Shear-Warp Deluxe: The Shear-Warp Algorithm Revisited

Jon Sweeney and Klaus Mueller

Department of Computer Science, State University of New York at Stony Brook

Abstract

Despite continued advances in volume rendering technology, the Shear-Warp algorithm, although conceived as
early as 1994, still remains the world’s fastest purely software-based volume rendering algorithm. The impressive
speed of near double-digit framerates for moderately sized datasets, however, does come at the price of reduced
image quality and memory consumption. In this paper, we present the implementation and impact of certain mea-
sures that seek to address these shortcomings. Specifically, we investigate the effects of: (i) post-interpolated clas-
sification and shading, (ii) matched volume sampling on zoom, (iii) the interpolation of intermediate slices to
reduce inter-slice aliasing, and (iv) the re-use of encoded RLE runs for more than one major viewing direction to
preserve memory. We also study a new variation of the shear-warp algorithm that operates on body-centered cubic
grids. We find that the reduction of the number of voxels that this grid affords translates into direct savings in ren-

dering times, with minimal degradation in image quality.

1. Introduction

Volume graphics is a graphics technology that has gained
immense momentum in recent years. In volume graphics the
object exists discretized on a 3D raster, which is in stark con-
trast to polygonal graphics where the object is represented as
a hull of polygons. A steadily growing list of applications has
emerged that show great benefits from maintaining a volumet-
ric data representation. A few of these are listed here: medical
diagnosis and surgical simulation, CAD/CAM prototyping
and industrial design, oil and gas exploration, virtual sculpt-
ing, teaching of biology and chemistry in high schools, com-
puter games and special effects for movies, scientific data
exploration, and information visualization, such as for busi-
ness, stock market, and economy.

However, up to this date, it has remained a great challenge
to perform high-quality volume rendering at interactive fram-
erates. But interactive display is an absolute necessity if vol-
ume graphics is to become a mainstream graphics technology.
Users have simply become too spoiled by the amazing speed
of polygonal graphics to accept renderers that don’t produce
at least ten frames/s for these type of applications. There are
four main paradigms in which volume rendering is performed
in current days: raycasting [12][27], splatting [28], shear-warp
[10], cell-projection [15][25], texture-mapping hardware-
assisted [4][7][21], and via custom hardware [16][20]. At this
time, only custom hardware can achieve interactive framer-
ates in excess of 30 frames/s while still providing excellent
image quality. The approaches that use modern PC graphics
cards, such as the GeForce3 and the ATI Radeon have come
closer in quality in recent years and have also demonstrated
high framerates, but at a much reduced cost. Raycasting and
splatting, on the other hand, have shown images of superior
quality, but are usually not interactive [17]. A notable excep-
tion is the system devised by Knittel [8], which exploits
Intel’s MMX and Streaming SIMD in conjunction with

aggressive caching to achieve interactive framerates. How-
ever, due to the limited graphics memory capacity of any of
the hardware-based approaches and perhaps cost constraints,
there still are certain advantages to employing a software-
based renderer.

The shear-warp algorithm is a purely software-based ren-
derer, although some of its concepts have found a hardware
implementation in the VolumePro500 volume rendering board
[20]. Shear-warp was invented by Lacroute and Levoy [10]
and can be considered a hybrid between image-order algo-
rithms, such as raycasting, and object-order algorithms, such
as splatting. In shear-warp, the volume is rendered by a simul-
taneous traversal of RLE-encoded voxel and pixel runs, where
opaque pixels and transparent voxels are efficiently skipped
during these traversals. Further speed comes from the fact that
a set of interpolation weights is pre-computed per volume
slice and stays constant for all voxels in that slice. The caveat
is that the image must first be rendered from a sheared volume
onto a so-called base-plane, aligned with the volume slice
most parallel to the true image plane (see Fig. 1). After com-
pleting the base-plane rendering, the base plane image is
warped onto the true image plane and the resulting image is
displayed. All of this combined enables framerates in excess
of 10 frames/s on current PC processors, for a 1283 volume.

AAAAA

volume slice shearing

baseplane image
p g ~ ~ ~

~ ~
~ ~
. N
warping ~

N
~

displayed image

Figure 1: A sketch of the shear-warp mechanism.

However, there are a number of compromises that had to
be made in the process:

+ Since the interpolation only occurs within one slice at a
time, more accurate tri-linear interpolation reduces to less
accurate bi-linear interpolation and the ray sampling dis-
tance varies between 1 and /3, depending on the view ori-
entation. This leads to aliasing and staircasing effects at
viewing angles near 45°.

* Since the volume is run-length encoded the authors use
three sets of voxel encodings, one for the each major view-
ing direction. This triples the memory required for the runs,
and it also causes visible switching artifacts when the major
viewing direction changes. Similar popping artifacts can
also be observed with the original implementation of splat-
ting [28] when the major viewing axis along which compos-
iting is performed changes at 45° (see [18] for more details).

* Since there is only one interpolated value per voxel-slice 4-
neighborhood, zooming can only occur during the warping
phase and not during the projection phase. This leads to con-
siderable blurring artifacts at zoom factors greater than 2.

* Finally, the fact that voxels are stored and interpolated pre-
shaded leads to additional blurring. This effect was demon-
strated, for example, in [19].

All of these effects and shortcomings have already been
demonstrated in the recent comparison paper by Meissner
et.al. [17]. The work reported in the present paper seeks to
devise efficient solutions to these shortcomings. Although it
can be expected beforehand that these solutions will most
probably lower rendering speed, it is unclear how much of a
performance hit one will have to accept, and by how much
rendering quality will improve. After all, we do not want to
give up the hallmark-features of the shear-warp algorithm:
The efficient in-slice interpolation scheme that affords the use
of RLE-encoded runs, the pre-computed interpolation
weights, and the post-rendering warp. Doing so will necessar-
ily compromise image quality, so one should still not expect
an image quality that rivals that of raycasting.

In our actual implementation, we also sought to employ
“minimally invasive code surgery”, that is, we wanted to keep
our changes simple, reusing as much of the original code as
possible. We first re-implemented the original shear-warp
algorithm at a fairly optimized level, but without some of the
generality of Lacroute’s original implementation, volpack [1].
Then we added the new features, including the ability to ren-
der body-centered cubic grids. Body-centered cubic grids [6],
or BCC grids for short, were recently discovered for their
application in volume rendering by Theussl, Méller, and
Groller [26]. By storing the voxels in this grid arrangement
(eight voxels at the vertices of a cube and one in its center)
one can reduce the number of voxels by about 30%, but still
maintain the same signal content in frequency space. We shall
see more on the implementation of this grid in section 4.

