOther Analytical Algorithms

Similar concepts apply for other analytical CT algorithmsp pp y y g
• modified FDK, multi-orbit cone-beam CT
• helical CT with exact and non-exact algorithms

Al f i l tAlways a sequence of serial steps
1. projection filtering, possibly rebinning
2. backprojection
3. accumulation and weighting

Only backprojection (and rebinning) requires interpolation

The remaining operations are straight vector arithmetic
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Emission CTEmission CT

detectorradionuclide

attenuating 
objectobject
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Emission CTEmission CT

Typically reconstructions are 
done in an iterative manner

detectorradionuclide
done in an iterative manner

attenuating 
objectobject

Initialization

Projections Correction factor 
computations

SPIE Medical Imaging 2010SPIE Medical Imaging 2011 MIC-GPU 15

p

Backprojections

Example: SART/SIRTExample: SART/SIRT

Projection (into pixel i) Backprojection
(into voxel j)
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Normalization at voxel j



Example: EM (OSExample: EM (OS--EM)EM)

Maximizes the likelihod of the values of 

New (k+1) and previous (k)

voxels j, given values at pixels i
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Projection (into pixel i)Normalization at voxel j

The Weight FactorThe Weight Factor

The weight factor wij can model various effects:g ij
• interpolation filter factors (nearest neighbor, bilinear, Gaussian, 

Bessel, etc)
• detector geometric response (blurring due to off-angle photon g p ( g g p

contributions)
• photon attenuation (requires an attenuation map  obtained via 

transmission CT)
• photon scattering (requires a                                                                   

gradient map, typically the                                                              
transmission CT reconstruction)  

•

attenuation

scatter

• …

We will focus on
• attenuation modeling

detector blur
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attenuation modeling
• scatter effect detector

Attenuation Modeling: TheoryAttenuation Modeling: Theory

Forward projection: ( )
s

l t dt 


p j
• the energy arriving at a detector pixel is: 0
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SPIE Medical Imaging 2010SPIE Medical Imaging 2011 MIC-GPU 19

Attenuation Modeling: TheoryAttenuation Modeling: Theory

Forward projection: ( )
s

l t dt 


p j
• the energy arriving at a detector pixel is: 
• in discrete terms:
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Attenuation Modeling: TheoryAttenuation Modeling: Theory

Forward projection: ( )
s

l t dt 


p j
• the energy arriving at a detector pixel is: 
• in discrete terms:
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• using a Taylor series approximation:
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note: all values are normalized to [0,1]
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Attenuation Modeling: TheoryAttenuation Modeling: Theory

Forward projection: ( )
s

l t dt 


p j
• the energy arriving at a detector pixel is: 
• in discrete terms:
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• formulated as a recursive back-to-front compositing equation: 

00 ji  emission c
note: all values are normalized to [0,1]
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c (1 )b b f f b f fc c c t c    

Attenuation Modeling: PracticeAttenuation Modeling: Practice

Notice that “recursive back-to-front compositing” operation is performed for 
EVERY i l h j i  ll liEVERY pixel on the projection  parallelism

Assuming volume consists of slices parallel to the detector

Forward projection (back to front traversal):Forward projection (back-to-front traversal):
• for every pixel on the projection C=0
• step from back to front, at each step: 

interpolate emission slice C

detector
(projection)

- interpolate emission slice CS 
- Interpolate attenuation slice TS
- composite C = C · TS + CS attenuation 

emission c

SPIE Medical Imaging 2010SPIE Medical Imaging 2011 MIC-GPU 23

emission c

Attenuation Modeling: PracticeAttenuation Modeling: Practice

Backprojection (front-to-back traversal):p j ( )
• initialize correction buffer C
• step from front to back, at each step: 

- spread (and add) C into emission volume affected by slicespread (and add) C into emission volume affected by slice
- interpolate attenuation slice TS
- update correction buffer C=C ·TS

attenuation 

emission c
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emission c
correction



Scatter Modeling: TheoryScatter Modeling: Theory

Idea:
• scattering can be modeled by a 

phase function resembling a 
Gaussian

• the anatomical density map 
determines the parameters () of 
this Gaussian

Approach:
• similar to attenuation modeling 

except the “weight” is provided by p g p y
the phase function based on 
attenuation values
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Scatter Modeling: PracticeScatter Modeling: Practice

Forward projection (back-to-front traversal):p j ( )
• emission buffer C = 0
• step from back to front, at each step: 

- interpolate emission slice CS and attenuation slice TSinterpolate emission slice CS and attenuation slice TS
- blur C using TS
- C = C + CS

attenuation 

emission c
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emission c
detector

Scatter Modeling: PracticeScatter Modeling: Practice

Backprojection (front-to-back traversal):p j ( )
• initialize correction buffer C
• step from front to back, at each step: 

- spread (and add) C into emission volumespread (and add) C into emission volume
- interpolate attenuation slice TS
- blur C using TS

attenuation 

emission c
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emission c
correction

Combining Both EffectsCombining Both Effects

Forward projection (back-to-front traversal):p j ( )
• emission buffer C=0
• step from back to front, at each step: 

- interpolate emission slice CS and attenuation slice TSinterpolate emission slice CS and attenuation slice TS
- blur C using TS
- C = C ·TS + CS

attenuation 

emission c
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emission c
detector



Combining Both EffectsCombining Both Effects

Backprojection (front-to-back traversal):p j ( )
• initialize correction buffer C
• step from front to back, at each step: 

- spread (and add) C into the emission volumespread (and add) C into the emission volume
- interpolate attenuation slice TS  
- blur C using TS
- update C = C ·T- update C = C TS

attenuation 

emission c
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emission c
correction

ConclusionConclusion

Reconstruction pipeline can be parallelized (analytical or p p p ( y
iterative)

Different stages/effects are represented by different kernels:
• forward / backward projection
• attenuation modeling / scattering

Implementation needs more hardware (GPU) detailsImplementation needs more hardware (GPU) details
• data representation
• memory model and constraints
• …
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