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Fig. 1. The interface of our system for anomalous call stack tree (CSTree) detection. (a) The scatter plot shows the projection of our
stack2vec embeddings of the CSTrees. Each point in the projection represents a CSTree. (b) Summary structures of the top candidate
anomalies from (a). (c) The user can investigate the detailed structure and the anomalous subtrees of a CSTree of interest. (d) The
level-of-detail timeline visualization of the selected CSTree shows the temporal pattern of the invocations and the communications
between the HPC nodes. (e) The user is able to label the CSTrees of interest after exploration to update the anomaly detection model.

Abstract—Anomalous runtime behavior detection is one of the most important tasks for performance diagnosis in High Performance
Computing (HPC). Most of the existing methods find anomalous executions based on the properties of individual functions, such as
execution time. However, it is insufficient to identify abnormal behavior without taking into account the context of the executions, such as
the invocations of children functions and the communications with other HPC nodes. We improve upon the existing anomaly detection
approaches by utilizing the call stack structures of the executions, which record rich temporal and contextual information. With our call
stack tree (CSTree) representation of the executions, we formulate the anomaly detection problem as finding anomalous tree structures
in a call stack forest. The CSTrees are converted to vector representations using our proposed stack2vec embedding. Structural and
temporal visualizations of CSTrees are provided to support users in the identification and verification of the anomalies during an active
anomaly detection process. Three case studies of real-world HPC applications demonstrate the capabilities of our approach.

Index Terms—Call Stack, Performance Visualization, Representation Learning, Active Learning, Anomaly Detection

1 INTRODUCTION

High Performance Computing (HPC) is imperative in many scientific
domains. However, the supercomputer resources in use are limited
and costly, thus adverse runtime behaviors and latencies can have a
large negative impact. For this reason the detection of anomalies [8]
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in the parallel program execution is a critical mission. Anomalous
function executions are usually identified from the detailed trace events
of the HPC cluster. Trace events are sequences of all the activities of
function entry, function exit, and message passing in an HPC node
during application execution. Fig. 2 (a) shows an example sequence of
trace events inside one execution of the compute function [42] [41] in
an HPC node.

During their analyses, domain scientists, such as physicists solving
complex molecular equations, typically detect the anomalous function
executions based on their individual properties, such as execution time
and exit timestamps. For example, a very large execution time of
an MPI_Wait function may indicate that there is some unexpected
communication delay between cluster nodes. That long execution of
MPI_Wait is then identified as a candidate anomaly. However, using
only the execution properties of each function independently typically
fails to identify the real anomaly. Here are several scenarios where this
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problem occurs:

• The behavior of a function execution is affected by the chil-
dren functions. For example, a forward_comm_pair with
many MPI_Wait children is supposed to use more time than a
forward_comm_pair with only one MPI_Wait child. In this
case, the long execution time of forward_comm_pair may not
be related to a delay of communication.

• Different parents of the same function may lead to different run-
time behavior. For example, a MPI_Wait may have a longer
duration when it is called by function A than function B. Never-
theless, a long MPI_Wait execution with parent A can still be a
normal function and do not represent an anomaly.

• The latency of an execution in an HPC node may be related to
the context nodes which it communicates with. For example, a
function waiting for the response of a very busy HPC node will
have a long delay.

compute

reverse_comm_pair forward_comm_pair

event:entry,  function:compute,  timestamp:200,  node-id:0

|    event:entry,  function:reverse_comm_pair,  timestamp:210,  node-id:0

|    |    event:entry,  function:MPI_Send,  timestamp:215,  node-id:0

|    |    |    event:send,  destination-node:2, message: ...

|    |    event:exit,  function:MPI_Send,   timestamp:216,  node-id:0

|    |    ... ...

|    event:exit,  function:reverse_comm_pair,  timestamp:280,  node-id:0

|    ... ...

event:exit,  function:compute,  timestamp:400,  node-id:0
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Fig. 2. (a) Example trace events of a compute execution in an HPC node.
(b) The call stack of the execution can be reconstructed from the trace
events. (c) The call stack can be represented as a directed tree with
vertex weights.

As the cases given above illustrate, it is insufficient to define anoma-
lous function execution using only the temporal information of the
execution without the context. Conversely, the call stack (Fig. 2 (b))
during a function execution records both temporal and call path in-
formation of the function execution. Our approach takes advantage
of this call stack information and models the comprehensive runtime
behavior of an execution using a call stack tree (CSTree) representation
(Fig. 2 (c)). Therefore, the anomalous behavior detection can then be
formulated as the problem of finding anomalous tree structures in a call
stack forest. Take the compute function in Fig. 2 as an example, our
algorithm will return the compute invocations whose CSTrees are the
most unexpected among all compute executions in the HPC cluster.

We propose a visual analytics approach for the detection of the
anomalous trees with the user’s domain knowledge. First, for the rep-
resentation and comparison of the CSTrees, we propose stack2vec to
convert each CSTree into a feature vector. Second, with this embed-
ding vector in hand, we employ a One-Class Support Vector Machine
(OCSVM) [43] to detect the top candidate anomalies. Finally, to aid a
detailed investigation of a candidate, we devise dedicated visualizations
of subtrees and timelines in order to show the top subtree features and
temporal invocations, respectively. After verification, the user is then
able to label the candidates as either normal or abnormal. The labeling
information is fed back to refine the OCSVM model.

The main contributions of our paper are:

• We formulate the problem of finding anomalous runtime behavior
as the detection of anomalous tree structure in a call stack for-
est, which improves upon the existing performance analysis by
utilizing the context of function executions.

• We propose stack2vec, which optimizes the graph kernel approach
and uses neural networks for the learning of tree representations
in a forest.

• We propose a new visual anomaly detection approach with active
learning strategy for finding, verifying and labeling the candidate
anomalous CSTrees interactively.

The remainder of our paper is structured as follows. Section 2
reviews related work. Section 3 defines the problem and gives an
overview of our approach. Section 4 introduces our algorithm for vector
representation learning of CSTrees. Section 5 describes our visual
analytics approach for anomalous CSTree detection with active labeling.
Three case studies are used to validate our approach in Section 6.
Section 7 ends with conclusions and future work.

2 RELATED WORK

Performance analysis for heavy computation applications usually
focuses on the data (e.g., trace events) collected by the instru-
mentation and measurement tools [2] [16] [29] [46]. Many tech-
niques [9] [51] [52] [10] [11] [12] have been proposed for the vi-
sualization, analysis, and diagnosis of these execution data [13]. Our
paper mainly focuses on the anomalous runtime behavior detection,
which is one of the most important tasks in performance analysis [22].

2.1 Anomalous Behavior Detection in HPC
The existing anomaly detection approaches deal with different kinds
of runtime behaviors that occur in HPC clusters, such as high I/O
latency [48], large memory utilization [19] [49], and deadlock [3].