Previous work related to the shear-warp algorithm includes
two parallel implementations, one on a shared-memory
machine [11] and one on a distributed-memory machine [2].
Also noteworthy is the 4D shear-warp extension by [3] and

the recent implementation of an improved perspective shear-
warp method in a virtual reality setting [24]. Finally, there are
two prior works that have employed a shear-warp factoriza-
tion, but without the RLE volume encoding [5][23].

Our paper is organized as follows: First, in section 2, we
describe the shear-warp algorithm in closer detail, in the con-
text of our modifications. Then, in section 3, we describe the
new features and their implementation, while section 4 dis-
cusses the extension of the shear-warp algorithm to BCC
grids. Finally, section 5 shows the results we were able to
obtain, and section 6 concludes the paper.

2. Preliminaries

Consider Fig. 2 where we have attempted to construct a
pseudo-code outline of shear-warp’s essentials. We have omit-
ted a few details here for brevity and conciseness, and the
interested reader may refer to Lacroute’s dissertation [9] for
more detail. We will be expanding on this pseudo-code in sub-
sequent sections, when we add our modifications and exten-
sions.

The function Construct Shade Cube() produces a cubic
reflection map that can be indexed by a shade index which in
turn can be calculated from an un-normalized gradient vector
[22]. The function RLE Encode() produces RLE encodings
(see insert in Fig. 2) of the voxel data for all three major view-
ing directions, given the current opacity transfer function
AlphaTF. Each RLE voxel carries the voxel density and the
shading index that can be employed to index the shading table
during rendering. Depending on the viewing direction, the
appropriate RLE encoding is chosen, the view matrix My;e,, is
factorized into the shear matrix Mg, and the warp matrix
Myarp, the shear parameters are calculated based on Mgpe,p,
and the rendering into the base image is begun. For each slice
k, the offset into the base plane image is given by the shear
parameters, and the interpolation weights for this slice are
computed based on this offsets.

When the slice is rendered into the base plane image, two
adjacent voxels runs, bot run and top_run, are always tra-
versed concurrently and the pixel run that falls inbetween
these runs is updated. The position of the pixels with respect
to the run voxels is the same for all pixels. This is why the
interpolation weights can be pre-computed, and this is also
why the base-plane image must have the same resolution as
the voxel slices, no matter what the zoom factor may be. Next,
the pseudocode lists the mechanism that achieves the two-
way skipping of transparent voxels and opaque pixels. When-
ever a non-opaque pixel within a non-transparent run of vox-
els is identified, the shading index is used to retrieve the
diffuse and specular color from the shading table and the pixel
is composited with the corresponding baseplane image pixel.
Following, the RLE encoding of the baseplane image opaci-
ties is updated. Finally, after rendering all slices in this man-
ner, the baseplane image is warped into the displayed image,

using the warp matrix My,

We will now describe the modifications we have made to
this standard algorithm.

Shear_Warp (voxel data)

if New(Myjey) RLE Y
shade_table < Construct_Shade Cube(My;ey» L, E);
if New(transfer_function) E
RLE Encode(voxel data, RLE X, RLE Y, RLE Z);
if (major_viewing_axis == X) current RLE <~ RLE X — RLE X
if (major_viewing_axis ==Y) current RLE <— RLE Y; 4|>
if (major_viewing_axis ==Z) current RLE <~ RLE Z; y — >
Factorize(Myicy» Mshear Mwarp); >
Calc_Shear_Parameters(Mg)e,p» shear_u, shear_v, trans_u, trans_v); RLE
base_image <— Render(current RLE); X
display_image < Warp(base_image, My,arp);
z
Render (current RLE)
base image.Initialize();
num_scanline_pixels <« slice_width; RLE_Encode (voxel_data, RLE_X, RLE_Y, RLE_Z7)
num_scanlines < slice_ height; for all voxels in voxel data with AlphaTF[voxel.density] >0
for k < front_slice ... end slice, +1 RLE voxel.shade index <— Calc_Shade Index (voxel.gradient);
Composite_Slice (k); RLE_voxel.density <— voxel.density;
return(base_image); RLE X.Add (RLE X, RLE voxel);
RLE Y.Add (RLE voxel);
Composite_Slice (k) RLE Z.Add(RLE voxel);

slice u <~ k - shear u + translate u;

slice v < k - shear v + translate_v;

slice_u_int < floor(slice_u);

slice_v_int < floor(slice_v);

weights[4] <« Compute Voxel Weights(slice u, slice_u_int, slice v, slice_v_int); | |
forj <~ 0 ... num_scanlines-1, +1 O | O | O

fori < 0 ...num_scanline pixels-1, +1
|

bot_run <« Skip_Transparent Voxels (i, j, k, current RLE);

top_run < Skip_Transparent_Voxels (i, j+1, k, current RLE); top_run w3l - = -
pixel_start «<— Min (bot_run.start voxel, top_run.start voxel); O . | W0
pixel_end < Max (bot_run.start_voxel + bot_run.length, w(2] '\ ixel
top_run.start_voxel + top_run.length); bot run + —w[I
for pixel < pixel start ... pixel end, +1 - Co |
pixel < Skip_Opaque Pixels (pixel, j, base plane image.opacity RLE) O ot O " O
if (pixel > pixel_end) | !
break; I I
voxel square «— Get Voxel Square (bot run, top_run, pixel); voxel square
composited_opacity <— Composite Pixel (voxel square, weights); -
if composited opacity > 0
Update Opacity RLE (pixel, base plane image.opacity RLE);
1 < pixel;
Composite Pixel (voxel square, weights)
voxel_square.opacities <— AlphaTF[voxel square.densities];
pixel opacity < Interpolate (voxel square.opacities, weights);
if pixel opacity > 0
voxel_square.shades <— Get_Shades (shade_table, voxel square.shade indices);
voxel_square.colors «<— Calc_Colors (voxel square.shades, voxel square.densities, ColorTF);
pixel_color « Interpolate (voxel square.colors, weights);
composited_opacity <— Composite (pixel_color, pixel _opacity, base_plane_image.pixels);
return (composited_opacity);
Figure 2: Pseudocode of the standard shear-warp algorithm.
3. The Modified Shear-Warp Algorithm 3.1. Re-use of RLE runs for multiple major viewing axes
In this section we will elaborate on the four modification Consider the insert in Fig. 2 where we show the map of
we have introduced into the standard shear-warp algorithm RLE encodings. From this drawing one can casily observe
described in the previous section: (i) the re-use of encoded that the individual scanline runs of RLE_Z and RLE_Y are
RLE runs for more than one major viewing direction to pre- identical. The only difference is the order in which they are
serve memory, (ii) post-interpolated shading, (iii) matched used, which is determined by the major viewing axis. If we
volume sampling on zoom, and (iv) the interpolation of inter- keep an array of pointers into the RLE datastructure, one for

