
Volumetric Global Illumination and Reconstruction via Energy Backprojection

Frank Dachille IX, Klaus Mueller, and Arie Kaufman
Center for Visual Computing (CVC)

and Department of Computer Science
State University of New York at Stony Brook

Stony Brook, NY 11794-4400

Abstract

Volumetric energy backprojection captures the effects of myriad
physical processes including global illumination and reconstruc-
tion. We present a method to perform efficient volumetric backpro-
jection in software. We develop a new method for global illumina-
tion based on iterated volumetric backprojection. We demonstrate
how computed tomography and visible light reconstruction can be
implemented using volumetric backprojection. Our new form of
opaque reconstruction is insensitive to shading and includes the
partial volume effect. Finally, we suggest small modifications to
volume rendering hardware which permits efficient, scalable volu-
metric backprojection.

CR Categories: I.3.1 [Computer Graphics]: Hardware Archi-
tecture; I.3.3 [Computer Graphics]: Picture/Image Generation;
I.3.5 [Computer Graphics]: Computational Geometry and Ob-
ject Modeling—; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—; I.4.5 [Image Processing and Computer
Vision]: Reconstruction;

Keywords: Global illumination, radiosity, radiative transport, vol-
ume rendering, reconstruction, opaque reconstruction

1 Introduction

Radiative transport, for example, illumination, most often occurs
distributed simultaneously throughout 3D space, traveling in linear
paths and interacting locally with intervening media. Many natu-
ral phenomena such as radiative transport can be characterized by
volumetric backprojection. Volumetric backprojection is the name
given to the class of operations which project and distribute energy
through a discrete 3D grid. The intent of this paper is to investigate
a variety of uses for volumetric backprojection, examine the relative
efficiency of computation schemes, and suggest a simple hardware
implementation.

Perhaps the most obvious use for volumetric backprojection is
the illumination of volumetric data. While local illumination only
considers a local neighborhood of information to determine the
shading of a point in space, global illumination considers the to-
tal distribution of illumination energy throughout space, taking into

account both direct and indirect light source visibility from every
point. Global illumination, unlike local illumination, maintains a
balance between the amount of energy emitted from sources and ab-
sorbed by the volume. Not only does this balance lead to more nat-
ural illumination, but also to a more convincing and understandable
image. Volumetric backprojection is used to transport illumination
through the scene, starting from the light sources and propagating
outward.

Another use for volumetric backprojection is reconstruction, that
is, the process of synthesizing volume data based on global infor-
mation, usually in the form of projections. A prime example of
reconstruction is computed tomography, in which a set of x-ray pro-
jections are combined to yield a complete volume dataset. Recon-
struction can be based on not only x-ray wavelengths of light, but
also on visible wavelengths. For example, a set of standard pho-
tographs can be combined into a volumetric model by the process
termed voxel coloring [19].

1.1 Prior Work

Backprojection is usually performed on a voxel-by-voxel basis,
since this is the most obvious and direct method of computation.
For example, in volumetric ray tracing [20] as illumination is com-
puted for a volume sample, rays are cast toward the light sources
sampling the partial visibility of each. In computing high-albedo
scattering illumination, Max [13] used the method of discrete or-
dinates to transport energy from voxel to voxel, computed voxel-
by-voxel propagated simultaneously in each voxel layer. For cal-
culations of volumetric radiosity, voxels are usually regarded as
discrete elements in the usual radiosity calculation on pairs of el-
ements, thereby computing on a voxel-by-voxel basis [18, 21].

Backprojection is also computed using ray-by-ray computations.
Recognizing the coherence among the voxels of a volume slice,
Cabral et al. [2] performed reconstruction by 2D backprojecting a
set of 1D images (a set of rays) using graphics hardware acceler-
ation. This amounts to a ray-by-ray reconstruction, except that a
subset of rays is computed simultaneously by the hardware. No
methods currently exist that exploit hardware to trace a set of re-
construction rays simultaneously through avolume, which could
utilize the maximum available coherence. Particle tracing methods
for global illumination track paths of scattered light energy through
space starting at the light sources [6]. Such ray-by-ray computa-
tions, while flexible, are incoherent and can be inefficient.

In many cases, the backprojection can be reorganized into a sin-
gle sweep through the volume, processing slice-by-slice. Because
sunlight travels in parallel rays in one direction only, Kajiya and
Von Herzen [7] calculated the light intensity of a cloud-like volume
one horizontal slice at a time. A similar technique was demon-
strated as part of the Heidelberg ray-tracing model [14] in which
shadow rays were propagated simultaneously slice-by-slice and in
the same general direction as rendering. Behrens and Ratering [1]
implemented efficient slice-by-slice shadowing using texture map-
ping hardware.

Other volume rendering architectures [10] and hardware [16, 17]
are based on slice-by-slice processing, although they perform pro-
jection for rendering, rather than backprojection. In particular,
Cube-4 [17] utilized a unique skewing scheme which assigned any
axis-aligned beam of voxels to a set of parallel distributed pipelines,
enabling fully scalable volume processing to occur beam-by-beam
and thus slice-by-slice.

In the area of polygon graphics, some have used projection hard-
ware to accelerate global illumination computations. For example,
Keller [9] probabilistically created a set of virtual point lights as
sources of indirect illumination and rendered a scene in multiple
passes. While the same idea could be directly applied to volume
rendering, it would be helpful to store view independent illumina-
tion information in the volume for subsequent rendering. Szirmay-
Kalos [22] used polygon hardware acceleration to accelerate com-
plex radiosity calculations by alternately shooting and gathering il-
lumination based on a quasi-Monte Carlo sequence. Our method
similarly builds upon the coherence of ray bundles for the purpose
of global illumination, among other things.