One challenge for the anomaly detection is that most approaches
calculate an anomaly score based on the features of an execution,
such as time [23] or memory usage [19] [49], while the contextual
information (e.g., the structure of the program execution) is largely
ignored. In contrast, our approach uses the context obtained from the
call stacks to identify the potential anomalous executions.

Another problem is that the unsupervised learning algorithms detect
outliers purely based on density [7] or clusters [20] in the dataset.
However, sometimes a rare execution pattern does not necessarily
indicate abnormal behavior. For example, an initialization subroutine
is only invoked at the beginning of the program, but it is normal.

One solution to the second problem is reducing anomaly detection
to a classification problem [17] [15] [5], which is able to utilize the
labeling information provided by the user. However, the labeled data is
usually not sufficient due to the complexity of human-based labeling.
Active learning [45] [1] is a solution that reduces the human effort by
choosing maximally informative samples for labeling. Our approach in-
tegrates the active learning [45] [21] strategy with One-Class SVM [43],
which returns the top anomaly candidates. The user is then asked to
inspect, verify, and provide labels for the most critical data instances to
refine the model.

2.2 Performance Visualization in HPC
Visualization of the program execution structure [13] [22] is widely
used for performance navigation and monitoring tasks [35] [53]. Jump-
shot [55] and Vampir [28] show the call relations of functions in the
trace events with a timeline. Profiling call tree visualizations [32] [38]
seek to provide insight about the structure and runtime costs of the
function calls. Other visualizations [13] [22] focus on executions and
message communications, such as SyncTrace [24]. While these meth-
ods are effective for a human scientist to understand the execution
context, it tends to be very time-consuming for the user to search and
identify the anomalies manually among the typically large numbers of
trace events. To bridge the gap between automatic anomaly detection
and call tree visualization, we support a visually-guided training of the
anomaly detection model in our structural and temporal visualizations.

2.3 Graph Structure Embedding
The major challenge of anomaly detection in a forest of trees lies in
how to represent and compare the structural features. Recent research
on neural graph learning provides an efficient solution for this problem.
Node representations such as DeepWalk [40] and node2vec [18] focus
on the embedding of a vertex in a single graph. These techniques,
however, are unable to represent the structure of a graph. Convolutional
neural networks (CNNs) [27] [39] learn the local structure of graph
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Fig. 3. Overview of our approach for anomalous execution detection. (a) The CSTrees are generated from the trace events. (b) Feature vectors are
constructed for the CSTrees using stack2vec. (c) The candidate anomalous CSTrees are detected in the forest. (d) The user can investigate the
candidates in detailed visualization. Labeling information provided by the user will be fed back to update the anomaly detection model.

nodes using an analogy to the pixel-level neighborhood of images.
However, the labeling of the graphs for the training of the CNNs is
usually not available in unsupervised anomaly detection.

Another family of techniques for graph isomorphism and similarity
analysis is graph kernels, which decompose a graph into substructure
features (e.g., random walk [25] and shortest path [6]). For example,
Weisfeiler-Lehman graph kernels [47], extracting non-linear subgraphs,
is one of the most popular approaches in practice [54]. Graph kernels
sometimes lead to very high dimensional, sparse and non-smooth repre-
sentations and thus yield poor generalizations [54]. Subgraph2vec [36]
and graph2vec [37] deal with this problem by reducing the substructure
features of graph kernels using deep learning approaches [31].

To learn the structural features of trees, our stack2vec follows the
framework of graph2vec and optimizes the graph kernel computation
for our CSTree representation.

3 PROBLEM DEFINITION AND APPROACH OVERVIEW

3.1 Anomalous Execution Behavior and Call Stack Tree
Given a critical function A specified by the domain scientists and all
of its invoked executions in an HPC cluster, we want to determine
which invocations of A indicate anomalous runtime behavior. Here A
is usually specified as the main function in each HPC node or a key
function (e.g., compute [42] [41]) frequently invoked during the HPC
application. From discussions with domain scientists we learned that
anomalous behavior is always associated with large execution time (e.g.,
computation or communication delay) or unusual call path structure
(e.g., child functions called in a loop with large counts).

As mentioned in Section 1, the call stack describes the contextual
information of function execution. We represent the structure of an
execution of A with a call stack tree (CSTree) T = (V,E,www), which is a
directed tree with weighted vertices rooted at A (Fig. 2 (c)). A vertex
v ∈V represents a function invoked in the call stack and a directed edge
e ∈ E shows the call from a parent function to a child function. The
vertex weight w(v) is defined as the execution time of its function. With
this representation, the anomalous behavior mentioned above can be
implied from the structure of the CSTree. For example, a large vertex
in a CSTree stands for long execution time of that function. And a
vertex with many children of the same function may indicate that the
parent function invokes the child function for multiple times in a loop.

By using all invoked executions of function A in the HPC cluster, a
call stack forest can be generated from all its CSTrees. Our problem
is then defined as follows: given a forest of CSTrees T = {Ti} of A,
learn the anomaly labeling lll of the CSTrees where li = 1 is normal and
li =−1 is abnormal. The notations are summarized in Table 1.

Notation Description
Ti = (V,E,www) A CSTree of a function execution.

v ∈V A vertex, which is a function called during
the execution of the root function.

e ∈ E A directed edge, which is a call from a parent
function to a child function.

Si The bag-of-subtrees of Ti.
s ∈ Si A subtree structure of Ti.

xxxi The embedding vector of Ti.
T = {Ti} The forest of all CSTrees.

lll The anomaly labeling vector of T .
Table 1. Notations used in our paper.

3.2 Visual Analysis Tasks
Allowing experts to inject domain knowledge can greatly enhance
automatic learning algorithms. A good way to do this is via visual
interactions. After discussions with our domain users, we identified the
following four tasks helpful in this process: T1: Gain an overview of
the anomaly distribution. T2: Order the CSTrees to focus on the top
anomalies. T3: Examine the detailed invocation structure of a CSTree
of interest. T4: Examine the temporal patterns of a CSTree, including
the message passings and execution durations.

3.3 Approach Overview
Based on these four essential tasks, our visual analytics approach de-
tects anomalous CSTrees using the following four steps (Fig. 3):

Step 1 Generating the call stack forest: Given the trace events
measured at the HPC nodes and a function of interest A specified by the
user, a call stack forest T = {Ti} of A is constructed.

Step 2 Learning the tree representations: Each CSTree Ti is
converted into a bag-of-subtree representation Si using optimized
Weisfeiler-Lehman graph kernels [47]. Based on the subtrees, the vector
representations {xxxi} for the CSTrees {Ti} are learned by doc2vec [31].
The embeddings encode the structural similarities in a reduced space.

