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AbstractÐSplatting is a popular volume rendering algorithm that pairs good image quality with an efficient volume projection scheme.

The current axis-aligned sheet-buffer approach, however, bears certain inaccuracies. The effect of these is less noticeable in still

images, but clearly revealed in animated viewing, where disturbing popping of object brightness occurs at certain view angle

transitions. In previous work, we presented a new variant of sheet-buffered splatting in which the compositing sheets are oriented

parallel to the image plane. This scheme not only eliminates the condition for popping, but also produces images of higher quality. In

this paper, we summarize this new paradigm and extend it in a number of ways. We devise a new solution to render rectilinear grids of

equivalent cost to the traditional approach that treats the anisotropic volume as being warped into a cubic grid. This enables us to use

the usual radially symmetric kernels, which can be projected without inaccuracies. Next, current splatting approaches necessitate the

projection of all voxels in the iso-interval(s), although only a subset of these voxels may eventually be visible in the final image. To

eliminate these wasteful computations we propose a novel front-to-back approach that employs an occlusion map to determine if a

splat contributes to the image before it is projected, thus skipping occluded splats. Additional measures are presented for further

speedups. In addition, we present an efficient list-based volume traversal scheme that facilitates the quick modification of transfer

functions and iso-values.

Index TermsÐSplatting, volume rendering, visualization, rectilinear grids.
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1 INTRODUCTION

VOLUME rendering has gained great popularity in recent
years as it allows the user to comprehend and visualize

a volumetric dataset directly without requiring the genera-
tion of a polygonal iso-surface. Maintaining a volumetric
representation also enables easy manipulation and interac-
tion with the object: Volume morphing [6], sculpting [26],
and surgical simulations are just a few examples of the
immense potential that such a representation has to offer.
Volume rendering is appropriate for any discrete dataset
acquired from a formerly continuous object via sampling.
Most medical imaging technologies, such as MRI, CT,
Ultrasound, PET, and SPECT, fall into this category, but
scientific simulations, such as CFD and FEM, also generate
their output on a discrete grid (typically irregular or
curvilinear).

Medical applications mostly acquire their data as an axial

stack of 2D slices, where each slice is uniformly sampled on

a square grid. Oftentimes, the axial distance between slices

is larger than the sample distance within a slice and, thus, a

voxel is not a cube, but an elongated box with a square base.

Interpolation of intermittent slices is required if one desires

a cubic grid. This interpolation can either be performed

using a standard interpolation kernel, such as a Gaussian or

polynomial function, or by using shape-based interpolation

[7] that seeks to better preserve the object's original shape.

In any case, the interpolated slice data increases the

magnitude of the already large volume datasets and, in

order to maintain computational efficiency, it is more
preferable that the volume renderer can deal with the
unequal grid scaling without requiring extra interpolated
slices.

A popular volume rendering method is the Splatting
technique, proposed by Westover [27], [28], [29]. Here, each
voxel is represented by a 3D kernel, weighted by the
discrete voxel value. The algorithm gains its speed by pre-
integrating the 3D kernel into a generic 2D footprint. This
footprint can be efficiently mapped onto the image plane
and the collection of all projected footprints, weighted by
the voxel values, then forms the final image. By mapping
the footprint (image) onto a polygon, we can employ
standard 2D texture mapping hardware for the projection
process [2]. On the other hand, the footprint interpolation is
also easily done in software with fast DDA and rasterization
procedures [13], [16].

There are some disadvantages to the splatting approach:
The use of pre-integrated kernels introduces inaccuracies
into the compositing process since the 3D reconstruction
kernel is composited as a whole, and not piecewise, as part
of an interpolated sample along a viewing ray. Due to this
circumstance, the colors of hidden background objects may
bleed into the final image [27], [29]. The sheet-buffer
method was proposed to eliminate this problem [28], [29].
Here, the splats are added within consecutive cache-sheets,
represented by the volume slices most parallel to the image
plane. The sheets are subsequently composited together in a
back-to-front (or front-to-back) order. This method bears the
disadvantage that disturbing popping artifacts appear in
animated viewing. The artifacts occur at those viewpoint
transitions in which the view plane becomes more parallel
to a different volume face, causing the orientation of the
compositing sheets to flip abruptly by 90�. One should be
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aware, however, that popping artifacts are not unique to
splatting, but potentially occur for any algorithm that
abruptly switches the direction in which the volume is
composited. For example, the shear-warp algorithm [10]
also exhibits this problem, as do algorithms that composite
volume slices mapped as textures onto 2D polygons (see
e.g., [24]).

Splatting can be performed either in object-order [27],
[28], [29] or, as a ray-based approach, in image-order [16].
Each approach offers its own set of acceleration techniques:
iso-voxel lists [3] and splat hierarchies [11] for the object-
order technique, and space leaping [31], bounding boxes
[23], and early ray-termination [4] for the ray-based
approach. In terms of limiting the splatting effort to just
the voxels within the iso-range(s), it is clear that space
leaping and bounding boxes in the ray-based approach will
rarely be as effective as the explicit iso-voxel list used in
object-order approaches. However, early ray termination is
also a very powerful acceleration technique, but currently
confined to ray-based splatting only. In contrast, the object-
order splatting techniques typically project all of the voxels
in the iso-range, using a painter's algorithm type traversal,
even though many voxels may not be visible in the final
image. This is obviously wasteful in computational effort.
Clearly, great savings would ensue if we could combine the
advantages of early ray termination with those of iso-voxel
lists. For this to happen, we would need a screen occlusion
map in conjunction with a front-to-back object-order
traversal. This map would then be referenced by each iso-
voxel to determine its (partial) visibility. In this way, the
expensive splatting operation could be avoided for any
voxel that does not pass the partial visibility test. However,
maintaining and indexing a screen occlusion map for
splatting is not as simple as in point-based approaches
such as Reynolds et al.'s Dynamic Screen [20] or Lacroute

and Levoy's Shear-Warp algorithm [10], since a splat
potentially affects many image pixels and not just one.

This paper is organized as follows: First, in Section 2, we
discuss some relevant background material. Then, in
Section 3, we examine the popping artifacts that occur in
traditional sheet-buffered splatting and summarize our
image-aligned sheet-buffered splatting approach, pre-
viously presented in greater detail in [18] that eliminates
these artifacts. Next, in Section 4, we extend our algorithm
to rectilinear grids and describe a new grid-warping
technique that removes the original splatting approach's
requirement for ellipsoidal kernels. This avoids the in-
accuracies of this approach, but retains its efficiency. Next,
in Section 5, a new list-based volume traversal method is
described that allows both sheet-buffered splatting meth-
ods, i.e., the traditional method and our new algorithm, to
execute efficiently while enabling quick modification of
transfer functions and iso-ranges. Then, in Section 6, a novel
object-order, front-to-back traversal scheme is described
that uses the object-order equivalent to early ray-termina-
tion, i.e., early splat-elimination, to limit the splatting effort
to those splats that actually contribute to the final image.
Considerable speedups result from this scheme. In Section 7,
we present timings and show images that were obtained
with the new enhancements. Finally, we discuss future
work in Section 8.

2 PRELIMINARIES

The basic element in most volume rendering applications is
the volume rendering integral in its low-albedo form, first
described by Kajiya and Von Herzen [9]. For each pixel ray,
we compute I��xx; rr�, the amount of light of wavelength �
coming from ray direction rr that is received at point xx on
the image plane:
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Fig. 1. Volume rendering by compositing equidistant interpolated sheets in front-to-back or back-to-front order. Sheet-interpolated volume rendering
is equivalent to raycasting with simultaneous rays. A slice (i.e., ray) sample point is obtained by interpolating the discrete volume grid with an
interpolation kernel (shown as a tent filter here). This reconstructs (within some margin of error) the original volume function at the sample position.