1.2 Contribution

In this work, we develop new directions for volumetric backprojec-
tion, building on the efficiency of the basic technique. We show
how a sequence of simple backprojections can effectively compute
a complex volumetric radiosity distribution. We also show how
reconstruction techniques can be improved by utilizing volumet-
ric backprojection. We develop a new form of reconstruction which
can build a volumetric representation of opaque and translucent col-
ored elements from photographic images. This new technique prop-
erly handles the partial volume effect and adapts to diffuse shading.

Given the simplicity and bulk of the computation, backprojec-
tion lends itself to a hardware implementation. We suggest some
simple modifications to a Cube-4-like volume rendering architec-
ture which would enable volumetric backprojection in addition to
standard rendering. These modifications build on the efficiencies of
the original design, leveraging them for backprojection.

The following is an overview of the remainder of the paper. In
Section 2 we discuss a new algorithm for volumetric global illu-
mination based on a sequence of backprojection iterations. In Sec-
tion 3 we introduce the fundamentals of computed tomography as a
basis for reconstruction from images and develop a new technique
for the recovery of scenes from photographic images. In Section 4
we suggest a simple modification to volume rendering hardware to
enable all of these applications of volumetric backprojection. Fi-
nally, we present our results and discussion in Section 5 and draw
our conclusion in Section 6.

2 Illumination by Energy Backprojection

In local illumination, the global distribution of light energy is ig-
nored and shading calculations are performed assuming full visibil-
ity of all light sources. While this is useful as a first approximation,
the incorporation of global light visibility information (shadows,
one instance of global illumination) adds a great deal of intuitive
information to the image. This low albedo [7, 20] lighting simula-
tion has the ability to cast soft shadows by volume density objects.

Generous improvements in realism are achieved by incorporat-
ing a high albedo lighting simulation [7, 21], which is important
in a number of applications (e.g., clouds, skin [5], and stone [4]).
While some of these used hierarchical and deterministic methods,
most of these simulations used stochastic techniques to transport
lighting energy among the elements of the scene.

We wish to solve the illumination transport equation for the gen-
eral case of global illumination. The incident illuminationI(γ, ω)

in directionω at any voxelγ can be described as

I(γ, ω) =

∫
V

∫
Γ

f(ω, ω′)I(γ, ω′)dω′dv

whereΓ is the set of all directions,V is the set of all voxelsv, and
f(ω, ω′) is the phase function in directionsω andω′. This means
that the illumination at any voxel is dependent upon the illumination
at every other voxel. In practice, this integral-equation is solved by
finite repeated projection of energy among voxels. This leads to a
finite energy transport path, which is generally sufficient for visual
fidelity.

We make some of the same assumptions as standard radiosity. In
our case, we assume that voxels generally behave as diffuse surfaces
when a gradient exists. When there is no gradient (as in the case
of homogeneous fog) then the voxel scatters light in all directions
isotropically.

The approach we take is to organize the computation not per
pixel or per voxel but per direction. Organizing per direction al-
lows us to capitalize on coherence by utilizing slice-by-slice com-
putation.

2.1 Direct illumination pass

We begin by first analyzing our volumetric scene to determine the
initial distribution of lighting energy. We would like to compute
the direct illumination (typically the major contributor to overall
intensity) directly. For directional light sources a single sweep sim-
ilar to [7] along one major axis is sufficient to propagate the light
energy to all the voxels. For point light sources both inside and out-
side the volume, we backproject the light intensity outward from
the light source to every voxel using a slice-based approach [10].
However, we have found that in practice it is far simpler to shoot
one or more rays toward each of theN2 exterior voxels of the vol-
ume and account for the inverse-square intensity falloff of each ray.

Besides the volume density arrayρ(s), s ∈ R3, we maintain a
radiosity arrayIr(s) and an unshot radiosity arrayIu(s). A transfer
function converts each sample volume densityρi into an opacity
αi and colorCi. For many datasets, a simple linear ramp from
zero opacity at densityρa to full opacity atρb is sufficient. For CT
datasets, we found it useful to setρa at about 20eliminate noise. For
voxelized datasets, the full dynamic range was used. In our tests,
we used only a single wavelength of light with objects of a constant
intensity. In any case, a transfer function should be chosen for the
illumination transport which elucidates the features of interest, the
same as in direct volume rendering. As a matter of implementation,
the single density value could be replaced with pre-classified RGBα
values to support pre-segmented volumes (e.g., the visible human
dataset).

In the initial sweep of direct illumination, light energy is trans-
ported in proportion to the optical path length to the light source.
Borrowing from [7], the radiosity deposited into each voxel along a
path from the light source tos is

Ir(s) = e−
∫
κ(t)dt (1)

whereκ(s) is the extinction coefficient ats. This is computed in-
crementally along the path using standard compositing to accumu-
late opacity along the ray. As energy is depleted from each ray it
is deposited into both the radiosity arrayIr and the unshot radios-
ity arrayIu modulated by the reflectivityλ of the volume sample.
The extinction coefficient and reflectivity are both determined by a
transfer function based on the local volume density. Note that trilin-
ear or better interpolation should be utilized for both sampling the
densityρ and depositing the energy into the radiosityIr and unshot
radiosityIu arrays.