Step 3 Detecting anomalous CSTrees in the forest: With the vec-
tor representations of the CSTrees, a One-Class SVM is used to find
the potential (candidate) anomalies after training with normal data.

Step 4 Visual investigation, verification, and labeling of the can-
didate anomalies: For the candidate anomalous CSTrees, the user can
view their detailed structures, message communications, and top sub-
tree features. Based on the observation, the user labels the candidates
either as normal or abnormal based on available domain knowledge.
The labels are then used to refine the One-Class SVM model.

Step 3 and Step 4 are performed iteratively until satisfying results are
achieved. The user can also return to the previous steps for parameter
tuning of the algorithm (e.g., embedding dimension in step 2).

4 STACK2VEC: LEARNING REPRESENTATIONS FOR CALL
STACK TREES

Our approach begins with the construction of the call stack forest
T = {Ti} of the target function A. Each CSTree Ti is generated from
the entry and exit activities occurring in an invocation of A. These
activities are retrieved from the trace events. The message passings
during the execution are also saved in the vertices of the sending and
receiving functions. They can be provided as supplemental information
during the visual analysis (Section 5.3.2). From our collaborating
scientists we learn that they are less interested in the execution order of
the children functions of A since this order is fixed by the source code
design. As a result, the CSTree ignores the order of functions. Still, the
user is able to view them in the timeline visualization (Section 5.3.2).

With the constructed call stack forest in hand, the challenge now is
how to compute the structural similarities between different instances of
CSTrees [44] for anomaly detection. In addition, most anomaly detec-
tion approaches require the input of fixed length feature vectors, rather
than tree structures. As discussed in Section 2.3, graph2vec [37] is an
effective solution which converts a tree structure to a feature vector. It
combines two popular graph learning approaches: first representing the
structural features of graphs by bag-of-substructures using Weisfeiler-
Lehman Kernels [47], and then learning the graph embeddings using
doc2vec [31]. In this work, we propose stack2vec that customizes these



two stages in graph2vec for the CSTree. Specifically, we optimize the
original Weisfeiler-Lehman kernels for computing the bag-of-subtrees
representation of our directed tree structures.

4.1 Accelerated Weisfeiler-Lehman Algorithm
The Weisfeiler-Lehman (WL) algorithm [47] employs an iterative ver-
tex relabeling process to extract substructures from graphs. In order
to illustrate the WL algorithm, we use an example CSTree Ti rooted
at function A in Fig. 4. At the beginning, the algorithm assigns an
initial label string to each vertex in Ti. In our case, the vertex labels are
initialized as their function names (see initialization in Fig. 4 (a)). In
each iteration, the WL algorithm performs two operations on the vertex
labels: augmentation and compression.
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Fig. 4. (a) An example of the WL relabeling algorithm for a CSTree Ti
with 2 iterations. We optimize the original label updating process by
early stopping, as shown in the gray backgrounded regions. (b) The
table shows the i-degree subtree created in the ith iteration. (c) The final
bag-of-subtrees contains all the generated subtrees. After aggregation,
the weight of a subtree represents the total duration of its existence in Ti.

Label augmentation. The label of v is appended by the labels of
its children, resulting in a signature string of v. For example, in the
1st augmentation of Fig. 4 (a), the signature (A,BC) of the root is
generated by appending its children B and C.

The signature string of v represents the local structure of v. For
example, the signature (A,BC) generated in the 1st iteration stands for a
1-degree subtree (i.e., subtree with depth of 1) of A. To be more general,
the signature in the ith iteration represents an i-degree subtree structure
(i.e., subtree with depth of i), since it has explored all descendants
whose distances to v are less or equal to i. The detailed structure of the
generated subtrees are shown in the middle column of Fig. 4 (b). As
a result, the local structures of two vertices are identical if and only if
their signatures are the same.

Label compression. A new signature incurred in this iteration is
compressed. For example, a new label F is assigned to the signature
(A,BC) in the first iteration in Fig. 4 (b). Therefore, the label F rep-
resents the 1-degree subtree structure. The meaning of relabeling a
same vertex is to discover its subtrees of different degrees. For exam-
ple, although A, F, I are all labels of the purple vertex, they stand for

0-degree, 1-degree, and 2-degree substructures rooted at that vertex,
respectively (see the middle column in Fig. 4 (b)).

The two steps are repeated until a max iteration count set by the
user is reached. By default, our algorithm finds the max depth d of
the CSTrees in T and sets the max iteration count to (d−1) to make
sure all the subtree structures in the forest are explored. Finally, all the
0-degree (i.e., a vertex) to (d−1)-degree subtrees (see the last column
in Fig. 4 (b)) will be produced for the bag-of-subtree representation
(Section 4.2). The relabeling process is performed for all the trees in
the forest to calculate their bag-of-subtrees.

To optimize the original WL algorithm for our directed tree structure,
we introduce early stopping in the relabeling process (see the vertices
in the grayed-out regions in Fig. 4 (a)). For a vertex v, if the maximum
depth of the subtree rooted at v is h, we will stop updating v after the hth
iteration. This is because the (h+1)th iteration will generate a (h+1)-
degree subtree, which does not exists for v. Take a dark green vertex C
in Fig. 4 (a) as an instance, there are only a 0-degree subtree C and a
1-degree subtree (C,DE) rooted at C. Our algorithm stops updating the
label and signature of this vertex after the 1st iteration.

4.2 Bag-of-subtrees Representation
In stack2vec, all the subtrees (see the last column in Fig. 4 (b)) gen-
erated from the WL relabeling process are inserted into a multiset
Si = {s} (see the first table in Fig. 4 (c)). Similar to bag-of-words, Si is
the bag-of-subtrees representation of a CSTree Ti. The subtree “corpus”
of the forest T is the collection of all unique subtree structures in all
the bag-of-subtrees {Si}.

To encode the temporal information, we assign the weight w(s) of a
subtree s ∈ Si to be the weight w(v) of the subtree root v (i.e., execution
time of v). Essentially, the execution of a subtree root covers the
executions of all of its descendant functions. Therefore w(s) represents
the existence duration of the substructure s in the call stack, as shown
in the first table in Fig. 4 (c).

Since a substructure can occur multiple times in Ti, we count the
“frequency” of a unique subtree structure in Ti by aggregating the sub-
trees with the same label in Si. For example, the two subtrees of C are
aggregated in the second table of Fig. 4 (c). The aggregated weight is
the summed weight of the original subtrees. Equivalent to the word
frequency in a bag-of-words, the weight of an aggregated subtree s
represents the total duration of s in Ti.