I��xx; rr� �
Z L

0

���l� exp ÿ
Z l

0

��t� dt
� �

dl: �1�

Here, L is the length of ray rr. We can think of the volume
as being composed of particles that receive light from all
surrounding light sources and reflect this light toward the
observer according to the specular and diffuse material
properties of the particles [14], [21]. Thus, in (1), �� is the
light of wavelength � reflected at location l in the direction
of rr. Since volume particles have certain densities �
(translated to opacities), the light scattered at l is attenuated
by the particles between l and the eye according to the
exponential attenuation function.

Usually, (1) cannot be solved analytically and a dis-
cretized form involving a Riemann sum is used. This can be
accomplished with raycasting, where a ray samples the
volume at equidistant points, integrating the sampled
colors and opacities from front to back (see the individual
rays in Fig. 1). A ray sample is obtained by placing an
interpolation kernel h at the ray sample location and
weighting the surrounding volume grid samples by the
kernel function. The interpolated values can either be used
directly or as an index into transfer functions for color,
opacity, and also gradients.

The process of integrating colors and opacities along the
ray is called compositing. The exponential form of the
attenuation in (1) is commonly approximated by the over or
under operators, respectively, described by Porter and Duff
[19]. These operators approximate the exponential function
by the first two terms of its Taylor series expansion,
1ÿ R ��t�dt. This is commonly modeled by 1ÿ �, where � is
called opacity. In a front-to-back traversal, the over operator
composites a newly interpolated back sample with the
current partial integral, representing the front sample in this
context. The compositing process is a weighted sum of the
two samples, based on their opacities. For the over operator
(the under operator is just the complement), a composited
color c0 is computed from a back sample with color/opacity
�CB; �B� and a front sample �CF ; �F � with the following
expression:

c0 � CB�B�1ÿ �F � � CF�F � cB�1ÿ �F � � cF : �2�
Here, the colors written in lowercase denote sample

colors that were premultiplied by their respective sample
opacities. By using the over operator in sequence, all sample
values along a ray can be composited in this way. Note that
the newly composited color, co, is implicitly premultiplied
by the composited opacity �0 � �B�1ÿ �F � � �F .

Porter and Duff [19] used their framework to composite
multilayer cel images. Volume rendering can be repre-
sented in this framework as well. By interpolating a volume
into a stack of (image) sheets, aligned parallel to the
projection plane, we can render a projection image by
compositing these sheets in back-to-front (or front-to-back)
order [5]. This sheet-interpolated volume rendering ap-
proach is illustrated in Fig. 1 and it is easy to see that we
obtain results equivalent to those obtained with raycasting,
just that now all rays are being traced simultaneously.
Hence, the approximation of the volume rendering integral
of (1) will not change and the orientation of the interpolated
sheets in Fig. 1 is the most appropriate for a discrete

approximation of (1). Note that, as in raycasting, the sheet
(i.e., intersheet sample) spacing must be chosen sufficiently
small to avoid aliasing effects.

The sheet-interpolation approach is taken by various
implementations that utilize 3D texture-mapping hardware
for volume rendering, such as [25] and [1], and the
approach was also mentioned by Westover in his disserta-
tion [29] as the ideal approximation to volume rendering.
However, it is an approach that does not lend itself well to
acceleration methods (other than 3D texture mapping),
since the sheets slice the volume data indiscriminately of
their value.

As was mentioned in the introduction, splatting gains its
speed by reordering the volume rendering integral so that
each voxel's contribution to the integral can be viewed
isolated from the other voxels. In splatting, an interpolation
kernel is placed at each voxel location. This enables one to
view the volume as a field of overlapping interpolation
kernels h which, as an ensemble, make up the continuous
object representation. A voxel vj's contribution is then given
by vj �

R
h�l�dl, where l follows the integration of h in the

direction of the ray. If the viewing direction is constant for
all voxels or if h is radially symmetric, we may pre-integrateR
h�l�dl into a lookup table, i.e., the kernel footprint, and use

this table for all voxels. We can then map the voxel
footprints, weighted by the voxel values, to the screen,
where they accumulate into the projection image [28]. Thus,
in contrast to raycasting, splatting considers each voxel only
once (for a 2D interpolation on the screen), and not several
times (for a 3D interpolation in world space). Additionally,
as an object-order approach, only the relevant voxels need
to be considered, which, in many cases, constitute only
10 percent of the volume voxels [30]. Apart from these
computational savings, we also achieve greater accuracy:
First, the ray integrals across a voxel are now continuous (or
approximated with good quadrature) and not a Riemann
sum as implied by the point sampling process of raycasting.
Second, the efficient pre-integrated kernel representation
allows splatting to easily use qualitatively better interpola-
tion kernels (with larger extents) than the trilinear filter
typically employed by raycasting. The downside of splat-
ting is that the use of pre-integrated kernels restricts a
proper approximation of the volume rendering integral,
since the 3D reconstruction kernel is composited as a whole,
and not piecewise, as part of an interpolated sample along a
viewing ray. Our approach alleviates this problem.

3 IMAGE-ALIGNED SHEET BUFFER-BASED

SPLATTING

As was mentioned in the introduction, the first splatting
algorithm used the composite-every-sample approach,
which violates the sheet-interpolation model of Fig. 1 in
that a volume sample point is not first reconstructed based
on the values of the surrounding voxels before its visibility
is determined. Instead, each voxel is independently
composited on the image plane, without spreading its
contribution along the main viewing axis [29]. The result of
this approximation is a continuous sparkling of colors in
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animated viewing. The sheet-buffer method was prescribed
to eliminate these artifacts and we will describe it next.

3.1 Artifacts of Traditional Axis-Aligned Sheet
Buffer-Based Splatting

In Westover's sheet-buffer method [28], the volume is
decomposed into sheets, where the sheets are comprised of
the volume slices most parallel to the image plane (see
Fig. 2). Hence, we refer to this algorithm as axis-aligned
sheet buffered splatting. For all voxels in a sheet, their color
and opacity footprints are added into a color and an opacity
sheet buffer, respectively, and the resulting sheet images are
composited in back-to-front (or front-to-back) order. Thus,
due to this inter-sheet reconstruction process, the axis-
aligned sheet-buffer splatting method comes significantly
closer to the discrete volume rendering model of Fig. 1 than
the composite-every-sample approach.

Disturbing popping artifacts occur when the main
orientation of the sheet-buffers abruptly switches from
one volume axis to another, which happens when the image
plane becomes more perpendicular to another volume face.
An example of this artifact is shown in the rendering of a
binary volume cube illuminated with a headlight, shown in
Fig. 3. In Fig. 3a, we show the cube viewed at a 44.8� angle.
Notice that the left face is much brighter than the right face.
Fig. 3b shows the cube viewed at an angle of 45.2�, right
after the orientation of the sheet-buffers have switched.
Here, the right cube face is much brighter than the left face.
Neither of the two renderings are correct, since both faces
should have the same shade and neither should be as
bright. This switching of the bright areas from the left to the
right is very visible in animated viewing, and constitutes
what we refer to as a ªpoppingº artifact.