For area light sources we take a different approach. To compute
the direct illumination contribution of an area light source requires
integrating across the entire area for each visible voxel. As this is
nearly as difficult as calculating the indirect illumination, we post-
pone the integration until the next step by summing the energy di-
rectly into the radiosity and unshot radiosityIu arrays. If all light
sources are area light sources, then we can avoid the initial pass
and proceed directly with the indirect passes. However, the smaller
our area light sources, the longer it will take to reach equilibrium.
Therefore, smaller area light sources can sometimes be more effi-
ciently computed as a small set of point lights.

2.2 Indirect illumination passes

In the second pass we attempt to integrate the illumination contribu-
tion of all voxels to all other voxels by a finite number of iterations.
In each iteration, we select a random directionσ for our backpro-
jection. Note that the convergence could be improved by selecting
directions using a quasi-random (e.g., [8]) sequence of directions
rather than a uniform random sequence. An obvious method is to
select points distributed on a sphere as directions.

In each iteration, we process slices perpendicular to the major
axis nearest to the random directionσ. Starting with the first slice,
we initialize a ray front in the form of a 2D buffer. This buffer is
used to transport energy along the rays defined by the elements and
σ. At each slice, the rays simultaneously accumulate and deposit
energy from the neighboring voxels. The differential equation de-
scribing the energyE transfer in a ray over a differential lengthds
is:

dI

ds
=


−κ(s)E(s)φ(s, σ) if |∇ρ| < 0,

Iu(s)− κ(s)E(s) if |∇ρ| = 0,

Iu(s)φ(s, σ) if |∇ρ| > 0,

whereφ(s, σ) is a function describing the tendency of a volume
sample to emit or receive energy in the given direction. Fortunately,
this equation is easily solved by finite differences, although it could
equally well be solved by a finite element method. The gradient-
based energy transfer equation is described next.

In a very high resolution lighting simulation, it would be possible
to purely absorb and emit light isotropically by each voxel. This is
akin to using microgeometry to determine the reflectance behavior
of surfaces. But it is much more efficient to compile statistics on
surface reflectances and use a bidirectional reflectance distribution
function (BRDF) instead to model the gross effects of the micro-
geometry. In the absence of surfaces (where there is a zero gra-
dient), we use a simple isotropic absorption-emission model. But
at surface boundaries, we allow the energy transfer to only occur
in one direction. The ray energy is only allowed to be deposited
onto the surface if the ray is approaching the surface. Conversely,
unshot radiosity is only allowed to augment the ray energy if the
ray is leaving the surface. Additionally, we model surfaces as ideal
diffuse reflectors, and therefore we take into account the angle of
incidence using the dot product. This distinction between isotropic
and diffuse reflectors is automatic, in contrast to Sobierajski’s [21]
method of explicitly storing two coefficients per voxel.
ζ is used to distribute energy over several iterations. By only

emitting part of the voxel radiosity in each iteration, the energy is
distributed to a larger variety of voxels, leading to faster conver-
gence. The complete pseudocode algorithm for a single backpro-
jection is given in Algorithm 1. In our implementation, theray
buffercontains a slice-sized array of rays which are resampled for
interaction with each voxel. Because of the bidirectional transfer-
ence of energy between the rays and the volume, at least one of the
participants must be resampled so that the exchange can take place
at a specific location in space. We have chosen to resample the ray

Procedure Backproject(volume, direction)

Initialize sheet buffer

For each slice

For each voxel in slice

classify voxel color, opacity, and reflectivity

determine corresponding ray buffer location

wrap around using modulo operator

clear energy of rays that just entered the volume

If voxelOpacity > 0

// exchange energy between ray and voxel

compute dot product of ray direction and gradient

If dot < 0

// energy from ray transferred to voxel

energyRayToVoxel = voxelOpacity ×rayEnergy ×φ(s, σ)

Else If dot = 0

// no surfaces, just isotropic

// absorption and emission

energyRayToVoxel = voxelOpacity ×rayEnergy

energyVoxelToRay = voxelUnshot ×ζ
Else If dot > 0

// energy from voxel transferred to ray

energyVoxelToRay = voxelUnshot ×ζ×φ(s, σ)

End If

// store new voxel quantities

voxelRadiosity += energyRayToVoxel

voxelUnshot += voxelReflectivity ×energyRayToVoxel

voxelUnshot -= energyVoxelToRay

// bilinear splat new ray quantities

rayEnergy += energyVoxelToRay - energyRayToVoxel

End If

End Loop

End Loop

End Procedure

Algorithm 1: Volumetric backprojection algorithm in pseudocode.

buffer because it is 2D, requiring only bilinear interpolation instead
of trilinear interpolation of the volume, or both.

In the procedure, energy exchange is computed one slice at a
time, then the ray array is shifted along the ray direction to the
next slice as indicated in Figure 1. Parts of the ray buffer which
move outside the volume are wrapped around to the other side and
re-initialized. A modulo operation efficiently computes the wrap-
around.

Clearly, the final distribution of energy will be strongly corre-
lated to the initial chosen direction. If a certain voxel density gra-
dient happens to be in the same direction as the initial directionσ,
then all of the unshot energy will be shot in the initial iteration.
We use two techniques together to reduce this effect. First, a small
value ofζ helps to spread out the contribution over more voxels.
Second, we repeat the process many times and average the result.
To repeat this without using additional buffers, the total amount of
energy added to the system is retained and used to normalize the in-
dividual voxel radiosity during rendering. This permits incremental
refinement of the solution to include in increasing variety of direc-
tional sampling over time.