4.3 Learning Tree Embeddings using Skip-Gram Model
The generated bag-of-subtrees can now be directly used as the input of
the anomaly detection. However, as mentioned in Section 2.3, a large
amount of subtree structures can make this representation very sparse.
In analogy to the neural embedding of documents, stack2vec embeds
the CSTrees in T with the same framework as doc2vec [31]. Each
CSTree Ti is regarded a document and the subtrees s ∈ Si are the words,
whose “frequencies” are the corresponding subtree weights w(s).

CSTree T Trees (Documents)

Subtrees
(Words)

s3s2s1s0

Input layer

Hidden layer

Softmax layer

embedding x

Fig. 5. A doc2vec network is adopted for the tree representation learning
with an analogy to documents. This model predicts the subtree occur-
rences in a CSTree. The outputs of the hidden layer are used as the
embedding vectors of CSTrees.

Stack2vec adopts the unordered version of doc2vec (i.e., Distributed
Bag of Words version of Paragraph Vector) since there is no fixed order
for the subtrees in S. Similar to the Skip-Gram model of word2vec [34],
it is a shallow but wide neural network (Fig. 5). The input layer
takes one-hot vectors of the CSTrees. For Ti, the input vector is
(0, ...,0,1,0, ...,0)T , whose component at i is 1 and the others are 0.
The hidden layer consists of linear neurons; the number of the neurons



is the dimension of the embedding space, which can be specified by the
user. The output is a softmax layer which predicts the probability of
each subtree’s “frequency” in a CSTree. For example, the input Ti is
trained with the aggregated weights of subtree A - J (Fig. 4 (c)) in the
output layer.

Adaptive Moment Estimation (ADAM) [26] is employed in
stack2vec to train the network with adaptive learning rates. Nega-
tive sampling [34] is used for fast training of stack2vec. After training,
the output xxxi from the hidden layer for each CSTree Ti is used as its
embedding vector, which encodes the structural information of Ti.

5 VISUAL TRAINING FOR ACTIVE ANOMALY DETECTION

With the embedding vectors {xxxi} of the CSTrees {Ti}, an unsupervised
learning algorithm (e.g., Local Outlier Factor [7]) could be employed
to find the outliers. However, the predictive performance of purely
unsupervised anomaly detection methods is not always satisfactory [17].
Anomalous execution patterns cannot be determined only by gauging
the density distribution in the embedding space. For example, an
initialization subroutine inside a function A (e.g., smalloc of compute
for allocating memory) can be rare since it is only invoked in the first
execution of A in each HPC node, but it is an expected normal behavior
by source code design. Injecting some domain knowledge into the
process can help resolve these misconceptions.

To empower the model to accept additional labels from the user, one
solution is to convert it to a semi-supervised binary classifier for normal
and abnormal CSTrees [15]. However, our datasets are extremely
unbalanced with just a few anomalies. Furthermore, it is difficult to
provide a set of comprehensive abnormal patterns since most of them
are unknown to the user. As a result, there will be insufficient negative
labeling for the training of the abnormal class.

Our approach combines both the semi-supervised and the unsuper-
vised learning strategies using a One-Class Support Vector Machine
(OCSVM) [43]. Although being an unsupervised anomaly detection
algorithm, OCSVM is adopted due to its capability of utilizing the
labeling information to improve the model generation.

5.1 Anomaly Detection using One-Class Support Vector
Machine

An OCSVM may be viewed as a regular two-class Support Vector
Machine where all the training data are assumed to be positive (nor-
mal). OCSVM attempts to learn a decision boundary that separates
the majority of the data from the origin. The data outside the decision
boundary are considered outliers. For example, the dashed circle in
Fig. 6 (a) approximates the decision boundary for outlier detection in
the LAMMPS [42] [41] dataset (Section 6.1).

min
www,ξξξ ,ρ

0.5 · ‖www‖2−ρ +
1
C

n

∑
i=1

uiξi

s.t. wwwT
Φ(xxxi)−ρ ≥−ξi, ξi ≥ 0

(1)

OCSVM solves the optimization problem given in Eq. 1, where www
and ρ are parameters of the decision function to be learned. ξi is the
slack variable that allows a point to lie outside the decision boundary. Φ

is the kernel function and C is a regularization parameter. The weighted
OCSVM [4] introduces the weight ui for xxxi in Eq. 1. They are initialized
as 1 in the model.

Although OCSVM is not capable to be trained by labeling, our
approach utilizes the labels to improve the model though manipulating
the weights uuu. On the one hand, if xxxiii is labeled as negative (abnormal)
by the user, the weight ui is set to 0, which is equivalent to removing it
from the training set. On the other hand, if xxxiii is confirmed by the user
as positive (normal), we can emphasize it in the model by increasing
ui to a larger weight. For example, setting ui to be larger than the
estimated number of outliers (e.g., 0.02|T |) makes sure that xxxi will
not be regarded an anomaly. By updating it with the labeling, the final
OCSVM will learn to model only the normal points. Other points
unfamiliar to the OCSVM will be regarded as anomalies.

For xxx, its decision function value score(xxx) = wwwT Φ(xxx)−ρ can be
used as its anomaly score. xxx is abnormal if score(xxx) is negative, oth-
erwise it is normal. To support visual analysis task T1, the scores
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Fig. 6. (a) The MDS projection of the embedding vectors {xxxi} of the
CSTrees {Ti}. A One-Class SVM is employed to calculate the anomaly
scores of {xxxi}. We manually draw the dashed circle to illustrate the
approximate decision boundary of the One-Class SVM. (b) The candidate
anomaly list shows the summary structures of CSTrees with lowest
anomaly scores. The user can label each candidate as normal/abnormal
using the blue/red button at the top right in each view.

of all CSTrees are visualized as points in a scatter plot (Fig. 6 (a)).
Red color indicates a negative score, which denotes points of spe-
cial interest. Different projection methods such as Multidimensional
Scaling (MDS) [30], or t-Distributed Stochastic Neighbor Embedding
(t-SNE) [33] can be employed to calculate the point positions. Zooming
in/out is allowed in the scatter plot to help the exploration of regions in
which points are densely distributed.

5.2 Active Learning with Interactive Labeling
For CSTrees, labeling is labor intensive since the user needs to manu-
ally examine the structures in full detail. Instead of labeling all CSTrees
or randomly labeling a subset of CSTrees, a more efficient labeling
strategy is needed to find those samples that help optimize the model.
Active learning [45] provides a solution to focus on the most infor-
mative subset of data. For a binary classifier, it asks the user to label
the uncertain samples on the decision hyperplane between two classes.
Since in our approach the OCSVM has only one positive class, the
CSTrees with the most negative anomaly scores can be considered as
the “support vectors”. They will be presented to the user and visualized
in the candidate anomaly list (Fig. 6 (b)). The summary structures of
these CSTrees are visualized to provide insights into their patterns.