In a previous paper [18], we illustrated by means of a
detailed numerical example how these artifacts are gener-
ated. This discussion is summarized in the caption of Fig. 3.
We shall now proceed to derive a solution to the popping
problem.

3.2 New Image-Aligned Sheet Buffer-Based
Splatting to Eliminate Popping

We have justified before that the discrete volume rendering
model of Fig. 1 can be regarded as a good approximation to
the analytical volume rendering integral of (1). In this
model, parallel slices cut across the volume, interpolating it
into a sequence of 2D images which are then composited

back-to-front or front-to-back. The interpolation planes are

aligned parallel to the projection plane. We observe that the

axis-aligned sheet-buffered splatting method violates the

discretized volume rendering model in two ways: 1) the

contributions of a voxel are added all at once, instead of

being composited along a ray, and 2) the sheet buffers do

not maintain a constant spatial orientation with respect to

the image plane. We conclude that a splatting algorithm

that does not suffer from popping artifacts must eliminate

these two violations.
We must realize that splatting has a somewhat different

volume representation than that implied by the discretized

volume rendering model. In splatting, the volume is not an

array of discrete data points that are used to support 3D

interpolation, rather, it is a field of overlapping 3D spherical

interpolation kernels, each chopped into (sphere) sections

by the parallel slicing planes. The thickness of these kernel

sections is determined by the distance between the slicing

planes (i.e., distance between interpolation planes in Fig. 1).

Since we add to the sheet buffer all kernel material that is

bounded by two slicing planes and not just the kernel cross-

section that is cut by a slicing plane, we must view a pair of

slicing planes as a slicing slab of certain width (or

thickness).
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Fig. 2. Axis-aligned sheet-buffered splatting. The volume is decomposed into sheets, where the sheets are comprised of the volume slices most
parallel to the image plane (here, those along the y-axis). The colors and opacities of all voxel kernels within a sheet are added into a sheet-buffer
and the sheet-buffers are composited in front-to-back or back-to-front order.

Fig. 3. An opaque cube is rendered with sheet buffer-based-splatting at
orientations of (a) 44.8� and (b) 45.2�. Only surface voxels contribute to
the image, since all others have zero gradients. In (a), the sheet buffers
are parallel with the left cube face and, in (b), they are parallel with the
right cube face. The bright face is due to the voxel kernels all added
together in one sheet. The dark face is due to kernels that lie in
consecutive sheet-buffers. It was shown that the addition of a number of
kernels yields a brighter color than compositing the same number of
kernels [18].



Fig. 4 illustrates our approach. The sheet buffer is now

parallel to the image plane and only the contributions of the

kernel sections that fall within the extent of the current

slicing slab are added to the sheet buffer. Then, similar to

the axis-aligned sheet-buffer method, once a sheet buffer

has received all contributions, it is composited with the

current accumulation buffer and the algorithm progresses

to the next slicing slab.
This new method requires pre-integrated kernel sections.

Since the slicing planes may intersect an interpolation

kernel at any radial distance, this would require an infinite

number of pre-integrated slab sections. Alternatively, we

approximate this with a discrete set of slab positions (see

Fig. 5). Nearest-neighbor interpolation is used to pick the

most appropriate pre-integrated kernel section when a slab

intersects a voxel kernel. We use S � 128 such sections,

spaced apart by �s � �kernelRadius� slabWidth=2�=128.

Note that symmetry allows for the reuse of sections for part

of the kernel width. In addition, we can also trim the size of

each slice footprint to the relevant extent of the integrated

slice function.
Figs. 6a and b show the cube of Fig. 3, now rendered

with the new image-parallel sheet-buffer method. A

Gaussian kernel of radius 2.0 grid spacings and a slab

width of 1.0 was used. We observe that the previous

imbalance of brightness between the two cube faces no

longer exists. The cube has the same (correct) shades for

both image plane orientations, 44.8� and 45.2�, and the

popping no longer occurs. Notice also that the overall

brightness of the cube is reduced, as now the kernel

contribution has been divided into four parts which are

composited back-to-front, rather than being added all at

once. This represents an improvement in the splatting

method and brings it more in line with the ideal discrete

volume rendering model. It, however, retains the advan-

tages of splatting in that the ray integral is still continuous.

We can also easily use a sparse data representation and not

have to traverse potentially empty volume areas.
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Fig. 4. Image-aligned sheet-buffered splatting. All kernel sections that fall within the current slicing slab, formed by a pair of interpolation planes, are
added to the current sheet buffer.

Fig. 5. Array of pre-integrated overlapping kernel sections (shaded areas). The integration width of the pre-integrated sections is determined by the
slab width. The offset between adjacent slabs is �s.



3.3 Enhancements

Following are two enhancements that are unique to our
image-aligned sheet-buffer splatting method.

3.3.1 Variable Slab Width

Varying the slab width trades off speed vs. accuracy.
Clearly, the thinner we make the slabs, the closer we
approximate splatting to the continuous volume rendering
integral of (1). However, the number of kernel sections to be
mapped per voxel is given by 2 � kernelRadius=slabWidth.
Thus, for smaller slab widths the number of kernel sections
to be rasterized increases, along with the number of sheet
buffers to be composited. On the other hand, thicker slabs
decrease the number of footprint mappings, as well as the
number of compositing operations, but will potentially
lower the quality of the generated image.

If we would like to vary the slab width on the fly, we
need to provide an array of pre-integrated kernel sections

for every slab width we intend to use. A continuous

variation of the slab width would require us to store a large

number of kernel-section arrays, one for each quantized

slab width. Nearest neighbor interpolation could be

employed to pick the most adequate array for a given slab

width. Clearly, this approach is both wasteful in storage

and bound to be inaccurate.
Instead, we utilize a 2D array of 1D summed-area tables,

one for each 2D raster position �x; y�, in which we store the

kernel integrals:

H�x; y; z� �
Z z

t�0

h�x; y; t�dt: �3�

Thus, in order to calculate the kernel integration between

z and �z� slabWidth� at footprint location �x; y�, we just

retrieve two entries, H�x; y; z� and H�x; y; z� slabWidth�,
and subtract the former from the latter. In this way, we can

vary the slab width on the fly in a continuous manner. This

facilitates a variety of unique acceleration methods, based

on visual quality, as will be discussed later.

3.3.2 Perspective Projection

The algorithm is easily expanded to perspective; the volume

traversal and kernel section selection remain the same.

Splatting assumes parallel ray integration across a kernel

and, hence, introduces errors for perspective projection

where rays integrate a kernel along diverging paths. Due to

the partitioning of the splats, we obtain a better approxima-

tion of the perspective integration. Although we still

assume parallel integration within kernel sections, the

mapping of the individual section footprints can be

performed according to the linear perspective distortion

function. Thus, we obtain a piecewise linear perspective

kernel mapping. The necessary tilt of the kernels toward the

direction of the traversing rays is also more accurately
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Fig. 6. Binary cube rendered with the new image-parallel sheet buffer
splatting method at: (a) 44.8� and (b) 45.2�. In both cases, the slab width
was set to 1.0. Both front faces now have equal brightness in both views.
Not only is this correct, but it also implies that popping at 45� no longer
occurs.

Fig. 7. (a) The full kernel ellopsoid projects as an ellipse onto the screen. This ellipse is then mapped to a circular footprint for ray integral retrieval.
(b) A kernel slice has an irregular, nonelliptical screen space projection. In addition, each kernel orientation has different slices with different,
unrelated screen space projections. Hence, we cannot use the generic mapping technique of (a) with our new splatting technique.



implemented with sectioned kernels. (See [17] for more

details on accurate perspective splatting).