Because this iterative approach is related to progressive refine-
ment [3], we have the ability to display intermediate results and
terminate early if so desired. As in progressive refinement, interme-
diate stages are visualized by estimating the distribution of energy
throughout the scene. Instead of simply splitting the unshot radios-
ity equally among all the voxels, we wish to avoid placing radiosity
in the interior of solid objects. We do this by proportioning the en-
ergy according to the product of density and gradient. In this way,
empty voxels (which conventionally have zero density) are avoided

Ray
Direction

Ray
Buffer Volume

Figure 1: The ray buffer steps through the volume one slice at a
time, wrapping around at the edges.

10 100 1000 10000

Iterations

0

1

10

RMS

84x84x47

148x148x75

276x276x130

difference

Figure 2:Convergence of radiosity in the engine scene.

as well as solid interiors (which usually have no gradient).
The iterations are continued until convergence. Convergence

is defined by the voxel-wise root-mean-square (RMS) difference
between radiosity estimates∆i iterations apart being below some
thresholdδ. The RMS difference is computed by the Pythagorean
sum of squared differences between corresponding voxels, assum-
ing the original volume is in the range [0,1]. Of course, termination
can be accelerated by accepting a greater error tolerance and vice
versa, leading to an adjustable time-quality tradeoff.

Selecting∆i≥20 is used to avoid local minima in the search
process. Figure 2 demonstrates the logarithmic rate of convergence
with t=20 andδ=0.1. When convergence is achieved, there is usu-
ally unshot radiosity in the scene from the last several iterations; the
radiosity added in each iteration has a half-life which is data depen-
dent. The unshot radiosity can be (1) ignored and removed from the
sum of unshot radiosities, (2) distributed among the other voxels of
the scene, or (3) distributed more appropriately by iterating further
until some proportionε of the total energy is dissipated. The latter
is the most appropriate technique, but this choice has little effect on
the final distribution after convergence.

Figure 3:(a) Initial configuration of the engine block scene before
any lighting simulation, and (b) after 1000 iterations. (See also in
the color plates.)

2.3 Rendering

To render using the radiosity-density representation, we use a mod-
ified version of direct volume rendering [12]. Instead of shading
each sample along the ray by summing the illumination by each of
the light sources, we just use the pre-computed radiosity which al-
ready contains the influence of all the light sources, both direct and
indirect. The image rendering equation from points0 in direction
σ is then:

I(s0, σ) =

∫ ∞
s0

ρ(s)Ir(s)e
−
∫ s
s0
ρ(t)dt

ds

We found that we could enhance the image contrast, emphasize
the gradient, and improve the overall appearance by including a
cos(θ) factor in the integral, similar to Lambert’s law.θ is the angle
between the viewing ray and the volume gradient. It is computed
using the dot product∇ρ(s) · σ clamped to the range [0,1]. In
the absence of a volume gradient a value of 1 is used in place of
the dot product, for this indicates a homogenous region that emits
isotropically.

Figure 3a shows the initial configuration of the test scene includ-
ing the CT scanned engine block in a translucent box. An area light
source was modeled as half the ceiling. Figure 3b demonstrates
rendering the test scene after 1000 iterations. Note the soft shad-
ows on the object and the indirect illumination of the interior of the
object. Notice that some radiosity (in red) continues to bounce in
the interior of the object and crevices. This small amount of the
total energy (0.02%) was amplified for visualization and can safely
be ignored without consequence.

3 Reconstruction by Image Backprojec-
tion

A number of methods have been proposed to reconstruct the
3D shape of objects from photographic images. Kutulakos and
Seitz [11] use a technique called space carving to generate a binary
representation of the objects on a discrete volume grid. It works by
backprojecting the object’s silhouette edges that can be detected in
the images. Seitz [19] proposed a method termed voxel coloring
that works its way through the scene from front to back in layers
and picks for each voxel its most likely color, given the acquired
images. Both methods make a binary decision on what color and
occupancy a voxel should have, which can lead to aliasing. In this
section, we would like to explore new approaches to reconstruct a
volumetric object from its projections.

Figure 4: A section from (a) continuous and (b) binary object re-
constructions.

In making binary decisions about the color and occupancy of a
reconstructed voxel, we discard important clues. The degree of cer-
tainty about a voxel is better encoded into the opacity. We treat
the voxels as point samples of a continuous field. Only interior
voxels should be labeled as fully occupied; voxels on the surface
should be partially occupied and indicated by partial opacity. The
final voxel opacity should be a weighted average of the estimations
given by the projections. Due to the low-pass filtering inherent in
image acquisition, all reconstructed objects will exhibit antialias-
ing. For example, Figure 4 shows a section of reconstructed voxels
from a hoop using continuous and binary occupancy decisions.

We start by observing that reconstruction is a common proce-
dure in the medical field. There, computed tomography (CT) is
routinely employed to recover a patient’s interior from X-ray pro-
jections that were taken around a circular orbit around the patient.
The most commonly used CT method is Filtered Backprojection
(FBP), where the projections are first filtered with a high-pass fil-
ter, and then backprojected onto the volume. The high-pass filter-
ing is necessary to avoid blurring of the reconstructed object, and
the backprojection can be thought of as a simple spreading of the
filtered projection image across the volume grid. The theory be-
hind FBP requires the projection images to be spaced at equidistant
orientations around the patient. The quality of the reconstruction
suffers considerably when this prerequisite is not fulfilled, and also
when the number of projections is small (that is why 500 and more
projections are taken by medical scanners). In these scenarios, iter-
ative techniques, such as the Simultaneous Algebraic Reconstruc-
tion Technique (SART), are more adequate. In SART, the volume
is reconstructed by a sequence of projections and backprojections.
The technique iteratively (1) projects an image from the volume
currently being reconstructed, (2) compares it to the actual X-ray
image acquired from the scanner, (3) corrects the reconstructed vol-
ume using backprojection, and (4) repeats the process until conver-
gence.