To support visual analysis task T2, candidates are ranked according
to their anomaly scores. This allows the user to focus on the most
anomalous CSTrees in a large dataset. The user can label an interesting
CSTree in this list after detailed visualization (Section 5.3).

5.3 Visual Investigation and Verification
For an informed labeling of CSTrees, the user needs to be able to
investigate their detailed execution behavior (visual analysis tasks T3
and T4). For this purpose we have devised both a subtree (T3) and a
timeline visualization (T4) to support the exploration of the structural
and temporal pattern of a selected CSTree, respectively.

During the labeling, the user can select a CSTree of interest from the
scatter plot (Fig. 6 (a)) or the candidate list (Fig. 6 (b)). Further, the user
may also explore the average pattern of a group of CSTrees by selecting
a region in the scatter plot using a lasso tool (hand drawn region in
Fig. 9 (a)). The center CSTree of the selection is then visualized.



5.3.1 Top Subtree Visualization
For a selected CSTree T , the complete structure is presented (see the
left two views of Fig. 7). The area and color of a tree vertex encode
the vertex weight and function name, respectively. A force-directed
algorithm [14] is used to make the tree layout compact.
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Fig. 7. The user can select CSTrees of interest to view their com-
plete structures and important subtrees. (a) Structural pattern of a
regular CSTree. There is no significant anomalous subtree. (b) A
candidate CSTree with unusual patterns. The subtrees rooted at
forward comm pair and MPI Send are the top two substructures that
make the CSTree abnormal.

From our case studies we found that users typically determine the
reason for a candidate to be an anomaly by searching and identifying
the unusual substructures manually. This exploration can be time con-
suming when the size of the CSTree is large. Extracting and visualizing
the top anomalous subtrees can help shorten this time overhead. For this
purpose we calculate the importance score of each subtree in T . This
score describes the contribution of a subtree for making T anomalous.

We first compute the importance scores for all of the dimensions in
the embedding vector xxx of T , and then translate the scores from the
embedding space to the subtree space {s}. A straightforward and fast
strategy to calculate the score vector fff of xxx is to find the differences
between xxx and its k-nearest neighbors kNN(x). For each component
x( j) of xxx, its importance score f ( j) is defined as the summed differences
to the same component of its neighbors: f ( j) = ∑y∈kNN(x) |x( j)− y( j)|.
Therefore, from fff we can learn which dimensions of xxx are the most
different in the neighborhood.

To convert the importance score in the embedding space to the
original subtree importance, we can take advantage of the relation
that exists between the embedding xxx and the subtrees {s} in stack2vec
(Fig. 5). By inputting fff to the hidden layer of stack2vec, the importance
score vector for the subtrees is given by the output in the last layer.

With the importance scores of the subtrees calculated, the user can
set a score threshold in the visual interface to focus on the top subtrees.
These subtrees are shown in the Top Subtree Visualization (see the right
views of Fig. 7 (b)) to provide insights into the anomalous substructures
of the selected CSTree T . Because a substructure may occur in multiple
parts of T with different vertex weights, we visualize a subtree with
uniform vertex sizes to better focus on its structural pattern.

5.3.2 Timeline and Message Visualization
Similar to the visual encodings of Jumpshot [55] and Vampir [28], we
show the function invocations and communications within a timeline
visualization. The selected CSTree is visualized as a top down stack
(e.g., the stack in node#15 in Fig 8 (a)) along the time axis. Each
invoked function in the CSTree is shown as a rectangle whose horizontal
start and end positions encode its entry and exit timestamps in the stack,

respectively. The vertical position of the function shows its position
in the call stack. For example, in Fig 8 (a), the topmost compute is
the root function of the selected stack. The two green functions in the
second row are the children functions called by compute.
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Fig. 8. The timeline view shows the call stack in a top-down manner along
the time axis. Functions and messages are visualized as rectangles and
arrowed lines, respectively. (a) The timeline visualization of the same
CSTree in Fig. 7 (a). (b) The time series of the anomalous CSTree in
Fig. 7(b). (c) The user can zoom into a time window to examine the
events and messages in more details.

Because communication latency is a typical factor of performance
degradation, messages are visualized as vertical arrowed lines from
their sending nodes to the receiving nodes at their timestamps (see
black lines between node#15 and context HPC nodes in Fig. 8 (a)). To
provide communication context, the nodes which communicate with
the selected CSTree are visualized as sequences of function executions.
For example, node#7 in Fig. 8 (a) shows the sequence of functions
running in it along the time axis.

Since the function events may occur very intensely in a small time
interval, zooming into an interesting time window can help investigate
any detailed activities of the nodes. We provide level-of-detail explo-
ration in the timeline, which allows the user to view the functions and
messages in different temporal granularity. For example, Fig. 8 (c)
shows the zoomed timeline of Fig. 8 (b) between 509ms to 519ms.

6 CASE STUDIES

We conducted case studies with three scientific collaborators (SC1, SC2
and SC3), all of whom were physicists. SC1 and SC2 were from a team
working on the LAMMPS [42] [41] application, which is a parallel
molecular dynamics simulator in the HPC cluster. SC3 was interested
in the NWCHEM [50] application, which is another scientific program
for molecular simulation. The participants collected the trace events
of the HPC cluster via TAU instrumentation [46]. They wanted to
use our system to find anomalous runtime behaviors in the function



executions. None of the participants were experts in visualization or
machine learning. The summaries of their datasets are shown in Table 2.

Dataset Case 1 & 2 Case 3
Total number of CSTrees 5,792 1,280
Total number of vertices 879,332 1,078,804

Total number of messages 323,780 646,683
Number of unique subtrees
(Subtree corpus dimension) 901 843

Maximum CSTree depth 5 4
Embedding dimensions 128 128

Table 2. Summary of the forests constructed in the cases.

Before the study, we had a number of thorough discussions with
the domain scientists to learn about functions of interest and possible
anomalous behavior patterns. Each case study started with a training
session to introduce our system. We then asked each participant to
use the system for their datasets. Finally, an interview session was
conducted to gather evaluations and subjective feedback.

6.1 Case Study 1: Investigating Functions with Communi-
cation Delays

SC1 ran LAMMPS on 16 HPC computation nodes which were sup-
ported by 16 I/O nodes. He would like to learn about the factors
and types of the execution delay. Especially, SC1 was interested in
compute, a function for the major computational task with frequent
message communications. computewas called 5,792 times in the HPC
cluster (Table 2). We constructed a forest with each tree representing an
invoked execution of compute. The WL labeling extracted 901 unique
subtree structures from the forest. We pre-computed the vector repre-
sentation {xxxiii} of the CSTrees {Ti} using stack2vec with an embedding
size of 128. All CSTrees were unlabeled at the start of the analysis.