4 SPLATTING RECTILINEAR VOLUMES USING GRID

WARPING

Rectilinear volume grids are more difficult to render using

the splatting approach because at least one grid direction

has unequal scaling. Under the splatting paradigm, this

means that splatting kernels are ellipsoidal in shape because

the spherical splat is stretched along the scaled directions.

Two approaches have been suggested to render such

volumes. A straightforward approach interpolates addi-

tional slices so that the resulting grid will be regular and the

splat kernels will be spherical. This, however, requires the

costly processing of more splats. Alternatively, Westover

proposed splatting the rectilinear grid directly with

elliptical shaped footprints. Since the footprint shape is

view dependent, the elliptical screen projection of a splat is

mapped back to a circular footprint (see Fig. 7a). This

method does not easily extend to our splatting approach

because now kernel slices are projected to the screen (see

Fig. 7b). Since the shape of the kernel slices is view

dependent, a single generic footprint table cannot be used

to account for all mappings. In fact, a separate hierarchy of

slice footprints is required for each kernel orientation. In
most cases, storing (and loading) this many kernel slice
projections is infeasible. Instead, we devise a method that
warps the noncubic grid into a cubic grid so that the
ellipsoidal kernels compress into spheres which project
identically for all view orientations. This mapping requires
rotation, shear, and scaling operations as well, since the
warp operation warps both sampling grid and the image
plane. For ease of understanding, we first illustrate the
general idea for the 2D rectilinear volume case and then
formalize the procedure for the 3D grid case.

4.1 Splatting a 2D Rectilinear Grid

The first step of our approach is to warp the rectilinear grid
so that the ellipsoidal splat kernels transform into spherical
kernels. Fig. 8a shows a 2D rectilinear grid where the
spacing in the y-axis direction is twice that in the x direction
and the image plane is defined by the unit vectors u and v.
When the grid is warped into a cubic grid, shown in Fig. 8b,
the image plane is warped as well and is now defined by
vectors uw and vw, which have a length different from the
original vectors. The viewing rays also change orientation,
due to the warping operation, and are no longer perpendi-
cular to the (warped) image plane. We would like to
preserve orthographic projection of the volume. This can be
achieved by erecting an image plane perpendicular to the
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Fig. 8. Splatting with 2D rectilinear grid warping. (a) A rectilinear volume defined in �x; y� space and an image plane with viewing coordinate system
�u; v�. Two representative viewing rays are also shown. (b) The warp operation not only warps the grid shown in (a) into a cubic grid, but the image
plane and the viewing rays are warped as well. The viewing coordinate system is warped into �uw; vw�. Vector uw is projected onto a plane that is
orthogonal to the viewing rays, which generates uwo. (c) The system is rotated for projection. (d) Finally, the system is scaled so that the image plane
has the original size (most often comprised of unit-sized pixels).



warped viewing rays. This image plane is defined by
projecting the warped image plane vector uw onto this new,
ray-orthogonal image plane, which produces vector uwo.
The system is now rotated such that the viewing axis vwo �
vw becomes horizontal for easy projection (see Fig. 8c).
Vector uwo defines the pixel size in the viewing plane and is
not unit-length, as mentioned before. To return to unit pixel
size, we need to scale the grid, along with the vertical image
plane, in the direction of vector uwo (see Fig. 8d). This
operation scales the image plane back to its original size and
stretches the footprints parallel to the image plane. Why?
Recall, that the footprints must always be aligned perpen-
dicular to the direction of the traversing rays, since they
represent the kernel integration in this direction. Thus,
before the scale, the footprints have already been aligned
parallel to the image plane. The scale then simply stretches

them (without changing their amplitude), which is most
easily achieved in both hardware and software, represent-
ing the footprints as texture polygons.

4.2 Splatting a 3D Rectilinear Grid

Figs. 9a-9d illustrate the step-by-step procedure required to
splat a 3D rectilinear grid. Fig. 9a shows a volume grid VV in
which the grid spacing along the y-axis is twice as large as
the grid spacing along the x- and z-axis, and the grid aspect
ratio vector is represented by AAR � �arx; ary; arz�. The
image plane is defined by the unit vectors u, v, and w (the
viewing coordinate system), which also help define the
world-to-screen space viewing transformation. Using these
vectors, the viewing transformation matrix Mview that
transforms the original rectilinear grid can be written as
follows:
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Fig. 9. (a) Original volume space VV . the grid scaling along the y-axis is twice that of both the x- and z-axis. (b) Warped volume space VV w. VV is warped
into a cubic grid VV w, which also warps the rotation vectors and the image plane. (c) Warped image space VV wt. The volume has been rotated into
image space. The image grid is nonsquare. (d) Shearing and scaling of the volume transforms the image grid into a square grid. Projection of the
(distorted) voxel footprints is now simple.



Mview �
uu
vv
ww

24 35 � ux uy uz
vx vy vz
wx wy wz

24 35: �4�

Similar to the 2D case, to transform this rectilinear grid
into a cubic grid, a linear warp is applied to the system that
transforms VV into a new grid VV w that has equal grid spacing
in all dimensions (see Fig. 9b). The traversing rays, the
image plane and the vectors uu, vv, and ww all undergo the
same warp and the new warped viewing coordinate system
is now defined by the vectors uuw, vvw, and www. This gives rise
to a viewing transform that incorporates the warping:

Mw
view �

uuw

vvw

www

24 35 �
ux
arx

uy
ary

yz
arz

vx
arx

vy
ary

vz
arz

wx
arz

wy
ary

wz
arz

264
375: �5�

Just like the 2D case, our 3D grid warping algorithm
performs a rotate, then a shear (this is unique to the 3D
case), and, finally, a scale operation. We now derive the
matrices for each of these operations. For a rigid-body rotate
operation, we must construct an orthonormal matrix
consisting of the vectors vvwo, vvwo, wwwo (shown in Fig. 9b).
These are obtained from uuw, vvw, and www as follows: First,
vector wwwo is computed by www=jwwwj, the unit vector normal
to the viewing plane. Vector vvwo is found by projecting the
vector vvw onto the plane normal to wwwo:

vvwo � vvw ÿ vvw � wwwo� � � wwwo
jvvw ÿ vvw � wwwo� � � wwwoj : �6�

The third unit vector uuwo is computed from the cross
product vvwo � wwwo, resulting in the orthogonal rotation
matrix:

Mwo
view �

uuwo

vvwo

wwwo

24 35: �7�

Next, we define vectors uuwp and vvwp as the vectors uuw and
vvw projected onto the image plane, respectively:

uuwp � uuw ÿ uuw � wwwo� � � wwwo
vvwp � vvw ÿ vvw � wwwo� � � wwwo: �8�

These vectors span the 2D image grid, illustrated in
Fig. 9c, onto which the warped and rotated volume VV wt is
projected. Note that, in this figure, the rotated vector wwwo

points out of the page and also that uuwp and vvwp are not
orthogonal. Hence, this situation requires the footprints to
be rasterized onto this non-orthogonal grid. Ray-driven
splatting [16] can handle this situation, since here the
individual rays can be spawned anywhere. However, for
object-order splatting, we either need a rasterization routine
that scans a footprint into a sheared image grid or an
additional transformation that distorts a footprint so it can
be rasterized on an orthogonal image grid with unit
spacing. The latter is needed for an implementation that
uses 2D texture mapping hardware for footprint projection.
This type of grid can be obtained by shearing and scaling
the grid spanned by uuwp and vvwp. Alternatively, we can
impose the same operations on the volume, which will then

project correctly onto an orthonormal image grid with
vectors uuws and vvws. This gives rise to the volume VV wts

shown in Fig. 9d. Shearing is only required in one grid
direction, here the y-direction and is computed with:

Mshear �

1 0 0

uwpy
uwpx

1 0

0 0 1

266664
377775 �9�

The following scale operation is computed with:

Mscale �

1
uwpx

0 0

1 1
jvvwpj 0

0 0 1

266664
377775 �10�

These matrices can be concatenated into one volume
transformation matrix as (using post-multiplication of the
volume coordinates):

Mvol �Mscale �Mshear �Mwo
view: �11�

The shearing operation distorts the spherical splatting
kernels into ellipsoids, but, in contrast to Westover's
splatting, the distortion is always coplanar to the image
plane, i.e., the kernel ellipsoid's three axes are always in or
normal to the image plane. The kernels are now all sliced
the same way and, thus, slicing is viewpoint independent.
This allows us to use a single footprint hierarchy for all
volume orientations. Thus, footprint mapping is performed
by first rotating the texture polygons so that they are
parallel to the image plane and, then, shearing and scaling
them according to Mshear and Mscale. Note that, since the
warping does not preserve dot products, shading must be
performed in the unwarped volume space. In addition,
gradients must also be estimated in the unwarped space.

The extension of this technique to perspective rendering
is straightforward. We simply add the perspective matrix at
the beginning of the matrix chain (11). We may have to
rotate the footprint polygon into the ray direction prior to
mapping, as is described in [17], to better approximate the
diverging path in which the rays traverse the kernel. In
addition, after a certain distance from the viewpoint, we
will have to keep the size of footprint polygons constant (in
perspective space) to compensate for the undersampling of
the volume grid by the diverging grid of rays (refer to [17]
for more details).

The ellipsoidal kernels in [28] are designed to fill the
space in the rectilinear grid that would otherwise be
occupied by the extra interpolated slices in the correspond-
ing cubic grid. For summed X-ray rendering, identical
images result when the ellipsoidal rectilinear grid splatting
kernel equals the kernel resulting from convolving the
ellipsoidal slice interpolation kernel with the spherical cubic
grid splatting kernal. This is true for either axis-aligned and
image-aligned sheet-buffer splatting. However, for a Sabel-
la-model involving compositing, we need to be more
careful. It can be shown that our grid warping technique
yields the exact same footprint (for a complete kernel) as
projecting an ellipsoidal kernel directly, via Westover's
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method. It can also be shown that both methods yield

correct integrations, but there is still one more issue. Let's

assume we have a 2D grid in which the y-axis spacing is

larger than the x-axis spacing, and a ray, sampling this grid

with spacing �l � �dx2 � dy2�1=2. The warping decreases

the ray sample distance to �lw � �x2 � �y=ary�2�1=2 in the

warped grid. To ensure homogeneous, uniformly spaced

compositing for all orientations, we need to decrease the

slab width in the warped grid accordingly. This is easily

facilitated by using the summed-area footprints described

in Section 3.3.1. Note that this solution is unique to the

image-aligned splatting method. The traditional axis-

aligned method is unable to account for this problem, as

here the kernel is projected as a whole and not in sections.

As a result, we notice strong color variations in animated

viewing of volumes with larger aspect ratios.

5 LIST-BASED SPLATTING

When exploring a volumetric data set, the user needs to be

able to perform the following basic tasks quickly: 1) View

the object at different orientations on the screen, and 2) vary

the opacity, color, and gradient transfer functions to expose

different aspects and structures of the dataset. The former

constraint requires a fast volume viewing algorithm, while

the latter necessitates a data organization that allows a

change in both transfer functions and iso-ranges to come
into effect quickly.

We have implemented a framework for splatting that
satisfies both of these requirements. Our algorithm requires
as the only preprocessing step an initial bucket-tossing of
the volume data values. Once the volume data is bucket-
tossed into a list, a binary search can be employed to extract
the voxels that fall within one or more specified iso-
intervals. Then, during rendering, only the extracted voxels
are transformed, shaded, and displayed.

The algorithm presented here is a continuation of the
work discussed in [3]. The original algorithm, however,
capitalized on the fact that all voxels within the iso-range
had similar colors and, therefore, no ordered back-to-front
(or front-to-back) traversal was required. The new version
of this method does not make this assumption. It is
therefore suitable for a more general class of volume data
sets. The new framework easily allows us to render a
volume using both the axis-aligned sheet-buffer method
and the new image-aligned sheet-buffer method for
comparison purposes.

5.1 Basic Algorithm

Our algorithm employs several arrays, as shown in
Table 1. The entire volume (of size Nvol) is first read into
the < value > array. Then, a < value; indexvalArr > array is
extracted, containing all those voxels in the < value > array

MUELLER ET AL.: HIGH-QUALITY SPLATTING ON RECTILINEAR GRIDS WITH EFFICIENT CULLING OF OCCLUDED VOXELS 125

TABLE 1
Data Structures Required for List-Based Splatting

Nvol is the size of the volume, Nrel is the number of relevant voxels in the volume (usually the nonzero voxels), and Niso is the number of voxels that
fall within the variable iso-range(s). A bucket holds an array of indexes into the iso-voxel arrays. Each bucket is assigned to one of the slicing slabs.



that have values meaningful to the user. For instance, in
medical applications, a voxel with a zero value is
irrelevant and will never have to be projected. Thus, we
do not need to store it in the < value; indexvalArr > array.
In many applications, this cuts down the number of
relevant voxels, Nrel, to 10-20 percent of Nvol [30]. Finally,
the < value; indexvalArr > array is sorted by the (value) key.
This completes the preprocessing step when the volume is
loaded.

The user indicates one or several iso-ranges. A binary
search on the < value; indexvalArr > array is used to
determine the voxels at the iso-range boundaries. All voxels
within the iso-range boundaries are copied into the <
x; y; z; value > array, where �x; y; z� is the object space
coordinate of a voxel and (value) is its value. Using an
optional transfer function lookup table, the < gx; gy; gz >
gradient array is then computed. The (indexvalArr) entry of
the < value; indexvalArr > array is used to access the voxel
neighbors in the < value > array. Finally, we compute the
values in the < r; g; b; � > array, employing a diffuse and
specular shading model in conjunction with the gradient
array and optional transfer function lookup tables. This last
step is view-dependent.

For each view, we need to determine the range of sheet-
buffers that each voxel kernel falls into. We do not require
the depth-order within a sheet-buffer since the adding
operation is commutative. Thus, it is sufficient to associate a
bucket with each sheet-buffer that holds the intersected
kernel sections for the current viewpoint. For this purpose,
we define a bucket structure (Table 1, bottom portion) that
keeps an array of indices < indxisoArr > into the iso-voxel
arrays, along with an associated count and a pointer to the
next bucket. This pointer is used as a link to a new bucket,
should the current bucket exceed its capacity. Since it would
be inefficient to dimension the bucket index arrays for the
largest anticipated voxel load, we provide a pool of smaller
buckets from which buckets are retrieved and linked
whenever a slice bucket exhausts its limits.