To implement SART, a sequence of x-ray images is selected;
convergence is faster if successive images are projected in approx-
imately orthogonal directions. A relaxation factorλ∈[0, 1] is se-
lected to mix each voxel with its correction. For each image in the
sequence, the existing volume (initially empty) is projected from
the same viewpoint as the x-ray image. The true image is subtracted
from the approximate image and the result scaled byλ. This dif-
ference image corresponds to the correction which would fix the
volume according to that viewpoint. Rays traverse the volume and
deposit the correction value (either positive or negative) to the vox-
els along the ray. As the process is repeated, the volume converges
to the original sampled volume.

CT can reconstruct three-dimensional object features of very lit-
tle contrast (less than 0.5%) and with high resolution (less than
1mm), but tomographic reconstruction is primarily used in the con-

Black and white
backdrops

Object on
turntable

Camera

Light source

Figure 5:Setup of the opaque reconstruction virtual test rig.

text of imaging with X-ray energies which are confined to hospitals
and shielded industrial sites. Apart from the fact that X-rays are
difficult to generate, health considerations prohibit us to use X-ray
technology to scan real objects in the office, home, or laboratory,
for subsequent incorporation on our graphics scenes. The question
is, can we use the high-fidelity properties of CT methods to re-
construct objects imaged with harmless visible light and so recover
low-contrast and very detailed object features.

Since all CT methods including SART assumes all objects can be
perfectly penetrated by the X-ray beam, obscuration is not a prob-
lem. But, using visible wavelengths of light means that some parts
of the scene may be obscured in some or all of the images. For
that reason, the estimated volume usually never approaches the real
volume because the interior is indeterminate. The same problem
arises with reconstruction from saturated x-ray images. Further-
more, some parts of the scene may be indeterminate due to specular
highlights (e.g., a mirror) or complete shadowing.

We adopted a virtual test setup as shown in Figure 5. A scene of
random translucent triangles are voxelized into a reference volume.
Then, a virtual light source, camera, and backdrop are positioned
in the scene. The volume is rotated on a virtual turntable to ac-
quire a non-uniform sequence of projections with both a white and
a black backdrop and controllable ambient and diffuse shading. A
reconstruction volume containing both color and opacity is initial-
ized to empty. Then a number of iterations are used to converge the
reconstruction volume.

In each iteration, a random source projection is selected and vir-
tually imaged. Although we can obtain the opacity with volume
rendering, it is unavailable with standard image capture. Using two
images, one with a white backdrop and one with black, we can
compute the opacity afterward with a straightforward derivation in-
volving the compositing operator. Given a pixel of a photograph
of the object over a white backgroundCw and over a black back-
groundCb, we express them in terms of the object colorCo, the
object opacityαo, and the compositing equations

Cw = Coαo + 1(1− α)

Cb = Coαo + 0(1− α)

and solving forα we get

Co =
Cb
αo

Cw =
Cb
αo
αo + 1− αo

αo = Cb + 1− Cw

A corresponding projection is made from the reconstructed vol-
ume assuming some ambient and diffuse shading coefficients. The
source opacity and color are compared to the reconstructed opac-
ity and color and correction values are generated for each pixel,
modulated byλ as in SART. The correction opacity and color are
backprojected through the volume and applied to the voxels along
each ray. All processing was performed using a simple and efficient
slice-based technique.

The similarities between our global illumination technique (see
Section 2) and iterative reconstruction are strong: Both (1) require
a set of directionally varying backprojection operations, (2) iterate
until convergence, and (3) can benefit from an efficient slice-based
processing scheme. The differential equation describing the energy
transfer in a reconstruction ray over a differential lengthds is just a
constant functionΦ(u, v, ω) of pixel position(u, v) and direction
ω which is computed per once per ray per iteration.Φ is computed
as the difference between the pixel(u, v) from the real scanner in
directionω and the integral of the corresponding ray in the esti-
mated (reconstructed) volume. An entire projection or backprojec-
tion can be performed efficiently by sweeping through the slices
with a rayfront as described above.

4 Hardware

Clearly, the efficient parallel volume processing capabilities of a
Cube-4-like design could be utilized to improve the performance of
volumetric backprojection. Cube-4 enabled linearly scalable vol-
ume rendering by the addition of similar distributed memory and
processing elements. We will now briefly review the pertinent ar-
chitectural points.

Cube-4 processes a rayfront of rays one slice at a time (internally
it processes one beam at a time). The hardware utilizes coherence
to efficiently resample volume data for the rays. As each beam of
voxels is read by a beam of processors, they share volume data with
one neighbor and immediately interpolate new samples. A beam
buffer retains a copy of the samples so that in the next cycle when
the next beam is read, a new beam of samples can be interpolated
to align with the rays. These new samples are again buffered in
a slice buffer until the corresponding samples are available in the
next slice. Finally, samples are interpolated in between the slices.
Gradients are efficiently computed in a similar fashion. Finally,
samples are accumulated into a compositing buffer which contains
the ray colors and opacities.