SC1 first trained OCSVM to detect the anomalous CSTrees. The
learning results showed that most anomalous candidates were located
on the border of the scatter plot distribution (Fig. 6 (a)).

SC1 chose CSTree #4-40 from Fig. 6 (b), which was the first can-
didate in the list. Here, the code “#4-40” means that it was the #40
invocation of compute in node#4. To compare it with a regular call
stack pattern, he also selected a normal CSTree #15-361 in the center
of the scatter plot. Fig. 7 (a) shows that the sizes of all vertices in
#15-361 are small, suggesting short function executions. In contrast,
SC1 observed that the vertices of MPI_Wait, MPI_Send, and FLUSH
in #4-40 were unusually large (see the left view of Fig. 7 (b)). As
expected, the corresponding subtrees were identified as anomalous in
the Top Subtree Visualization (see the right two windows in Fig. 7 (b)).

To learn about the temporal pattern and message communication,
SC1 examined the Timeline Visualizations. He noticed from the time
axes that execution of #15-361 (Fig. 8 (a)) took only about 2ms while
#4-40 (Fig. 8 (b)) took 20 times longer (about 40ms). #15-361 showed
a normal communication pattern, where MPI_Send and MPI_Waitwere
invoked alternately multiple times (see dark and light orange functions
in node#15 in Fig. 8 (a)). They sent/received messages (see arrowed
lines in Fig. 8 (a)) to/from the context nodes with regular and short
execution times. While in the timeline of #4-40, SC2 found that there
were communication delays of the functions MPI_Wait and MPI_Send
(see node#4 of Fig. 8 (b)), which made the total execution time of
#4-40 much longer than that of #15-361.

SC1 zoomed into the time window of the first long MPI_Wait func-
tion in #4-40, as shown in Fig. 8 (c). From the messages (see high-
lighted red lines in Fig. 8 (c)), he learned that #4-40 sent two messages
to node#5 and node#7 around 509ms and then waited for their re-
sponse in MPI_Wait. However, at that time, node#5 and node#7 were
also delayed in their MPI_Irecv and MPI_Wait, respectively. This
formed a chain of waiting, which took 10ms until node#5 and node#7
sent messages back to #4-40. SC1 pointed out that this indicated a
problem with the scheduling strategy. By exploring the remaining por-
tion of #4-40, SC1 also noticed a long FLUSH (see FLUSH in node#4 in
Fig. 8 (b)), causing the waiting of node#5 and node#7 consequently.

Finally, after examination of other candidate CSTrees (Fig. 6 (b)),
SC1 found that the similar pattern of delay chain also occurred in

other nodes around the same time period, such as in #1-40, #2-40,
and #12-40. He concluded that he needed to adjust the machine
configuration to avoid these types of delay situations in the future.

SC1 went on and labeled all those CSTrees as abnormal and exported
them for his scheduling strategy analysis. He trained the model again
with his labeling and saved the model for future prediction of anomalous
executions in LAMMPS applications.

6.2 Case Study 2: Finding Potential Cluster Anomalies

SC2, who was from the same team of SC1, also focused on the compute
function in the LAMMPS dataset. He used the OCSVM model from the
last study, since it was improved by the labeling of SC1. SC2 focused
on collective anomalies. He mentioned that a group of anomalies with
similar patterns were likely to be labeled as normal by the automatic
algorithm. This was because the OCSVM could only detect an outlier
when it had a different pattern with respect to its neighbors.

At the onset of the exploration, SC2 found that most normal points
were projected in the scatter plot center, yielding a display too crowded
to observe any distribution patterns. He therefore switched to t-SNE
projection (Fig. 9 (a)), which reduced the tendency to crowd points
together [33]. He explored the points in a cluster far away from others
(see the highlighted points in Fig. 9 (a)) and noticed their distinct struc-
tural patterns. He selected the cluster using the lasso tool; the center of
the selection was shown in the structure and timeline visualizations.

Different from the structural pattern of a common CSTree (e.g.,
#15-361 in Fig. 7 (a)), the CSTree of the cluster center (see tree
#0-161 in Fig. 9 (b)) invoked an abundance of tiny ev_tally func-
tions. The Top Subtree Visualization (see the right two views in Fig. 9
(b)) also indicated that the substructures which contained ev_tally
made this CSTree different from others in the forest. After investigat-
ing the timeline view (Fig. 9 (c)), SC2 told us that he was confused
why there were frequent invocations of ev_tallys after the exit of
forward_comm_pair in compute.

By zooming into the timeline (Fig. 9 (d)), SC2 noticed that
ev_tally was also invoked intensively in the context nodes at the
same time, as shown in the pink strips in node #1, #3, #4, and #8 in
Fig. 9 (d). He mentioned that he was expecting lots of communications
between ev_tallys of different HPC nodes. However, he did not ob-
serve any message from ev_tallys in the visualization. He suggested
that ev_tallys might use other communication means (e.g., shared
memory), which was not recorded in the form of trace events.

After exploring other points in the selected cluster, SC2 found
that they had similar patterns with lots of ev_tallys. He labeled
all CSTrees in this cluster as anomalies (Fig. 9 (e)), since he wanted
to export them for further analysis with machine logs and source code.
He trained the model again; the updated results showed that all the
CSTrees in the selected cluster changed from normal to abnormal.

6.3 Case Study 3: Identifying Functions with Unusual Ex-
ecution Sequences

SC3 was one of the developers of the NWCHEM application on the
HPC cluster. He focused on the MD_NEWTON function for solving New-
ton’s equations of motion [50]. The application executed in 5 HPC
nodes and MD_NEWTON was called 1,280 times. A forest was con-
structed in which each CSTree is an execution of MD_NEWTON. We
represented each CSTree by a embedding vector of length 128. All
CSTrees at the beginning of the study were unlabeled.

After training OCSVM with the initial uuu (Eq. 1), the candidates with
low anomaly scores were shown as red points in Fig. 1 (a). SC3 found
that the first executions of MD_NEWTON in each HPC node were listed
as the top anomaly candidates (see #0-0, #1-0, #2-0, and #3-0 in
Fig. 1 (b)). He selected #0-0 for a detailed investigation. From the Top
Subtree View (Fig. 1 (c)), SC3 learned that the substructure rooted at the
MD_SHAKE function was one major reason for #0-0 being anomalous.
In the timeline (Fig. 1 (d)), he zoomed into MD_SHAKE and found that it
called lots of different MPI functions, such as MPI_Type_size.