The bucket toss procedure is straightforward. Each voxel
in the iso-list is transformed, yielding its z-distance from the
screen. Then, based on this z-distance, the voxel's index is
added to the range of buckets it overlaps. Additionally, the
z-distance is also written into the < zÿ distance > array.
Once all voxel slices have been assigned to buckets, they can
be splatted to the screen, in front-to-back or back-to-front
order.

This list data structure allows rapid changes in the
transfer functions for gradients, opacities, and colors, as
well as light source locations (if the viewpoint and iso-
ranges remain constant). All that needs to be recomputed is
the shaded value. No new bucket-tossing is required.
Should the iso-value intervals change, then a new fast
binary search fills in the data structures.

For typical volumes, the only large data structure in this
framework is the < value > array, which holds the entire
volume. All other arrays hold typically 20 percent or less of
Nvol. We can eliminate the < x; y; z; value > array altogether
by indexing the < value; indexvolArr > array directly, using
the index of the first iso-voxel(s) in the iso-range(s) as an
offset. When the volume has dimensions of powers of two,

then the �x; y; z� values can be quickly computed via binary
shifts of the (indexvolArr) field. This saves the transfer of
values into the < value; indexvolArr > array when the iso-
range changes. If the user alters the iso-range smoothly or
incrementally, then we may use an incremental update of
the iso-data structures, such as the gradients, shaded colors,
and z-distances. In this lazy-evaluation scheme, we only
have to compute gradients, colors, and z-distances due to
new voxels that have entered the active interval.

5.2 Implementation of Axis-Aligned Sheet-Buffer
Based Splatting Using List-Splats

For the axis-aligned sheet-buffer method, it is most efficient
to make up three bucket-arrays, one for each axis direction.
Since the sheet-buffers are always aligned with one of the
volume axes, no bucket-tossing is required for new view-
points as long as the iso-intervals remain constant. The
indxisoArr field points into the gradient, color, and coordi-
nate arrays. To render an image, the appropriate bucket
array is accessed and traversed up or down, depending on
the viewing direction along the viewing axis and also
depending on what volume traversal order was chosen:
back-to-front or front-to-back.

6 ACCELERATED SPLATTING USING EARLY SPLAT

ELIMINATION

So far, all voxels in the iso-range(s) have to be projected.
This is unnecessary since it is very likely that many voxels
are occluded by other voxels located closer to the screen. To
limit our rendering effort to just the visible voxels we would
like to ensure a voxel splat's partial visibility before we send
it down the rendering pipeline. In this section, we will
describe an efficient technique that allows us to do this. Our
scheme has a similar effect as early ray termination in ray-
based approaches, hence the name early splat elimination.

Visibility culling to accelerate volume rendering applica-
tions has been used for quite some time. Reynolds et al.
used a dynamic screen technique [20] in which, similar to
the shear-warp algorithm [10], the object and image are run-
length encoded, with the latter dynamically changing. This
enables the renderer to quickly skip across opaque image
scan line segments as well as empty object scan line
segments. In both approaches, however, a voxel is
considered a point that projects exactly onto one image
row and pixel, which allows easy access and maintenance
of the image RLE data structure. In splatting, on the other
hand, a voxel footprint potentially covers an extended 2D
area of pixels (Fig. 10). This makes interaction with an RLE
structure difficult. In addition, the clever encoding scheme
of both dynamic screen and shear-warp requires three
volume copies and does not allow for easy modification of
the transfer functions or lighting. Finally, Meagher [15]
represents the object by an octree, while the image is
encoded into a dynamic quadtree. Again, upkeep of the
quadtree structure with footprints is difficult.

A splat has only an effect on the image if at least a partial
area within its footprint has not yet been rendered opaque
in the opacity buffer. (The opacity buffer is the opacity
channel of the compositing buffer, which is updated every
time a sheet-buffer is composited.) A naive algorithm
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would project the footprint's bounding box to the screen
and check if the opacity of any of the pixels inside the
projected box is below 1.0, in which case the footprint
would be rendered (see Fig. 10). However, this procedure
would be nearly as expensive as the rasterization of the
footprint itself. Consider that a footprint's projection area is
potentially quite large: about 5 � 5 � 25 pixels when the
image and volume have the same resolution, and even
larger for close-up views. Using a dynamic quadtree
(similar to Meagher [15]), an update to the quadtree
structure would be required for every footprint projected.
This is also costly since many quadtree nodes may be
affected by a single footprint.

An alternative and beneficial method would just perform
a single test with the projected voxel center. This test,
however, yields a potentially inaccurate result. This is
shown in Fig. 11a for two representative voxels: Although
the centers of both of these voxels project into opaque
screen regions, only one of them is fully occluded and can
be culled. We can devise a more effective scheme, outlined
in Figs. 11b and c: The condition for a voxel to be fully
occluded is that all pixels within its footprint bounding box
must have opacity = 1.0. This means that the opacity
average of all these pixels must be 1.0 as well. If the opacity
average is less than 1.0, then there has to be at least one
pixel in the bounding box that has an opacity of less than
1.0. Since the dimensions of the footprint bounding box are
identical for all voxels that fall into a sheet-buffer, we can
calculate an average opacity buffer by convolving the
opacity buffer with a box filter of the size of a footprint
bounding box. Each pixel in this average opacity buffer (or
occlusion buffer) then represents the average opacity of all
pixels within a neighborhood of the dimensions of the
footprint bounding box. Thus, when indexed with the
projected voxel center, the occlusion buffer will enable us to
decide, with a simple comparison, if a voxel is fully
occluded and can be culled or if it is only partially occluded
and must be projected.

We are not restricted to using an opacity of 1.0 as the
threshold at which voxels are culled. As a matter of fact, a
very effective way to accelerate ray-based methods is to
lower the opacity threshold at which the ray is terminated.

This is commonly known as �-acceleration [4]. The quality
of the images obtained with lower opacity thresholds is not
much degraded, since the colors accumulated at large ray
opacities are highly attenuated and are not very noticeable
in the final image. For lower thresholds or �-acceleration to
be used in our splatting algorithm, we must restrict the
maximal opacities obtainable during compositing to the
desired cut-off value. Then, the convolved opacity buffer
will yield the correct occlusion buffer for that opacity
threshold.

Most graphics boards support convolution in hardware
since it is a frequently used operation for multimedia image
processing. Moreover, it is a relatively inexpensive opera-
tion, especially when the convolution filter is separable
(which is the case for a box filter). However, it still puts a
burden on the system and we only want to perform opacity
buffer convolution operations in image areas that received
actual splat contributions in the current sheet buffer. The
same is true for the compositing operations. Since we have
to transform each voxel into screen coordinates anyhow (to
index the occlusion map), we can maintain a dynamic data
structure that keeps track of the spatial splat projection
statistics while splats are added to the sheet buffer. The
simplest form of such a data structure is a bounding box
which contains the centers of all voxels that have been
projected into the current sheet-buffer. We then only
convolve the image areas within a slightly larger bounding
box (to account for the extent of the footprint bounding
box). While a simple bounding box may work well for
localized splats projection statistics, for more dispersed
objects we may want to partition the screen into a number
of small tiles, say of size 32� 32 pixels. Then, whenever a
voxel center is projected into a tile, a counter associated
with the tile is incremented. If both tile and image sizes are
a power of two, we can perform tile indexing very
efficiently via simple bit-shifts. Compositing and convolu-
tion operations are then only performed within the
(expanded) tiles, when the counter exceeds a necessary
(but not sufficient) threshold for the entire tile to opaque.
The pseudocode for our complete splatting algorithm is
provided in Fig. 12.
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Fig. 10. Naive voxel occlusion test: All pixels in the opacity buffer that fall within the footprint's extent must be tested for opaqueness. The voxel is
culled only when all pixels within the footprint extent are opaque.