Backprojection can be efficiently performed within this frame-
work. Essentially, the pipeline is run in reverse. The rays are ini-
tially loaded into the compositing buffer. In each cycle a beam of
rays are read from the compositing buffer and resampled to match
the voxel grid. 2D resampling is available already in the composit-
ing buffer using two beam buffers and ray sharing among proces-
sors. At this point, the rays are aligned with the voxels and com-
positing can occur. If reconstructing, then the ray energy is simply
added to the voxel; if illuminating with visible light, the ray energy
is composited based on the voxel density. In either case, the voxel
value must be read, modified, and written back. This requires twice
the voxel bandwidth of plain rendering, so it proceeds at half the
rate.

In illumination with visible light, the ray energy is dissipated
along the ray based on the local volume density, so the ray energy
must also be modified and written back before the next slice. This
can be done using the voxel resampling hardware which is so far
unused. As voxels are read, they are buffered and 2D interpolated
to match the ray grid (at the same time that the ray grid is 2D in-
terpolated to match the voxel grid). When resampled voxel match
the ray grid, they diminish the intensity of the corresponding ray.
Again, this requires twice the buffer bandwidth to read, modify, and
write back the ray energies, so it can only proceed at half the rate of

rendering, but the speed is already limited by the voxel bandwidth.
With these techniques we can design hardware to perform efficient,
scalable reconstruction and global illumination.

5 Results and Discussion

5.1 Global Illumination

The core of the global illumination backprojection algorithm was
implemented in unoptimized C++ code. A variety of tests were run
on various datasets to determine appropriate parameters. For in-
stance a useful value ofζ was found to be 0.1. It was also found that
no more than 1000 iterations generally suffice for visual fidelity.

The final radiosity distribution is the average of the energies dis-
tributed in each iteration. The separability of the average operation
indicates that parallelism is possible and efficient. Assuming the
whole dataset fits into the memory of each processor, interactions
can easily be distributed to multiple processors and combined in
the end with near linear speedup. However, convergence is more
difficult to control since serialization is necessary to establish the
quality of the distribution.

To speed convergence, it is helpful to select directions which
would transport the most energy. But, to fairly represent all direc-
tions, importance sampling should be used. Importance sampling
and parallel computation are relegated to future work.

For most of the computations except the final rendering, zero-
order interpolations were used. This dramatically cuts down on the
computation time with little degradation in accuracy. A state-of-
the-art hardware volume rendering accelerator could be modified to
support backprojection at about half the usual frame rate. Although
computing radiosity for the full size engine volume required 2.3 h
in software, a hardware accelerator could likely complete the task
in under a minute, making it relatively “instant” [9].

The beauty of the volumetric approach to global illumination is
that is provides us with a regular computational space, relatively
insensitive to the actual data. Furthermore, we are free to regu-
late the resolution of the computation based on the desired artifacts.
That means to generate primarily low frequency artifacts, such as
the distribution of indirect illumination in a scene, we can choose
to compute at a lower resolution and simply scale the results back
to the final resolution for final rendering. Such a feat would be very
difficult with surface-based graphics.

The price of reduced resolution is a loss of high frequency detail.
However, radiosity is a relativelyl low frequency phenomenon. As
long as the selected computation resolution is sufficient to capture
the desired phenomenon, there is no visible loss of accuracy. For
example, computing on a 276×276×130 volume took an average
of 8.4 s per pass, while a reduced resolution 148×148×75 vol-
ume took 1.5 s per pass. Figure 6 compares the artifacts generated
by computing on the low and high resolution datasets. The final
rendering used the high resolution dataset for density and the low
resolution for radiosity information. The primary visual difference
is the inability of illumination to reach into the smallest crevices.
However, the net effect is virtually indential.

An important question to answer is whether improved illumi-
nation methods result in improved visualizations. This subjec-
tive question is best answered by way of demonstration. Figure 7
demonstrates the difference in visualization between using only lo-
cal and global illumination. Note how the global illumination im-
proves spatial perception. Although Figure 7a casts soft shadows,
the complete darkness of shadows obscures objects in recesses.
In Figure 7b the recesses are properly illuminated through diffuse
inter-reflection giving an intuitive understanding of depth and ac-
cessibility. Other details include the indirect illumination of the
ceiling and the illumination streaming through the central hole in
Figure 7b.

Figure 6:Comparison of the radiosity artifacts between (a) low and
(b) high resolution datasets. (See also in the color plates.)

Figure 7: Comparison of (a) single scattering, and (b) multiple
scattering from an area light source. (See also in the color plates.)

The global illumination algorithm attempts to solve a radiosity
problem similar to Rushmier and Torrance’s zonal radiosity [18].
In our case, we are only dealing with volumetric data, thus we can
employ efficient slice-based computation. Sobierajski’s [21] hierar-
chical radiosity scheme supports both surfaces and volumes and hi-
erarchical methods in a deterministic computation step. We rely on
stochastic methods to transport illumination throughout the scene,
whereas [18, 21] compute deterministically. Because our algorithm
only supports a volumetric primitive, it can be far simpler to imple-
ment than others.

However, we do support voxelized surfaces (the walls are vox-
elized from surface representations). By first voxelizing it becomes
easier to control complexity by using alternate volumetric resolu-
tions. Radiosity computation can occur at a low resolution, but the
high resolution volume data and exact surfaces can be used for final
rendering. The radiosity data can be used as a 3D texture for the
surfaces.