mediate slices to reduce inter-slice aliasing. each major viewing direction, then we can use RLE Z for

original edge original edge

classification Mpolaﬁon

classification

pre-shading

interp@_

pre-classified shading

post-shading

post-classified shading

Figure 3: An edge rendered both with pre-interpolated
shading (left) and post-interpolated shading (right). The
order of classification, shading, and interpolation is inter-
changed in these two variations. In post-interpolated shad-
ing, the blur left by the interpolation filter can be removed
in the classification stage, while in pre-interpolated shad-
ing the interpolation is the final stage and the blur remains.

both major viewing axes, y and z, and we neither have to
compute nor store RLE Y, however, we would still need
RLE X. Note that we could have instead combined RLE_Y
and RLE X, if we had ran RLE Y along the z-axis. Since the
scanlines accesses may be out of RLE sequence (for the y-
axis in the above example), a map into the RLE datastructure
is required to locate the RLE encoding of a given scanline. We
use the array of pointers for this. Using such an array-indexed
RLE encoding, the space savings are O(n/3)) where n is the
total number of non-zero voxels. Since the scanlines are suffi-
ciently long and fill a cache line easily, a degradation in cache
performance is unlikely.

3.2. Post-interpolated classification and shading

Traditional shear-warp uses pre-interpolated shading, i.e.,
all voxels are first classified and shaded, and the shaded vox-
els are then interpolated during rendering. However, interpo-
lating a pre-shaded voxel neighborhood leads to blurred
edges, especially on zooms. This was demonstrated, e.g., in
[19] for splatting. The blurring will be less pronounced for
shear-warp since a linear interpolation kernel of extent=2 grid
spacings is used, in contrast to splatting’s Gaussian kernel that
has an extent of 4 grid spacings. Consider Fig. 3 for an illus-
tration of this effect.

Composite_Pixel Post_Classify (voxel square, weights)

pixel _density < Interpolate (voxel square.densities, weights);

pixel opacity <— AlphaTF[pixel density];
composited_opacity < 0;
if pixel opacity > 0

We can incorporate post-interpolation shading into the
shear-warp algorithm relatively easy. In the current form each
RLE voxel stores a density and a shading index, used to
retrieve the diffuse and specular shading from the shading
tables. For post-classification, we create a second table, called
the normal table, of the same resolution than the shading
table, where we store a cube map of normal vectors. Since
both tables have the same resolution, we can still use the
index stored in the RLE voxel, but we require one extra table
lookup in the shading and compositing phase. The required
modifications only affect the function Composite Pixel(), and
its new form Composite Pixel Post Classify() is illustrated
in Fig. 5. In terms of complexity the two versions are similar:
Per pixel, the same number of interpolations are required.
While post-classification requires the interpolation of a scalar
density and a 3-vector normal, the traditional method interpo-
lates an opacity scalar and a 3-vector color. Also, while the
post-classified method only needs one sample to be colored, it
requires the computation of an index into the shading table,
based on the value of the interpolated gradient. This is about
equivalent to coloring four samples in the standard method.

3.3. Matched volume sampling rate on zoom

The warp matrix M, determines the stretching of the
baseplane image. If the sampling rate of the displayed image
is greater than that of the baseplane image then the frequency
content of the baseplane image is not sufficient for the resolu-
tion of the displayed image and the displayed image will
appear as if the rendered scene was lowpassed or blurred. This
is illustrated in Fig. 5. There, Ax and Ay, the grid spacings of
the warped baseplane image, are both greater than the grid
spacing of the displayed image. We can obtain Ax and Ay
from the warp matrix. The warping equation is defined as:

warped base plane image

Ax \

warping
S by ? et |
/ T
'\\
— o J
. N1
base plane image 1
displayed image

Figure 5: The scaling of the warped base plane image.

voxel square.gradients <— Get Normals (normal_table, voxel square.shade indices);
pixel gradient < Interpolate (voxel square.gradients, weights);

pixel _shade index <— Calc_Shade Index (pixel gradient);

pixel shade <— Get _Shade (shade_table, pixel shade index);

pixel_color «— Calc_Color (pixel shade, pixel density, ColorTF);

composited_opacity «— Composite (pixel_color, pixel opacity, base plane_image.pixels);

return (composited_opacity);

Figure 4: The modified routine Composite Pixel Post_Classify() that replaces Composite_Pixel() in the pseudocode of Fig. 2.

X1l _ M XprI
warp
YBI Ypil

Woo Wot| [*pr (1)
Wio W11| Vb1

where xp; and yp; are the baseplane image coordinates, and
xp; and yp; are the display image coordinates, respectively.
From this we can compute Ax and Ay as follows:

2 2

Ax = Wwoo T Wio
2)

2 2

Ay = \wg twyy

Thus, if we wanted to make the grid spacing of the warped
baseplane in the displayed image about unity, then a base-
plane sampling rate of 1/Ax and 1/Ay would be required dur-
ing the rendering. A further constraint comes from the fact
that only integer sampling rates place the sample points at
constant positions within a square voxel neighborhood on a
slice. The number of samples, ns, and ns), required per square
voxel neighborhood is then written as follows:

2 2
ns, = L}Woo*Wm—‘)
3
[2
nsy = { w01+w11~‘

Thus, we require an array of ns,- ns,, weights[4] arrays instead
of the single weights[4] array in Fig. 2. Since we now have to
render ns, ns, sample points per voxel square, the rendering
complexity is also increased by that amount. There may, how-

ever, be some savings due to the efficient runs traversals.

Finally, for the warp we need to account for the increased
size of the baseplane image by dividing wy, and w;, by ns,
and wy; and wy; by ns,, respectively.

3.4. Intermediate slice interpolation

Due to the in-slice sampling of shear-warp, the inter-slice
sampling rate varies depending on the viewing angle. Con-
sider Fig. 6 where we show the 2D case. At 45° the distance
between adjacent sampling points is /2, on views down a
major diagonal it is /3 . Basic rules of sampling theory tell us
that we need at least a distance of 1.0 to combat aliasing arti-
facts and to remain within the Nyquist limit of the sampled
signal. We can achieve this by interpolating one intermediate
slice half-way between two adjacent volume slices. This is
shown as the dotted line in Fig. 6.