Note that we can accelerate the axis-aligned splatting
algorithm in a similar manner. Hence, our occlusion culling
algorithm for splatting works for both image-aligned and
axis-aligned splatting approaches.

The size of the box filter depends upon the volume zoom
factor. Thus, the box filter must be redefined for each new
viewpoint, which is easy to do. For volume grids with
nonunit aspect ratios, the convolution filter has the shape of
a parallelogram. We can either implement this filter as a
nonseparable convolution, which is more expensive, or we
can approximate the parallelogram by a (separable)
rectangle (see Fig. 13). This introduces slight inaccuracies
which, in practice, do not lead to visible artifacts. For
perspective viewing, we need to redefine the convolution
filter size for every slice, depending on the perspective
magnification and kernel size used in the next slicing slab to
be rendered. If we perform the perspective transformation
before mapping the kernel footprints, then all voxels that
are located beyond the distance at which the perspective
grid rate falls below that of the volume grid have equal-
sized footprints. Before this distance, the footprints become
progressively smaller with decreasing distance from the
screen [17].

7 RESULTS

We have tested the various aspects of our algorithm as well
as sample implementations of axis-aligned sheet-buffered
splatting, both in back-to-front and front-to-back volume
traversal, on three volumetric datasets:

. The UNC MRI head (256� 256� 163 voxels, aspect
ratio 1� 1� 1). We used the LEGION algorithm [22]
to segment this dataset into skin, eyes, and brain
matter.

. A ganglion nerve cell (512� 512� 76 voxels),
acquired with a confocal microscope. This volume
has a highly skewed aspect ratio of 1� 1� 5, which
is typical for this kind of dataset.

. The MRI tomato from Lawrence Berkeley Lab [12]
(256� 256� 64 voxels and an aspect ratio of

1� 1� 3). This dataset has been segmented by LBL
into five components: the core, the endocarp, the
locule, the placenta, and the seeds.

For all our experiments, unless stated otherwise, we have
used a Gaussian splatting kernel with a radial extent of 2.0
for all splatting methods.

First, we demonstrate the effectiveness of the new image-
aligned splatting algorithm with respect to eliminating the
popping artifacts of traditional axis-aligned splatting.
Consider Fig. 14, where we show a three-frame sequence
of an animation around the nerve dataset. The orientation
angles at which the frames were taken are: 41�, 44�, and 47�.
A headlight is used as the only lighting source. The top row
shows images obtained with the axis-aligned method. The
sheet-buffer orientation switched between 44� and 47�, and
the difference of object brightness in these two frames is
severe. Recall that the nerve volume has an aspect ratio
�arx; ary; arz� � �1; 1; 5�, giving rise to very elongated
ellipsoidal kernels. In the first two frames, the compositing
occurs along the z-axis. We can actually see the shape of the
elongated kernels in these frames. The very high brightness
results from compositing many highly opaque, long kernels
onto a small image area all at once, and not in sections (see
our comments at the end of Section 4). In the third frame,
the kernels are composited along the x-axis (along their
short axis), which reduces the image brightness. The
sudden pop in brightness when this transition occurs is
very noticeable in animated viewing. In contrast, the new
image-aligned method (bottom row) with proper sectioning
and compositing of the kernels avoids these problems and
provides for a pop-free animation across the entire angular
range.

We will now compare the various splatting algorithms in
terms of their computational effort. In order to investigate
the run-time behavior for a variety of scenarios, we have
rendered our three test objects using different transfer
functions. The image in row 1, column 1 of Fig. 16 shows
the MRI head dataset, rendered as an opaque iso-surface,
Fig. 15a shows the same dataset rendered semitransparent
with glass-like specular reflections. Fig. 15b shows the
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Fig. 11. (a) Using the projected voxel center to index the opacity buffer does not distinguish between the fully occluded and the partially occluded
voxel. (b) Only when all pixels within the footprint bounding box have opacity = 1.0, the voxel is fully occluded. (c) If all pixels within a footprint's
bounding box have opacity = 1.0, then the average opacity of these pixels is also 1.0. We can thus compute an average opacity buffer that stores the
average opacity within a neighborhood of the size of the footprint's bounding box at each pixel location. This average opacity buffer is then indexed
by the projected voxel center to determine full occlusion and henceforth decide culling.



tomato dataset, rendered semitransparent with the core,

placenta, and seeds showing through. Finally, Fig. 15c

shows the nerve dataset in a head-on view down the z-axis,

while the image in row 3, colum 3 of Fig. 16 shows a side

view of the nerve, as seen down the x-axis. Table 2 lists the

rendering times for these images. To generate this table, we

have chosen a slab width of 1.0 and an opacity threshold of

0.95, where applicable. The timings given were obtained on

an SGI Octane with a R10000 processor and 640MB of

memory. The resident 2D texture mapping hardware was

used to rasterize the footprints and the graphics hardware

was used to perform the convolution operations. However,

we have also recently implemented a pure-software version

of our algorithms to run on a 400MHz Pentium II with

256MB of memory. The timings obtained on this machine

were roughly comparable with the ones obtained with SGI
graphics hardware support.

The first columns of Table 2 list the results obtained with
back-to-front traversal of the volume. We observe that, for
both sheet-buffered splatting methods, the time for back-to-
front rendering is highest, as here all voxels in the iso-
interval must be splatted. However, back-to-front rendering
with image-aligned splatting is generally at least twice as
expensive than with axis-aligned splatting, as indicated by
the ratio term in this section of Table 2. This is simply
because each voxel gives rise to three to four footprints that
need to be rasterized. Note that the solid head takes longer
since it contains all voxels above the skin iso-value, while
the semitransparent head contains only the voxels for the
skin, the eyes, and the brain.

Let us now move to the front-to-back section of Table 2.
We have advocated front-to-back splatting in this paper
since, in this traversal order, we can take advantage of early
splat elimination, i.e., visibility acceleration, as introduced
in Section 6. Note that the rendering times for front-to-back
splatting without visibility acceleration are identical with
those of back-to-front splatting and are therefore not listed
in Table 2. We observe in the first column of this table
section that, in most cases, visibility acceleration indeed
reduces the rendering times for the image-aligned splatting
method, which is a direct result of the reduced number of
voxels that need to be splatted. This is true even for the
semitransparent views. We also see, however, that, for the
side-view of the nerve dataset, the rendering time actually
increased. Apparently, the overhead for convolution domi-
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Fig. 12. Pseudocode that demonstrates list-based splatting with slice buckets and splat visibility test.

Fig. 13. True footprint screen extent when the grid aspect ratio is
nonunity vs. approximate footprint screen extent. The former gives rise
to a nonseparable convolution filter, while the latter can use a cheaper
separable convolution filter.



nated the savings obtained through voxel culling. This is

mainly due to the fact that the iso-voxels in the nerve

dataset are relatively sparse and dispersed, but nevertheless

occupy a large volume, and the convolution is mostly

wasted on empty opacity buffer areas. By tiling the opacity

buffer, we can limit the convolution (and compositing)

efforts to the relevant buffer regions and reduce the

rendering times significantly. This is documented in the

third column of this section of Table 2. We can apply the

tiled visibility acceleration to axis-aligned sheet-buffered

splatting as well and speed-ups between 1.4 and 2.2 are

obtained. Finally, comparing the rendering times for fully

accelerated axis-aligned and image-aligned front-to-back

splatting, we observe that the runtime ratios have dropped

significantly. Image-aligned splatting is now only about
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Fig. 14. Top row: nerve dataset rendered with axis-aligned sheet buffer-based splatting. Bottom row: nerve dataset rendered with image-aligned
sheet buffer-based splatting. Noticeable popping artifacts are observable with the axis-aligned method, while the image-aligned method provides for
a smooth animation.