The relative efficiency of our scheme is highly data dependent.
Because zonal and hierarchical methods rely on an adaptive dis-
cretization of the scene, highly complex scenes may generate a
large number of discrete elements and data structures. Conversely,
we maintain only the original dataset in its native (or reduced reso-
lution form) and compute solely on that. The only other data struc-
tures required are to store the volumetric radiosity and unshot ra-
diosity data. Thus, we achieve a clean and simple implementation
free from complex data structures. However, datasets which are
homogenous or largely empty represent an inefficiency when com-

Figure 8:(a) Original volume dataset, and (b) reconstruction after
1000 iterations. (See also in the color plates.)

1 10 100 1000

Iterations

0.10

0.15

0.20

0.25

0.30

RMS
error

Figure 9:Convergence of SART reconstruction of a 256×256×110
engine block dataset.

puted at full resolution.

5.2 Reconstruction from Images

We tested the SART reconstruction technique first with synthetic x-
ray projections on a 256×256×110 engine block dataset (see Fig-
ure 8). After 1000 backprojections which averaged 11.2 s each we
achieved an RMS error of 0.09 (see Figure 9). If the same 1000 iter-
ations were performed using backprojection hardware as described
in Section 4, it would complete in just over one minute.

Numerical precision is necessary for accurate reconstruction.
Medical reconstructions are worthless unless they can provide very
high contrast ratios. For that reason, many bits of fixed precision
are required to store each voxel. Tests [15] have shown that 16 bits
of scalar data are required to provide a 1% percent contrast sensi-
tivity in reconstruction. With this much precision in the hardware,
hardware accelerated medical reconstruction is practical.

To be prepared for the future, hardware should be able to per-
form cone beam reconstruction which requires perspective projec-
tion. The fundamentals of backprojection remain the same; energy
is deposited along rays. Only the rays diverge and care must be
taken to ensure that no voxels are missed [10].

Next, we simulated 1000 iterations of visible light reconstruction
with 150 randomly placed, randomly colored and randomly translu-
cent triangles in a 1283 volume to form a mobile (see Figure 10a).
By virtually imaging the scene we were able to concentrate on the
novel reconstruction algorithm rather than the calibration and noise

Figure 10: (a) Source volume dataset of 100 randomly placed,
randomly colored, and randomly translucent triangles and (b) re-
constructed volume after 1000 iterations including proper translu-
cency. (See also in the color plates.)

1 10 100 1000

Iterations

0

0.05

0.1

0.15

0.2

Opacity

Color
RMS
error

Figure 11:Error in visible light reconstruction during convergence.

supression required by real world imaging. Orthographic projec-
tions were acquired from random directions in a single plane. Us-
ing additional degrees of freedom increases the potential quality of
reconstruction, but limits the practical utility of the technique. Fig-
ure 10b demonstrates the result of reconstruction of the random tri-
angle scene. Figure 11 shows how the RMS error decreases over the
iterations. The error in the color was based on the opacity weighted
color (premultipliedα), since that more closely relates to the visual
impression. For the color to properly accumulate requires some
amount of opacity to be present, therefore, the convergence of the
color lags behind the opacity convergence.

Of concern is the fact that diffuse and specular shading changes
the perceived color depending upon orientation and this would in-
fluence the reconstruction process. Specular reflections are a com-
plicated phenomenon more appropriate for computer vision re-
search, so we restricted ourselves to diffuse materials only. We var-
ied the ratio of diffuse to ambient shading from 0 to 1, performed a
fixed number of passes, and compared the results of reconstruction
of the triangle dataset. There was no appreciable influence on the
quality of reconstruction (see Figure 12).

Because the rendering of the estimated reconstruction volume
is performed with diffuse shading enabled, the algorithm was able
to factor out the effect of shading. In effect, shape is somewhat
derived from shading. Without precisely knowing the light source
reconstruction can be tricky. However, this can be another dimen-
sion to the reconstruction process. While it would take much longer

0 0.2 0.4 0.6 0.8 1

Amount of diffuse shading

0

0.05

0.1

0.15

0.2

Opacity

Color

RMS
error

Figure 12:The negligible effect of diffuse shading on reconstruction
quality.

(essentially repeating the entire process for each possible light po-
sition), it is possible.

In contrast to other visible light reconstruction techniques, our
method properly includes the partial volume effect. That is, the
soft edges obtained by a real-world sampling process are reflected
in the scalar opacity volume buffer. While other methods only dis-
tinguished between occupied and non-occupied voxels, ours recov-
ers soft edges as well as fully opaque voxels. The beneficial re-
sult is antialiasing during re-rendering from novel views. As such,
re-projections of the volume buffer can be used to introduce soft-
edged, foggy, and translucent materials as a supplement image-
based rendering methods.

6 Conclusion

Volumetric backprojection has been used in the past for efficient
shadow computations. We have shown how this technique can be
used to solve a variety of radiative transport and even reconstruc-
tion problems. Specifically, we have shown how to simply and ef-
fectively compute global illumination for complex datasets. We
have taken advantage of lower resolution computation to improve
the performance without appreciable penalty in results. We have
implemented the technique of SART CT reconstruction using effi-
cient volumetric backprojection. We have developed a new form
of reconstruction which operates in the visible light spectrum and
permits acquisition of color-opacity volume data. Finally, we have
suggested how volumetric backprojection could be designed into a
Cube-4-like volume rendering hardware accelerator. A hardware
implementation would permit all of these applications and more
to operate at unprecedented rates. The integration of backprojec-
tion operations with a volume visualization accelerator would allow
myriad interactive applications.