We do not actually have to interpolate each intermediate
slice, RLE-encode it and render it. We can do the inter-slice
interpolation on the fly, using the existing RLE-encoded
slices. For an illustration consider Fig. 7 where we show the
2D case. We can interpolate a sample point s;3 ,4 on interme-
diate slice k+0.5 as a two-step process from neighborhood
voxels v;, v,, v3, and v, on slice k and k+1, respectively, given
by the following expression:

$13,24 = Whetos izt Whios - iog
i3 = 0.5, +0.5v, (4)

iy, = 0.5v,+0.5v,

interpolated
y'ed intermediate slice

- = ~ volume slice

\ rays

Figure 6: Illustration of inter-slice undersampling and the
interpolation of one intermediate slice per volume slice
pair to resolve this. To show the actual sampling distance in
volume space, we have left the volume slices unsheared.

where Wiy 5 ; and weyy s . are the (left and right) weights
that result from shearing the intermediate slice by an amount
half way between that of slice £ and slice k+/. We can re-
order this expression as follows:

513,04 = 0.5v5 - wt +0.5v, - Wi o5,

k+0.5,1
(%)

+0.5v, - wt +0.5v, Wi, 05,

k+0.5,1

Thus we can composite slice £+0.5 in a 2-step process:
First we run through slice k£ again, now weighted by a factor
of 0.5 and with the interpolation weights set appropriate for
slice k+0.5 (first line of (5)). Then we run through slice k+1,
with identical interpolation weights and weighting (second
line of (5)). Once we have added together the contributions of
both slices, we can composite the result with the current base-
plane image in the usual way.

This approach allows us to take advantage of the existing
RLE-encoding of slice k and k+1. Although we have not done
so, one also could alter this algorithm slightly by simulta-
neously compositing slice & and constructing the first line of
(5), and do the same for slice k+/ and the second line of (5).

slice k+1
41 iny

Q__

S13,2 .
— slice k+0.5

slice k

slice k+1

13,241 |)
= (?_121 slice k+0.5

slice k

(b)

sheared ray

Figure 7: Intermediate slice in (a) unsheared space and (b)
sheared space.

However, the time savings may be offset by the fact that run
traversal would be sub-optimal since the pixels just occluded
by slice k£ would still be considered for slice £+0.5. The same
also holds true for the completed slice £+0.5 and slice k+1.

To implement intermediate slices, the functions Render(),
Composite_Slice(), and Composite_Pixel() need to be modi-
fied (see Fig.8). Before one goes on to change
Composite Pixel() one should realize, however, that pixels
that were touched by slice £ may not always be touched by
slice k+1, due to the transparency encoding. Hence, perform-
ing the compositing only when slice k+1 is processed will not
update these particular pixels, which will lead to wrong ren-
dering results. To make sure that all pixels are updated cor-
rectly one needs to composite pixels even for the first part of
the intermediate slice, weighted by a factor of 0.5. However, a
copy of the original baseplane image must be saved as well,
since in case the second part of the intermediate slice also
comes through, one needs to be able to undo the previous
compositing and subsequently re-composite with the
weighted sum of both parts of the intermediate slice.

Since the sample distance is now half of what is assumed
by shear-warp’s opacity correction table, we need to normal-
ize the opacity using the following well-known equation [13]:

a, =1-Jl-a (6)

where o is the sample_opacity in our application and o, the
normalized opacity. Further, if pre-interpolated shading is
used, the opacity-weighted colors [29] also need to be normal-
ized. Since we have not seen this published anywhere, we
shall briefly derive this result. If we assume a homogenous
voxel neighborhood of identical colors ¢; and opacities ¢; (as
was also assumed to derive (6)), then the interpolation result
in this voxel neighborhood will yield an opacity-weighted
color ca. Using these pre-conditions, we can write the com-

Render_Intermediate_Slices (current RLE)

base_image.Initialize();

num_scanline pixels < slice_width;

num_scanlines < slice height;

for k < front slice ... end_slice, +1
Composite_Slice Intermediate_Slices (k,0);
Composite_Slice Intermediate_Slices(k,0.5);
Composite_Slice Intermediate _Slices(k+1,-0.5);

return(base_image);

CompositeSlice_Intermediate_Slices (k, shear offset)
slice u «— (k+shear offset) - shear u + translate u;
slice_ v «— (k+shear offset) - shear v + translate v;
... no further changes

Composite_Pixel_I_S (voxel square, weights, shear offset)
if (shear_offset == 0)

// composite as usual
else if (shear offset == 0.5) // 1st half of interm. slice

// partial compositing, but save previous pixel rgbo
else if (shear offset == -0.5) // 2nd half of interm. slice

// final compositing, use partial & prev. pixel rgba

Figure 8: Modified routines for the pseudocode of Fig. 2

posited color of two interpolated, identical opacity-weighted
colors as follows:

(ca)(1-a,)*(ca) = (ca) (M

To achieve that (ca)’ is the same (cot) we would get had we
only used the original slices, we need to introduce a normal-
ization factor A:

Mea)(1-a,)+A(ca) = (ca) ®
Solving for A we get:

1 1

= = ®
2-0, 1+/1-a

Multiplying the interpolated opacity-weighted colors with A
yields the desired normalization.

A

Note that in the special case of a homogenous neighbor-
hood with identical voxel colors ¢; and opacities ¢; we could
also use cq,, instead of ca in (7), in which case no nomaliza-
tion by A would be needed. In the general case, however, the
¢; and ¢ are different, and weighted normalization of the indi-
vidual voxels c¢;o; would be more costly than normalization of
the interpolation result co.

4. Extending Shear-Warp to BCC grids

Body-centered grids are an efficient alternative to the tradi-
tional cubic cartesian grids we have considered so far. Pro-
vided that the signal’s frequency spectrum can fit into a
spherical shape, one can arrange the spectra into a closer
packing - without a loss of spectral information. This is highly
desirable since the Fourier scaling theorem states that the
closer the spectra are packed in the frequency domain, the fur-
ther apart samples can be placed in the spatial domain. It turns
out that the closest packing for spheres is the face-centered
grid (FCC grid), whereas the spatial equivalent of the face-
centered grid is the body-centered grid (BCC grid) [6]. See
Fig. 9 where we contrast a BCC grid cell with a cubic carte-
sian one. The samples are spaced further apart in the BCC
grid, reducing the number of required samples by 29.3%.