After exploring other normal CSTrees in the center of the scatter
plot, SC3 found that usually MD_SHAKE had few MPI children functions.
He explained that the first execution (#X-0) in each HPC node would
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Fig. 9. Anomalous execution detection of compute in LAMMPS dataset. (a) T-SNE projection of the embedding vectors of the CSTrees. SC2 selected
a normal cluster far away from other points. (b) The structure of the cluster center (#0-161) was visualized. The subtrees with ev tally were
unexpected structural patterns. (c) The timeline showed that a lot of ev tallys were invoked at the end of compute. (d) SC2 zoomed into the timeline
and noticed that there was no message from the ev tallys. (e) Finally, SC2 labeled all the CSTrees in the selected cluster as abnormal.

invoke a sequence of MPI functions for the initialization of the com-
munication between nodes. He expressed that although this behavior
was rare, those functions were executed as expected. He labeled #0-0,
#1-0, #2-0, and #3-0 as normal (Fig. 1 (e)), which increased their
weights uuu as positive samples in OCSVM model. By training again,
SC3 found that the anomaly scores of those CSTrees became positive.
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Fig. 10. (a) A normal timeline of CSTree #33 in node#0. (b) The timeline
of CSTree #192 in node#0 suggested the late invocation of MD FORCES. It
also caused the latencies of the MD FORCES functions in other nodes.

SC3 continued to explore the remaining candidates. He selected
#0-192 in Fig. 1 (b), which was the #192 execution of MD_NEWTON in
node#0. The time axis of #0-192 (Fig. 10 (b)) indicated that it took
about 170ms, which was 100ms longer than a normal execution (e.g.,
#0-33 in Fig. 10 (a)). He mentioned that MD_NEWTON was expected
to invoke MD_FORCES immediately (Fig. 10 (a)), while #0-192 called

MD_FORCES after waiting about 100ms (Fig. 10 (b)).
After careful investigation, SC3 pointed out that #0-192 also caused

a delay of its context executions in node#1, #2, and #3 in Fig. 10
(b). He pointed that the context HPC nodes were waiting for the
simulation result of #0-192, as indicated in the delayed MD_FORCES
functions of node#1, #2, and #3 in Fig. 10 (b). He concluded that this
indicated a scheduling problem of the application. SC3 labeled them as
anomalies and trained OCSVM again. He examined and noticed that
other CSTrees with similar patterns turned abnormal after his update.

6.4 Quantitative Analysis
Using the datasets and scenarios described above, we evaluate the
performance and complexity of stack2vec and active anomaly detection.

6.4.1 Performance of Stack2vec and Active Anomaly Detection

We begin by comparing the performance of the stack2vec embedding
with the conventional feature representation of function execution.
From our discussions with the scientists we learned that they usu-
ally construct a feature vector for each execution using the runtime
information, including execution time, exit time, message number,
and node id. We denote this method as “Time” in Table 3. Then, to
remove the influences of the outlier detection algorithms in our com-
parison, we employed two different anomaly detection methods: Local
Outlier Factor (LOF) [7] and the original One-Class Support Vector
Machine (OCSVM) [43]. To establish a baseline ground truth we asked
the three scientists SC1-3 to label all data after the case studies. We
tested the areas under both the Receiver Operating Characteristic curve
(ROC) and Precision-Recall curve (PR) of different anomaly detec-
tion pipelines, including Time+LOF, Stack2vec+LOF, Time+OCSVM,
and Stack2vec+OCSVM. As shown in the top four rows in Table 3,
stack2vec has better performance than Time. This is because stack2vec
is able to encode structural information of the complete call stack.

We also compare the unsupervised anomaly detection approaches
with our OCSVM with active labeling (“AL” in Table 3). Stack2vec+AL
improves the performance significantly in both datasets. This is because
the automatic outlier detection approach only allows the user to set
a hyper-parameter such as the percentage of outliers for the overall
dataset. This tends to be sub-optimal since the domain knowledge



Methods Case 1 & 2 Case 3
ROC PR ROC PR

Time+LOF 0.970 0.792 0.919 0.575
Stack2vec+LOF 0.976 0.854 0.959 0.643
Time+OCSVM 0.958 0.760 0.919 0.557

Stack2vec+OCSVM 0.968 0.808 0.955 0.612
Stack2vec+SVM 0.994 0.921 0.990 0.716
Stack2vec+AL 0.993 0.909 0.990 0.732

Table 3. Comparison of areas under curves of both ROC and PR for
different representation approaches and anomaly detection strategies.

is especially critical for identifying the specific runtime behavior in
performance analysis, such as the clustered anomalies in Case 2 and the
unusual but normal initialization subroutines in Case 3. For comparison
with a supervised model, we also test the SVM, which has a close
performance to AL. However, the labeled dataset for SVM training is
usually not available in most anomaly detection application.

6.4.2 Complexity of Stack2vec
Since the complexity of our anomaly detection is the same with the
original OCSVM, we only discuss stack2vec in this section.

In our accelerated WL algorithm, a vertex v appears only once in
its parent’s signature in the label propagation stage, and is visited once
more in its label compression stage. As a result, the total complexity for
h iterations is linear to the number of vertices in the forest O(h|T ||V |).
It is much faster than the original WL algorithm, which has a complexity
of O(h|T |2|V |) for a forest. In our algorithm, h is set according to the
maximum depth of the CSTrees, as mentioned in Section 4.1. Since
the call stack depth in parallel computing is limited (e.g., < 20), our
algorithm in practice is much faster.

During our study, we found that the sizes of subtree corpora gen-
erated by WL algorithm (see unique subtree number in Table 2) were
very small compared with the word corpus in a Natural Language Pro-
cessing (NLP) application. SC1 mentioned that this might be because
the CSTrees were generated from the same source code, limiting the
diversity of subtree patterns. Due to this reason, the scalability of
stack2vec is better than other doc2vec application in NLP. For a small
subtree corpus, we can also directly use the bag-of-subtree vector as
the input for anomaly detection without neural embedding.

To save time for interactive exploration and labeling, the WL algo-
rithm and neural tree embedding in stack2vec are pre-computed.

6.4.3 Parameter Settings
Since the subtree corpus is usually not large, stack2vec uses an embed-
ding size of 128, which we found is sufficient for the representation of a
CSTree structure. For anomaly detection, we use a radial basis function
kernel (Gaussian) in OCSVM. The regularization parameter C in Eq. 1
is regarded as the estimated number of outliers [43]. Based on the
anomaly frequencies we observed in our datasets, we set C = 0.02|T |.

6.5 User Feedback
We evaluated the learning cost and usability of our visual interface both
in the training session and in the interview session, respectively.