Fig. 15. (a) MRI dataset, rendered semi-transparent with glass-like specular reflections, (b) MRI dataset, rendered semitransparent with eyes and
brain showing through, (c) tomato, rendered semitransparent with seeds, core, and placenta showing through, (d) head-on view of the nerve dataset.
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Fig. 16. An array of images which show the effects acceleration methods have on image quality.



50 percent more expensive than axis-aligned splatting with

the benefit of much improved image quality.
Our framework offers a number of easy acceleration

techniques, partially unique to the image-aligned sheet-

buffer approach, that reduce rendering times even more.

For instance, using smaller kernels, such as a Gaussian with

radial extent of 1.4, reduces the number of section footprints

to be rasterized per voxel. Making the kernel sections wider,

i.e., increasing the width of the sheet-buffer slabs, cuts the

number of kernel sections as well. It, however, also

increases the volume sampling interval which potentially

leads to aliasing-related artifacts. Finally, we may also

lower the opacity threshold for early splat elimination,

which is equivalent to �-acceleration in conjunction with

early ray termination [4].

Fig. 16 presents an array of images which show the
effects these acceleration methods have on image quality,
while Table 3 presents the savings in rendering time. To
demonstrate our findings, we have selected three repre-
sentative datasets and transfer functions: the semitranspar-
ent rendering of the tomato, the opaque head, and the head-
on view at the nerve cell. The images reveal that the quality
of the semitransparent rendering of the tomato does not
suffer much from any of the acceleration methods, even
when a slab width of 3.0 is used. Thus, it appears that we
can significantly speed-up the rendering, especially when
the acceleration methods are combined. On the other hand,
an opaque dataset, such as the head, appears to be very
sensitive to slab widthÐstrong aliasing artifacts appear,
even for a moderate slab width of 2.0. Lowering the opacity
threshold or the kernel radius has only minor or no adverse
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TABLE 2
Rendering Times (in secs) for Various Incarnations of Sheet Buffer-Based Splatting Algorithms

Each ratio term refers to the two columns immediately preceding it. The timings were obtained on an SGI Octane with R10000 CPU and 640MB of
memory, using 2D texture mapping hardware for footprint rasterization and opacity buffer convolution. However, similar timings were also obtained
with a pure software implementation on a 400MHz Pentium II with 256MB of memory.

TABLE 3
Runtimes (in secs) and Speedups (in Parentheses) for Various Methods Used to Accelerate

the Rendering Time of the Sheet Buffered Splatting Methods

Varying the slab width is unique to the image-aligned method. The default case is kernel radius = 2.0, slab width = 1.0, and opacity threshold = 0.95.

TABLE 4
Various Splat Statistics

The percentages given in the second column of one category refer to the quantities given in the category immediately to the left.



effects on image quality for these datasets and views. The
nerve dataset is opaque as well, but more irregular and
dispersed in structure than the head. An increase in slab
width to 2.0 is well tolerated in this dataset, as well as using
a smaller kernel or lowering the opacity threshold. Hence,
we recognize that the utility of these speed-promoting
enhancements are dependent on the underlying dataset and
transfer function. Lowering the opacity threshold and using
smaller kernels is generally well-tolerated, while varying
the slab width represents a more sensitive issue.

The time spent on rasterization is directly proportional to
the number of voxel sections surviving the early splat
elimination test. The time spent on shading is somewhat
proportional to this number, but could be slightly higher
since not all kernel sections may be eliminated and thus the
kernel must be shaded for the surviving (front-most)
sections of the kernel. (Note that shading is done only once
per kernel.) To account for this dependency, and also to
illustrate the considerable savings that come with early
splat elimination, we have listed some splat statistics in
Table 4. We see that, for the opaque objects, the number of
splats to be rasterized can be culled by more than 90 percent
in some cases. For the semitransparent objects, more than
two thirds of the voxels are culled. Similar relationships
hold for the number of shaded voxels in relation to the
number of voxels in the iso-range.

For the image-aligned splatting approach, extracting a
new iso-range from the iso-voxel list usually takes less than
0.2 seconds using binary search. In the axis-aligned
approach, we use the technique proposed by Ihm and Lee
[8], sorting each volume slice by voxel value. In this way,
we find the iso-voxels quickly by using an inexpensive
binary search in each slice.

8 CONCLUSIONS

We have presented a new splatting technique that rectifies
one of the most notorious disadvantages of splatting: the
inseparability of volume integration and compositing. In
contrast to traditional sheet-buffered splatting, the new
method does not add voxel kernels as a whole to a volume
axis-aligned sheet-buffer. Rather, it sections the voxel
kernels by pairs of image-parallel slicing planes and adds
all kernel slices that fall between such a pair of slicing
planes to the associated image-aligned sheet-buffer. The
sheet-buffers themselves are composited as usual, but the
compositing now occurs orthogonal to the image plane and
is separated from the kernel integration. This brings the
splatting approach more in line with raycasting, but retains
its original advantages: the sparse volume representation
and the efficient volume projection via footprint lookup
tables. The new method does not suffer from the disturbing
popping artifacts that occur in animated viewing with
traditional sheet-buffered splatting and also generates
images of better quality. In addition, by varying the
distance between slicing planes, we are given an easy
means for controlling the trade-off of rendering speed vs.
rendering quality.

We then extended the algorithm to volumes with
anisotropic grid spacing, which often occur in medical
datasets. We proposed a new grid warping technique that

does not require the usual ellipsoidal kernels, and thus
avoids the artifacts obtained with those at no extra cost. Our
method can account for the view-dependent ray sampling
rate that results from splatting an anisotropic grid without
interpolating additional slices. We can adjust for this
circumstance by slicing the kernels into thinner sections,
using a 2D array of summed-area tables from which any
kernel section integral can be efficiently retrieved.

Finally, we have extended the principles of raycasting's
early ray termination to splatting. After each sheet-buffer
compositing, an occlusion buffer is computed from the
opacity buffer via a convolution operation. The occlusion
buffer can then be efficiently indexed by a projected voxel
center to determine the voxel's (partial) visibility. A pre-set
opacity threshold determines how early splats are culled
from the rasterization pipeline, which is a scheme similar to
�-acceleration used in raycasting. Early splat elimination
culls up to 97 percent of voxels from rasterization. By
limiting the convolution and compositing operations to
those image tiles that have received contributions in the
current sheet-buffer, we can limit the computational over-
head of the method significantly.

Future work will investigate speedups obtained when
projecting all voxels with low opacities as full kernels, since
these voxels do not contribute much to the image anyhow.
We will also investigate schemes that use the value of the
opacity image to determine how much the splat will
potentially contribute to the final image. If the opacity is
already large, we could simply project the entire voxel at
once instead of splatting it multiple times as kernel slices
(this is equivalent to the �-acceleration in [4]). Furthermore,
if a voxel opacity is low, we could decrease the relevant
splat size to cull opacity-multiplied splat contributions that
are below the resolution of the sheet and accumulation
buffer.
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