BCC grids have been recently used by Theussl et.al, [26]
for Westover-type splatting [28]. In the current work, we have
sought to render BCC grids with the shear-warp algorithm. It

|

}

|

|

®—_ — |-
7

7/

“—>
1.0

cubic cartesian grid

body-centered grid

Figure 9: A cubic cartesian grid cell vs. a body-centered
grid (BCC) cell, drawn in relative proportions. The BCC
grid cell has a sample point in the center of the cell.

Dataset Matched Rendered into a 5122 image (with enhancements)
(for image/view see resolution

Fig. 11 and 12) Size | Gridtype | Image | S | Magn.| S I P ™M | IMP
Cube 643 cartesian | 74> | 0.06 | 77 022 | 025 | 023 1.60 1.60
Cube 91-452 | BCC 74| 0.04 | 10% 017 | 028 | 025 | 2.80 | 3.00
Engine 1283 | cartesian | 1482 | 0.11 | 47 030 | 040 | 038 | 330 | 290
Engine 181-912| BCC 1482 | 007 | 52 027 | 037 | 035 | 3.80 | 440
Engine (transparent) | 128% | cartesian | 1482 | 022 | 42 0.44 - - - 12.0
CT head 128 | cartesian | 1487 | 0.11 42 033 | 055 049 | 431 4.40

Table 1: Timings (in secs) to render the selected datasets (engine, cube, CT head) for all shear-warp variations presented in
this paper. The left part of the table refers to renderings into a window of the same proportions than the dataset. The right part
of the table refers to renderings into a window of size 5122, The column labeled “Magn.” reports the number of samples
required per voxel (which were taken when the M option was turned on) to match volume sampling rate with image resolution.
(In this table: S: standard shear-warp, I: intermediate slice, P: post-interpolated shading/classification, M: matched.

turns out that the adaptation of shear-warp to handle these
grids is quite simple. Once one realizes that the BCC grid can
be regarded as two interleaved cubic grids, an elegant solution
exists to modify the shear-warp code. The first step is to
untangle these two cubic grids at volume read time. Let us
assume that both sub-grids have the same extents, just offset
by +/2/2 along all three axes. We can then RLE-encode
these two volume separately, using the first gradient estima-
tion method suggested by Theussl et.al. [26], i.e. using voxel
neighbors for central differencing that are /2 apart. Theussl
et.al. also suggest an alternative method that first interpolates
samples in the faces of the cube, and then uses these to esti-
mate the gradients. However, we have employed the former
method in our final solution since it is more convenient for
our purposes. It should also be noted that, although we now
have /2 more slices than before, the total number of voxels
in the runs is reduced since each slice has only 1/2 of the orig-
inal voxels.

During rendering, we will encounter slices of the two inter-
leaved volumes in an alternating fashion. Hence, we will need
to switch back and forth between slices of the two RLE-
encoded volumes. But recall that the two volumes are offset
by one half the grid distance. Thus, we also need to add a fac-
tor of 0.5 to the shear factor for all slices of one of the two
volumes. These are all the modifications required, and the
modified code is shown in Fig. 10.

CompositeSlice BCC (kk)
if (Odd (kk)) sub_volume <« 0;
else sub_volume « 1;
slice_u < kk - shear_u + translate_u+sub_volume - 0.5;
slice v < kk - shear v+ translate v+ sub_volume - 0.5;
slice_u_int < floor (slice u);
slice_v_int < floor (slice_v);
current RLE < current RLE array[sub_volume];
k «kk/2;

Figure 10: Modified Composite_Slice() routine to handle
BCC grids.

Note that for shear-warp to work we must assume an in-
slice grid spacing of 1.0 in the actual rendering. This means
that the volume will appear smaller on the screen if we don’t
compensate for this by adding a scale factor to the warp
matrix. This post-rendering magnification, however, may lead
to blurring, and one should really cast /2 rays per grid cell.
Unfortunately, this is inconvenient for shear-warp, due to its
present design constraint that the number of samples per unit
must be an integer value. Hence, the only choice at the present
time is to use the matched sampling approach outlined earlier
and use 4 samples per voxel square, if one seeks to match the
resolution of the regular cubic grid.

Extending BCC shear-warp to post-interpolated shading
and classification as well as matched sampling is straightfor-
ward. The calculation of intermediate slices requires proper
shifting of consecutive slices, according to the factors given in
Fig. 8 and Fig. 10.

5. Results

We incorporated all presented methods into our own
implementation of the shear-warp algorithm. At the present
time our implementation can only handle orthographic projec-
tions. We used a PC with a 1.2 GHz PentiumlII processor and
128 MB of RAM for all experiments. The space-efficient
RLE scheme was compared with the traditional one (both
using a pointer array to locate individual RLE-encoded scan-
lines), and we found that both ran at about the same speed.

Table 1 lists the timings and Fig. 11 and Fig. 12 (the color-
plate) show the associated images (all 5122 pixels). For the
labeling, we use the following encodings: S: Standard shear-
warp, [: with intermediate slices, P: post-interpolated classifi-
cation and shading, and M: matched sampling. We then con-
catenate these to indicate the settings we chose (our
application allows us to choose any combination of settings).

The first column in Fig. 11 shows renderings of a binary
cube of 64 voxels on a cartesian grid. One observes that pre-
interpolated shading and classification causes artifacts on flat

opaque surfaces (S). These artifacts can be reduced somewhat
by interpolating intermediate slices (1), but can only be fully
removed by first interpolating the voxel densities and then
classifying the resulting sample values via the opacity transfer
function (IP). However, it is quite noticeable that the cube
edges (the sharp object features) still suffer from the under-
sampling (the image baseplane has 74> pixels, but we need
5122). By using 72 samples per voxel square, the cube renders
at excellent quality.

The second column in Fig. 11 shows renderings of the
binary cube resampled into a BCC grid. In fact, we obtained
all BCC volumes from the original cartesian ones via interpo-
lation with a radially symmetric Gaussian filter. The number
of samples of the BCC grid is about 72% of its cartesian coun-
terpart. We notice that all renderings have the same quality
trends than the cartesian ones, but appear more blurred, which
is probably due to the lowpassing of the resampling filter.
Although it is true that we could have directly sampled the
cube into the BCC grid to reduce the blurring, this cannot be
done in the general case since real-life volume datasets do
(not yet) come sampled on BCC grids and thus must be resa-
mpled anyhow. We shall defer further discussions relating to
proper BCC test volumes and filter functions to a forthcoming

paper.