6.5.1 Learning Cost
In the training session, our instructor gave a 15-minute demo to explain
our algorithm and visualizations. Then SC1, SC2 and SC3 practiced
our system with the help of the instructor. They were free to stop
practicing whenever they felt ready. To evaluate the learning progress,
each participant was given a test which consisted of 6 exercises, which
tested user understanding of the proposed visualizations. For example,
“Find and select the top anomalous CSTree in the candidate list”. We
observed that all participants practiced for less than 10 minutes. In
the tests, the participants were able to respond to all exercises quickly
as expected without any help from our instructor. The participants
gave an average rating of 4.67 for the learning cost of our system (1 =
very hard, 5 = very easy). All of the participants mentioned that the
views were easy to follow since the tree and timeline visualizations are
commonly-used by the existing performance analysis tools [22] [13].

6.5.2 Usability
In the interview session, all participants rated the usefulness of our
system at 5 (1 = very useless, 5 = very useful). We then asked them
to give detailed evaluations of how our system supported their visual
analysis tasks. SC1 mentioned that the tree structure visualization
provided him intuitive understanding of the function call paths (T3).
He also commented that, “Usually the machine learning process is a
black box; it is hard to understand what is learned. But the Top Subtree
Visualization allowed me to get insights into what sub-structures make a
call stack anomalous”. SC2 suggested that our scatter plot allowed him
to explore and identify clustered anomalies, which were usually ignored
by an automatic outlier detection algorithm (T1). SC3 noted that our
system answered why the performance fluctuated in his NWCHEM
application. He commented that ranking candidates by anomaly scores
enabled him to only focus on the top anomalies among the large number
of function executions (T2). He also told us that the timelines allowed
him to quickly determine where the latency came from by examining
the execution duration and message distribution (T4).

The participants were also asked to compare our system with their
usual tools. All of them indicated that usually they could only se-
lect candidate anomalies by their long execution times. Furthermore,
they had to manually locate the time window of a candidate in Jump-
shot [55] to visualize the detailed call paths and messages. In contrast,
they praised our framework as more efficient in both identifying and
understanding the anomalous behaviors since it is based on the CSTree
representation. SC3 commented that our learning strategy allowed
him to flexibly adapt the model for special behaviors in HPC. He also
mentioned that the active labeling saved him a lot of effort, since he
only needed to inspect the potential anomalous executions.

6.6 Discussion and Generalizability
Our approach can be modified based on the actual cases for better
performance. First, although our CSTree representation ignores the
order of the function invocations, it still allows to model the temporal
order by adding directed edges between the sibling functions. Second,
cluster-based anomalies could be detected by employing a clustering
algorithm to supplement the OCSVM. In this case, clusters whose
average patterns are unusual would be reported as candidate anomalies.

We would like to emphasize that our framework is not restricted
to call stacks only. Rather, it applies to any application where the
data can be represented as a directed tree structure. For example, we
might use it for the identification of interesting branched lineages in
social or citation networks. Here, each person (paper) is a vertex and
each social link (citation) is modeled as a directed edge between the
persons (papers) starting at some root person (paper). The weights
might be some importance metric defined on each person (paper). Our
framework could then identify anomalous (sub)structures that point to
interesting personalities or papers and key connections for either.

Our approach is also able to be extended to cyclic graph structures.
In this case, the substructure features can be extracted by the original
WL labeling algorithm, which deals with the general graph.

7 CONCLUSION

We described a visual analytics approach for detecting anomalous
executions in HPC clusters. For this purpose we created a CSTree
representation and devised a stack2vec embedding method to model the
runtime behavior. Moreover, we proposed an active labeling strategy
that integrates anomaly detection and user input of domain knowledge
during the visual analysis.

For future work, our approach can be integrated with the machine
log analysis and source code study for a complete analysis pipeline of
the execution scheduling and code design optimization.

ACKNOWLEDGMENTS

We thank Shinjae Yoo, Wen Zhong and Jianing Yan for helpful discus-
sions. This research was partially supported by NSF grant IIS 1527200,
BNL LDRD grant 16-041, ECP CODAR project 17-SC-20-SC, and the
MSIP (Ministry of Science, ICT and Future Planning), Korea, under
“IT Consilience Creative Program (ITCCP)” supervised by NIPA.



REFERENCES

[1] N. Abe, B. Zadrozny, and J. Langford. Outlier detection by active learning.
In Proceedings of the 12th ACM SIGKDD, pp. 504–509. ACM, 2006.

[2] L. Adhianto et al. Hpctoolkit: Tools for performance analysis of opti-
mized parallel programs. Concurrency and Computation: Practice and
Experience, 22(6):685–701, 2010.

[3] D. C. Arnold, D. H. Ahn, B. R. De Supinski, G. L. Lee, B. P. Miller, and
M. Schulz. Stack trace analysis for large scale debugging. In IPDPS 2007.
IEEE International, pp. 1–10. IEEE, 2007.

[4] M. Bicego and M. A. Figueiredo. Soft clustering using weighted one-class
support vector machines. Pattern Recognition, 42(1):27–32, 2009.

[5] G. Blanchard, G. Lee, and C. Scott. Semi-supervised novelty detection.
Journal of Machine Learning Research, 11(Nov):2973–3009, 2010.

[6] K. M. Borgwardt and H.-P. Kriegel. Shortest-path kernels on graphs. In
IEEE ICDM, pp. 8–pp. IEEE, 2005.

[7] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: identifying
density-based local outliers. In ACM SIGMOD, vol. 29, pp. 93–104, 2000.

[8] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM computing surveys (CSUR), 41(3):15, 2009.

[9] W. Chen, J. Xia, X. Wang, Y. Wang, J. Chen, and T. Gu. Relationlines:
Visual reasoning of egocentric relations from heterogeneous urban data.
ACM Transactions on Intelligent Systems Technology, 2018.

[10] S. Cheng and K. Mueller. Improving the fidelity of contextual data layouts
using a generalized barycentric coordinates framework. In Visualization
Symposium (PacificVis), 2015 IEEE Pacific, pp. 295–302. IEEE, 2015.

[11] S. Cheng and K. Mueller. The data context map: Fusing data and attributes
into a unified display. IEEE TVCG, 22(1):121–130, 2016.

[12] S. Cheng, W. Xu, and K. Mueller. Colormapnd: A data-driven approach
and tool for mapping multivariate data to color. IEEE TVCG, pp. 1–1,
2018. doi: 10.1109/TVCG.2018.2808489

[13] N. Ezzati-Jivan and M. R. Dagenais. Multi-scale navigation of large trace
data: A survey. Concurrency and Computation: Practice and Experience,
29(10), 2017.

[14] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed
placement. Softw. Pract. Exper., 21(11):1129–1164, Nov. 1991. doi: 10.
1002/spe.4380211102

[15] J. Gao, H. Cheng, and P.-N. Tan. Semi-supervised outlier detection. In
Proceedings of the 2006 ACM symposium on Applied computing, pp.
635–636. ACM, 2006.

[16] M. Geimer, F. Wolf, B. J. Wylie, E. Ábrahám, D. Becker, and B. Mohr. The
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