Acknowledgments

This work was funded by NSF grant MIP9527694 and ONR grant
N000149710402. Klaus Mueller was funded by a SUNY seed
grant. The engine block dataset is courtesy of GE. The authors
wish to thank Justine Dachille and Bin Zhang for their assistance
during the work.

References

[1] U. Behrens and R. Ratering. Adding shadows to a texture-
based volume renderer. In1998 Symposium on Volume Visu-
alization, pages 39–46. IEEE, ACM SIGGRAPH, 1998.

[2] B. Cabral, N. Cam, and J. Foran. Accelerated volume ren-
dering and tomographic reconstruction using texture mapping
hardware. In1994 Symposium on Volume Visualization, pages
91–98. ACM SIGGRAPH, Oct. 1994.

[3] M. F. Cohen, S. E. Chen, J. R. Wallace, and D. P. Green-
berg. A progressive refinement approach to fast radiosity im-
age generation. In J. Dill, editor,Computer Graphics (SIG-
GRAPH ’88 Proceedings), volume 22, pages 75–84, Aug.
1988.

[4] J. Dorsey, A. Edelman, H. W. Jensen, J. Legakis, and H. K.
Pedersen. Modeling and rendering of weathered stone.Pro-
ceedings of SIGGRAPH 1999, pages 225–234, Aug. 1999.

[5] P. Hanrahan and W. Krueger. Reflection from layered surfaces
due to subsurface scattering. InComputer Graphics (SIG-
GRAPH ’93 Proceedings), volume 27, pages 165–174, Aug.
1993.

[6] H. W. Jensen and P. H. Christensen. Efficient simulation of
light transport in scenes with participating media using photon
maps. InSIGGRAPH 98 Conference Proceedings, Annual
Conference Series, pages 311–320, July 1998.

[7] J. T. Kajiya and B. P. Von Herzen. Ray tracing volume den-
sities. InComputer Graphics (SIGGRAPH ’84 Proceedings),
volume 18, pages 165–174, July 1984.

[8] A. Keller. Quasi-monte carlo radiosity. In X. Pueyo and
P. Schr̈oder, editors,Eurographics Rendering Workshop 1996,
pages 101–110. Springer Wein, June 1996.

[9] A. Keller. Instant radiosity. InSIGGRAPH 97 Conference
Proceedings, Annual Conference Series, pages 49–56, Aug.
1997.

[10] K. Kreeger, I. Bitter, F. Dachille, B. Chen, and A. Kaufman.
Adaptive perspective ray casting. InIEEE Symposium on Vol-
ume Visualization, pages 55–62. IEEE, ACM SIGGRAPH,
1998.

[11] K. N. Kutulakos and S. M. Seitz. A theory of shape by space
carving. Technical Report 692, Computer Science Dept., Uni-
versity of Rochester, Rochester, New York, May 1998.

[12] M. Levoy. Display of surfaces from volume data.IEEE Com-
puter Graphics and Applications, 8(3):29–37, May 1988.

[13] N. Max. Optical models for direct volume rendering.
IEEE Transactions on Visualization and Computer Graphics,
1(2):99–108, June 1995.

[14] H.-P. Meinzer, K. Meetz, D. Scheppelmann, U. Engelmann,
and H. J. Baur. The Heidelberg ray tracing model.IEEE Com-
puter Graphics and Applications, 11(6):34–43, Nov. 1991.

[15] K. Mueller and R. Yagel. On the use of graphics hardware to
accelerate algebraic reconstruction methods. InProceedings
of SPIE Medical Imaging Conference 1999, number 3659-62,
San Diego, CA, Feb.

[16] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler.
The VolumePro real-time ray-casting system.Proceedings of
SIGGRAPH 1999, pages 251–260, Aug. 1999.

[17] H. Pfister and A. E. Kaufman. Cube-4 - A scalable architec-
ture for real-time volume rendering. In1996 Volume Visual-
ization Symposium, pages 47–54. IEEE, Oct. 1996.

[18] H. E. Rushmeier and K. E. Torrance. The zonal method for
calculating light intensities in the presence of a participating
medium. InComputer Graphics (SIGGRAPH ’87 Proceed-
ings), volume 21, pages 293–302, July 1987.

[19] S. Seitz and C. Dyer. Photorealistic scene reconstruction by
voxel coloring. International Journal of Computer Vision,
25(3), November 1999.

[20] L. Sobierajski and A. Kaufman. Volumetric ray tracing.
In 1994 Symposium on Volume Visualization, pages 11–18.
ACM SIGGRAPH, Oct. 1994.

[21] L. M. Sobierajski. Global Illumination Models for Volume
Rendering. Ph.D. thesis, Stony Brook, NY, Aug. 1994.

[22] L. Szirmay-Kalos and W. Purgathofer. Global ray-bundle
tracing with hardware acceleration. InRendering Techniques
’98 (Proceedings of Eurographics Rendering Workshop ’98),
pages 247–258, 1998.

Figure 3:(a) Initial configuration of the engine block scene before
any lighting simulation, and (b) after 1000 iterations. Red indicates
unshot radiosity.

Figure 6:Comparison of the radiosity artifacts between (a) low and
(b) high resolution datasets.

Figure 7: Comparison of (a) single scattering, and (b) multiple
scattering from an area light source.

Figure 9:(a) Original volume dataset, and (b) reconstruction after
1000 iterations.

Figure 10: (a) Source volume dataset of 100 randomly placed,
randomly colored, and randomly translucent triangles and (b) re-
constructed volume after 1000 iterations including proper translu-
cency.