In order to evaluate the effectiveness of our modifications
in a more formal way, we also rendered the Marschner-Lobb
function (MLF) [14]. The MLF is a function that has an
almost uniform frequency spectrum for which 99.8% of the
frequency content is contained within the Nyquist limit. Set-
ting the isovalue to 128 we observe that only by using post-
interpolated classification one can overcome the excessive
blurring. Since the MLF has been predominantly used to eval-
uate interpolation filters with raycasting at a stepsize of 0.1
and less, we cannot expect to get comparable results when
using a stepsize of 1.72 with shear-warp. By introducing one
intermediate slice per regular slice pair we can improve mat-
ters. Ideally one would use a root-finding algorithm to find the
exact iso-surface at a density of 128.

Fig. 12 (the colorplate) continues our study with real-life
datasets. The two left-most columns show the engine block,
viewed along one of the main diagonals (the hardest case for
shear-warp). The left-most column shows the volume on the
regular cartesian grid, while the center column shows the vol-
ume sampled into the BCC grid. We can make similar obser-
vations than we did for the cube. Flat surfaces have reduced
staircasing artifacts when an intermediate slice is introduced.
Using matched sampling improves the rendering quality sub-
stantially, especially when post-interpolated classification/
shading is used. Again, the BCC grid leads to somewhat blur-
rier volumes, but otherwise follows the same trends than the
cartesian volumes.

The right-most column in Fig. 12 shows the engine ren-
dered in semi-transparent mode. The quality is noticeably
improved when all options are turned on. Finally, we also
show two renderings of the CT head dataset on a regular Car-
tesian grid, with similar quality and timing characteristics

than the engine.

We shall now turn to Table 1, where the first two time-
related columns (labeled ‘S’) indicate that the time required
for warping a baseplane image into a larger screen image can
be substantially greater than the time spent on the volume ren-
dering. Although this cost could be easily absorbed by
employing commodity 2D texture mapping hardware [20], the
artifacts due to image-based magnification will still exist, and
the following columns of Table 1 focus on our enhancements
in these regards. (The timings relate to the images shown in
Fig. 11 and 12.) We observe that the intermediate slice inter-
polation adds about 1/3 of the standard time, while post-clas-
sification decreases run-time by a small amount. The cost for
interpolating extra samples to match the image resolution is
generally more substantial, on an order of magnitude, but
depends on data, rendering mode, and magnification.

We also observe in Table 1 that by using the BCC grid we
can get speedups of about 33% on average, for the cases in
which none of the new options were turned on. This trend
reverses when intermediate slices are interpolated, since the
BCC grid has more slices and thus requires more intermediate
slices to be interpolated. We may add, that for all BCC vol-
umes, in order to compare the timings with respect to equiva-
lent image size, we use the same image resolution than for the
cartesian volumes, although the BCC base plane image has a
smaller resolution. This means that the displayed image will
have to be upsampled by 30% at warp time, a circumstance
that also contributes to the blurring observed in the images.

6. Conclusions

The primary goal of this paper is to analyze the short-com-
ings of shear-warp, i.e., blurry images on zoom as well as
ragged edges and staircase artifacts on flat surfaces, and to
devise measures that alleviate these. The former problem can
be met by matching the in-slice sampling rate with the image
resolution in conjunction with post-interpolation classifica-
tion and shading, while the latter issue can be helped by inter-
polating and compositing, on-the-fly, one intermediate
volume slice per original slice-pair. While the intermediate
slices and the post-classification help improve image quality
and can be achieved with only little performance penalty,
interpolating extra samples improves the quality most but is
expensive and renders the algorithm non-interactive. If the
volume is viewed un-zoomed, then interpolating an extra slice
and doing post-classification seems to be a viable solution to
improve the quality and still maintain reasonable rendering
speed. One of the major speed gains of shear-warp is rooted in
the fact that the volume sampling resolution is independent of
the image resolution since the base plane image is simply
upsampled for display. As one could do this for any volume
rendering algorithm, the increase in runtime for adding extra
samples seems justified. As a matter of fact, the runtimes in
the IMP columns are quite comparable with frame times
achieved by other volume rendering algorithms with good
occlusion culling. Finally, the fact that the runtime grows at a
smaller rate than the number of samples is an indication for
the relative efficiency of the run traversal mechanism.

We also investigated the rendering of volumes sampled
into the body-centered (BCC) grid. We found speedups of
33%, on average, paired with a 30% smaller memory foot-
print for the data. Since shear-warp must use one pixel per
voxel-square, the reduced number of slice voxels in the BCC
grid translates directly into speed-ups over the cartesian grid
algorithm which has more slice voxels. However, we also
found that the speedups revert to severe slowdowns once
intermediate slices are interpolated, since BCC grids have
42% more slices. The images also tend to be more blurrier
than those of the cartesian grid volumes for equivalent image
sizes since the BCC grid has 30% less voxels per slice row
and column. This can be fixed by using 4 samples per voxel
square, which however, now brings the complexity above that
of cartesian grids and the time advantage is lost (the space
advantage, however, still persists).

For future research, it might be interesting to investigate
schemes that use four RLE runs on two adjacent slices in con-
junction with trilinear interpolation. This would be a conse-
quential improvement along the lines of our intermediate
slices. We also would like to improve the calculation of the
shading cube by replacing the repeated lighting calculations
for each new view point by a simple warp of the shading cube.

Acknowledgements

This research was supported, in part, by NSF CAREER
grant ACI-0093157. We would like to thank Tom Theussl and
Torsten Moller for helpful discussions on BCC grids, and the
paper reviewers for their insightful comments.

References

[1] http://www-graphics.stanford.edu/software/volpack/

[2] M. Amin, A. Grama, V. Singh, “Fast volume rendering
using an efficient, scalable parallel formulation of the
shear-warp algorithm,” Parallel Rendering Sympo-
sium’95, pp. 7-14, 1995.

[3] K. Anagnostou, T. Atherton and A. Waterfall, “4D vol-
ume rendering with the Shear Warp factorisation,” Symp.
Volume Visualization and Graphics’00, pp. 129-137,
October, 2000.,

[4] B. Cabral, N. Cam, and J. Foran, “Accelerated volume
rendering and tomographic reconstruction using texture
mapping hardware”, Symp. on Volume Visualization 94,
pp. 91-98, 1994.

[5] G. Cameron and P. Undill, “Rendering volumetric medi-
cal image data on a SIMD-architecture computer,” Proc.
of Third Eurographics Workshop on Rendering, pp. 135-
145, 1992.

[6] D. Dudgeon and R. Mersereau, Multi-dimensional Digi-
tal Signal Processing, Prentice-Hall:Englewood Cliffs,
1984.

[71 K. Engel, M. Kraus, and T. Ertl, "High-Quality Pre-Inte-
grated Volume Rendering Using Hardware-Accelerated
Pixel Shading," Proc. SIGGRAPH Graphics Hardware
Workshop 01, pp. 9-16, 2001.

[8] G. Knittel, “The ULTRA VIS system,” Proc. Volume
Visualization and Graphics Symposium, pp. 71-80, Octo-
ber 2000.

[9] P. Lacroute, Fast Volume Rendering Using a Shear-Warp
Factorization of the Viewing Transformation, Ph.D. dis-
sertation, Technical Report CSL-TR-95-678, Stanford
University, 1995.

[10] P. Lacroute and M. Levoy, “Fast volume rendering using
a shear-warp factorization of the viewing transforma-
tion,” Proc. SSIGGRAPH ‘94, pp. 451- 458, 1994.

[11] P. Lacroute and M. Levoy, “Real-time volume rendering
on shared-memory multiprocessors using the shear-warp
factorization,” Proc. Parallel Rendering Symposium’95,
pp. 15-22, 1995.

[12] M. Levoy, “Display of surfaces from volume data”,
IEEE Computer Graphics. & Applications, vol. 8, no. 5,
pp. 29-37, 1988.

[13] B. Lichtenbelt, R. Crane, and S. Naqvi. Introduction to
Volume Rendering, Prentice-Hall:Saddle River, 1999.

[14] S. Marschner and R. Lobb, “An evaluation of reconstruc-
tion filters for volume rendering,” Proc. Visualiza-
tion’94, pp. 100-107, October, 1994.

[15] N. Max, P. Hanrahan, and R. Crawfis, “Area and Volume
Coherence for Efficient Visualization of 3D Scalar Func-
tions,” Computer Graphics, vol. 24, no. 5, pp. 27-33,
1990.

[16] M. Meissner, U. Kanus, and W. Strasser, "VIZARD II: A
PCICard for Real-Time Volume Rendering", Proc. Sig-
graph/Eurographics Workshop on Graphics Hard-
ware’98, pp. 61--67, 1998.

[17] M. Meissner, J. Huang, D. Bartz, K. Mueller, and R.
Crawfis, "A practical comparison of popular volume ren-
dering algorithms," Proc. 2000 Symp. on Volume Ren-
dering, pp. 81-90, October 2000.

[18] K. Mueller and R. Crawfis, "Eliminating Popping Arti-
facts in Sheet Buffer-Based Splatting," Proc. Visualiza-
tion’98, pp. 239-245, 1998.

[19] K. Mueller, T. Méller, and R. Crawfis, "Splatting without
the blur," Proc. Visualization’99, pp. 363-371, 1999.
[20] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L.
Seiler, “The VolumePro real-time raycasting system,”
Proc. SIGGRAPH 99, p. 251-260, Los Angeles, CA,

August 1999.

[21] C. Resk-Salama, K. Engel, M. Bauer, G. Greiner, and T.
Ertl, "Interactive volume rendering on standard PC
graphics hardware using multi-textures and multi-stage-
rasterization" Proc. SIGGRAPH/Eurographics Workshop
on Graphics Hardware 00, pp. 109-118, 2000.

[22] J. van Scheltinga, J. Smit, and M. Bosma, “Design of an
on-chip reflectance map,” Proc. Eurographics Work-
shop on Graphics Hardware’95, pp. 51-55, 1995.

[23] P. Schrdder and G. Stoll, “Data parallel volume rendering
as line drawing,” Proc. 1992 Workshop on Volume
Visuaization, pp. 25-32,.

[24] J. Schulze, R. Niemeier, and U. Lang, “The perspective
shear-warp algorithm in a virtual environment,” Proc.
Visualization 01, pp. 207-213, October 2001.

[25] P. Shirley and A. Tuchman. "A polygonal approximation
to direct scalar volume rendering," Computer Graphics,
vol. 24, no. 5, pp. 63-70, (San Diego Workshop on Vol-
ume Rendering), 1990.

[26] T. Theussl, T. Méller, and E. Groéller, “Optimal regular
volume sampling,” Proc. Visualization’01, pp. 91-98,
2001.

[27] H. Tuy and L. Tuy, “Direct 2D display of 3D objects”,
IEEE Computer Graphics & Applications, vol. 4 no. 10,
pp. 29-33, 1984.

[28] L. Westover, “Footprint evaluation for volume render-
ing”, Proc. SSIGGRAPH 90, pp. 367-376, 1990.

[29] C. Wittenbrink, T. Malzbender, and M. Gross, “Opacity--
weighted color interpolation for volume sampling,

Proc. 1998 Volume Visualization Symposium, pp. 135-
142, 1998.

Cube on cubic cartesian grid Cube on BCC grid Marschner-Lobb function

Figure 11: Rendering results, 5 12? image (S: Standard shear-warp, I: intermediate slice, P: post-interpolated classification, M: matched sam-

Engine on cubic cartesian grid Engine on BCC grid Transparent engine / CT head

Figure 12: Rendering results, 51 2 image (S: Standard shear-warp, I: intermediate slice, P: post-interpolated classification, M: matched sampling)

	1. Introduction
	Figure 1: A sketch of the shear-warp mechanism.

	2. Preliminaries
	3. The Modified Shear-Warp Algorithm
	3.1. Re-use of RLE runs for multiple major viewing axes
	3.2. Post-interpolated classification and shading
	Figure 3: An edge rendered both with pre-interpolated shading (left) and post-interpolated shading (right). The order of classif...

	3.3. Matched volume sampling rate on zoom
	Figure 5: The scaling of the warped base plane image.
	(1)
	(2)
	(3)

	3.4. Intermediate slice interpolation
	Figure 6: Illustration of inter-slice undersampling and the interpolation of one intermediate slice per volume slice pair to resolve this. To show the actual sampling distance in volume space, we have left the volume slices unsheared.
	Figure 7: Intermediate slice in (a) unsheared space and (b) sheared space.
	(4)
	(5)

	Figure 8: Modified routines for the pseudocode of Fig. 2
	(6)
	(7)
	(8)
	(9)

	4. Extending Shear-Warp to BCC grids
	Figure 9: A cubic cartesian grid cell vs. a body-centered grid (BCC) cell, drawn in relative proportions. The BCC grid cell has a sample point in the center of the cell.
	Figure 10: Modified Composite_Slice() routine to handle BCC grids.

	5. Results
	6. Conclusions
	[1] http://www-graphics.stanford.edu/software/volpack/
	[2] M. Amin, A. Grama, V. Singh, “Fast volume rendering using an efficient, scalable parallel formulation of the shear-warp algorithm,” Parallel Rendering Symposium’95, pp. 7-14, 1995.
	[3] K. Anagnostou, T. Atherton and A. Waterfall, “4D volume rendering with the Shear Warp factorisation,” Symp. Volume Visualization and Graphics’00, pp. 129-137, October, 2000.,
	[4] B. Cabral, N. Cam, and J. Foran, “Accelerated volume rendering and tomographic reconstruction using texture mapping hardware”, Symp. on Volume Visualization’94, pp. 91-98, 1994.
	[5] G. Cameron and P. Undill, “Rendering volumetric medical image data on a SIMD-architecture computer,” Proc. of Third Eurographics Workshop on Rendering, pp. 135- 145, 1992.
	[6] D. Dudgeon and R. Mersereau, Multi-dimensional Digital Signal Processing, Prentice-Hall:Englewood Cliffs, 1984.
	[7] K. Engel, M. Kraus, and T. Ertl, "High-Quality Pre-Integrated Volume Rendering Using Hardware-Accelerated Pixel Shading," Proc. SIGGRAPH Graphics Hardware Workshop’01, pp. 9-16, 2001.
	[8] G. Knittel, “The ULTRA VIS system,” Proc. Volume Visualization and Graphics Symposium, pp. 71-80, October 2000.
	[9] P. Lacroute, Fast Volume Rendering Using a Shear-Warp Factorization of the Viewing Transformation, Ph.D. dissertation, Technical Report CSL-TR-95-678, Stanford University, 1995.
	[10] P. Lacroute and M. Levoy, “Fast volume rendering using a shear-warp factorization of the viewing transformation,” Proc. SIGGRAPH ‘94, pp. 451- 458, 1994.
	[11] P. Lacroute and M. Levoy, “Real-time volume rendering on shared-memory multiprocessors using the shear-warp factorization,” Proc. Parallel Rendering Symposium’95, pp. 15-22, 1995.
	[12] M. Levoy, “Display of surfaces from volume data”, IEEE Computer Graphics. & Applications, vol. 8, no. 5, pp. 29-37, 1988.
	[13] B. Lichtenbelt, R. Crane, and S. Naqvi. Introduction to Volume Rendering, Prentice-Hall:Saddle River, 1999.
	[14] S. Marschner and R. Lobb, “An evaluation of reconstruction filters for volume rendering,” Proc. Visualization’94, pp. 100-107, October, 1994.
	[15] N. Max, P. Hanrahan, and R. Crawfis, “Area and Volume Coherence for Efficient Visualization of 3D Scalar Functions,” Computer Graphics, vol. 24, no. 5, pp. 27-33, 1990.
	[16] M. Meissner, U. Kanus, and W. Strasser, "VIZARD II: A PCICard for Real-Time Volume Rendering", Proc. Siggraph/Eurographics Workshop on Graphics Hardware’98, pp. 61--67, 1998.
	[17] M. Meissner, J. Huang, D. Bartz, K. Mueller, and R. Crawfis, "A practical comparison of popular volume rendering algorithms," Proc. 2000 Symp. on Volume Rendering, pp. 81-90, October 2000.
	[18] K. Mueller and R. Crawfis, "Eliminating Popping Artifacts in Sheet Buffer-Based Splatting," Proc. Visualization’98, pp. 239-245, 1998.
	[19] K. Mueller, T. Möller, and R. Crawfis, "Splatting without the blur," Proc. Visualization’99, pp. 363-371, 1999.
	[20] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler, “The VolumePro real-time raycasting system,” Proc. SIGGRAPH 99, p. 251-260, Los Angeles, CA, August 1999.
	[21] C. Resk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl, "Interactive volume rendering on standard PC graphics hardware...
	[22] J. van Scheltinga, J. Smit, and M. Bosma, “Design of an on-chip reflectance map,” Proc. Eurographics Workshop on Graphics Hardware’95, pp. 51-55, 1995.
	[23] P. Schröder and G. Stoll, “Data parallel volume rendering as line drawing,” Proc. 1992 Workshop on Volume Visuaization, pp. 25-32,.
	[24] J. Schulze, R. Niemeier, and U. Lang, “The perspective shear-warp algorithm in a virtual environment,” Proc. Visualization’01, pp. 207-213, October 2001.
	[25] P. Shirley and A. Tuchman. "A polygonal approximation to direct scalar volume rendering," Computer Graphics, vol. 24, no. 5, pp. 63-70, (San Diego Workshop on Volume Rendering), 1990.
	[26] T. Theussl, T. Möller, and E. Gröller, “Optimal regular volume sampling,” Proc. Visualization’01, pp. 91-98, 2001.
	[27] H. Tuy and L. Tuy, “Direct 2D display of 3D objects”, IEEE Computer Graphics & Applications, vol. 4 no. 10, pp. 29-33, 1984.
	[28] L. Westover, “Footprint evaluation for volume rendering”, Proc. SIGGRAPH’90, pp. 367-376, 1990.
	[29] C. Wittenbrink, T. Malzbender, and M. Gross, “Opacity-- weighted color interpolation for volume sampling, “ Proc. 1998 Volume Visualization Symposium, pp. 135- 142, 1998.

	Shear-Warp Deluxe: The Shear-Warp Algorithm Revisited
	Jon Sweeney and Klaus Mueller
	Department of Computer Science, State University of New York at Stony Brook
	Figure 4: The modified routine Composite_Pixel_Post_Classify() that replaces Composite_Pixel() in the pseudocode of Fig. 2.
	Figure 2: Pseudocode of the standard shear-warp algorithm.
	Table 1: Timings (in secs) to render the selected datasets (engine, cube, CT head) for all shear-warp variations presented in th...

	Figure 11: Rendering results, 5122 image (S: Standard shear-warp, I: intermediate slice, P: post-interpolated classification, M: matched sampling)
	Figure 12: Rendering results, 5122 image (S: Standard shear-warp, I: intermediate slice, P: post-interpolated classification, M: matched sampling)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

