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ABSTRACT

A common deficiency of discretized datasets is that detail beyond
the resolution of the dataset has been irrecoverably lost. This lack
of detail becomes immediately apparent once one attempts to
zoom into the dataset and only recovers blur. Here, we describe a
method that generates the missing detail from any available and
plausible high-resolution data, using texture synthesis. Since the
detail generation process is guided by the underlying image or vol-
ume data and is designed to fill in plausible detail in accordance
with the coarse structure and properties of the zoomed-in neigh-
borhood, we refer to our method as constrained texture synthesis.
Regular zooms become “semantic zooms”, where each level of
detail stems from a data source attuned to that resolution. We dem-
onstrate our approach by a medical application – the visualization
of a human liver – but its principles readily apply to any scenario,
as long as data at all resolutions are available. We will first present
a 2D viewing application, called the “virtual microscope”, and
then extend our technique to 3D volumetric viewing.

CR Categories: I.3.7 [Computer Graphics]: Color, shading,
shadowing and texture I.3.3 [Computer Graphics]: Picture/Image
Generation 

Keywords: texture synthesis, semantic zoom

1 INTRODUCTION

When viewing an image (note, a volume is considered a 3D image
for the discussion here) the amount of detail that can be visually
explored is fundamentally bounded by the image resolution.
Magnification will not extend the amount of visible detail, it will
only spread it out in space such that it can be better discerned by the
observer. Magnification typically entails some blurring, depending
on the quality of the magnification filter used [20]. However, it
should be obvious that even with the best filter, pure magnification
can not add detail where it has not been sampled before. Therefore,
zooming into an image or volume at high magnification factors
tends to create a rather boring, non-informative, and non-satisfying
viewing experience. 

The amount of available detail may be constrained by: (i) eco-
nomical limits bounding the size and therefore the detail of the
image, and/or (ii) technical limits inherent in the image acquisition
process. As an example for the latter, optical lenses generally are
only able to provide focus within a certain range of scale, while
imaging technologies, such as MRI and CT, impose physical limits
on the amount of detail they can resolve. Should detail on other
scales be desired, alternative lenses or imaging methods, such as
optical, confocal, and electron microscopy are required.
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In computer graphics, texture mapping has long been a method
by which interesting detail can be added. However, texture place-
ment is usually guided by geometry, and not by semantic con-
straints imposed by the image to be enriched. Texture mapping
may also cause repetitive tiling artifacts. Texture synthesis has
more promise in this respect. For example, Freeman et al. [8]
established a database of coarse-fine resolution mappings that they
used to add fine detail to magnified images of natural scenes. This
fine detail, however, was on the same order of scale as the base
image, and only magnifications at the same semantic level of scale
were possible.

In this paper, we propose to extend the notion of image-guided
detail enhancement to multiple levels of scales. However, we
would like to avoid traditional image pyramids where multi-scale
detail stems from the repeated smoothing of a single high resolu-
tion image. This is because requiring such an image would violate
one or both of the constraints mentioned above. Instead, we intro-
duce the notion of semantically constrained multi-scale texture
synthesis to facilitate zooms at a virtually infinite number of
scales, as long as the corresponding texture data are available (see
Fig. 1). Here, the term “semantic zooming” means that the multi-
scale detail is not derived from one image to the other via simple
filtering, but via different sampling processes tuned to the respec-
tive level of scale. An everyday example of semantic zooming [7]
is electronic maps, where each level of zoom is an excerpt of a dif-
ferent map, such as country, state, city, neighborhood, etc., bearing
a very different style and type of detail. 

In contrast to the aforementioned maps, our application does not
store complete images at every level. One of our main design goals
is to generate the semantic detail at a minimum of memory cost,
thus providing a solution that will scale well. Therefore, our sys-
tem will not yield an accurate multi-scale “map”, rather, it will
generate something that looks like an accurate multi-scale map,
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Figure 1:  Semantic zooming based on texture synthesis
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however, one in which large-scale features and its small-scale
detail smoothly blend into one another. 

For example, one of the possible domain applications of our sys-
tem is the “virtual microscope”, where users start at a low-resolu-
tion MRI or CT image of some biological tissue and then slowly
zoom in anywhere they desire to reveal the underlying cell struc-
ture, and finally the interior of the individual cells themselves.
This process is illustrated in Fig. 2, for a human liver. Other possi-
ble applications include multi-resolution viewers for terrains, the
universe, a sheet of metal, or any other domain that offers multiple
levels of semantically constrained data, under the assumption that
these data can be obtained. The fact that the different levels are
obtained via synthesis and not via filtering of a common source
imposes certain restrictions on the use of our technique. For exam-

ple, our medical viewer would not be suitable for diagnosis of a
diseased liver. However, it could be employed in a surgical simula-
tion trainer, an electronic atlas for medical students, or a scientific
illustration tool. Note that in these application scenarios the data at
the different levels of scale do not have to be acquired from the
same specific object, or in this case, person. This is especially
advantageous since some of the higher resolution acquisition
methods may be destructive. Similar restrictions and applications
can also be envisioned for other application domains. 

Our paper is structured as follows. First, in Section 2, we will
elaborate on related work and then present our contribution. Sec-
tion 3 will illustrate our 2D system by a specific example. The 3D
extension is discussed in Section 4, and Section 5 will end with
conclusions.

Figure 2:  Illustration of the semantic zooming capabilities facilitated by the virtual microscope, using a human liver as an example:
(a) MRI image of a liver, where the white square is the user-specified region of interest, 
(b)-(s) a typical image sequence during a semantic zoom, in which (k) is the synthesized histology level image, and (s) is the
synthesized cell level image, 
(c)-(e) magnified MRI level images, (l)-(p) magnified histology level images,
(f)-(k) images obtained by blending magnified MRI and minified histology level images, 
(o)-(s) images obtained by blending magnified histology and minified cell level images.
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2  RELATED WORK

There has been much research focusing on texture synthesis
approaches and applications in recent years. Texture synthesis
algorithms take sample images as input and synthesize new images
with similar textures. These algorithms can be roughly classified
into three categories: statistical, pixel-based and patch-based
texture synthesis. They have been found very helpful in image
processing and also have some exciting extensions, such as surface
texture synthesis [19][22], temporal textures synthesis
[17][21][12], reflectance texture synthesis [18], and others. In the
following, we only discuss the synthesis approaches and
applications most related to our work.

Pixel-based synthesis algorithms synthesize textures pixel by
pixel, which makes them rather flexible and easy to extend and
apply to different areas. The representative algorithms include:
Efros/Leung’s non-parametric sampling algorithm [6], Wei/
Levoy’s multiresolution synthesis algorithm [21], which performs
exhaustive search and accelerates based on tree structured vector
quantization (TSVQ). Ashikhman’s coherent synthesis [1] and
Tong’s k-coherent synthesis [18] algorithms reduce the search
space significantly. Their synthesis process is faster, but only suits
particular types of textures well. Hertzmann’s Image Analogies
algorithm [10] combines [21] and [1], uses PCA, and approxi-
mates nearest neighbor search (ANN) to accelerate the search pro-
cess, offering better results. Zelinka and Garland [27] synthesize
textures in real-time using a Jump Map, after a relatively slow
analysis process. However, many pixel-based approaches suffer
from image blurring and garbage growing. 

Compared to pixel-based algorithms, patch-based synthesis
algorithms tend to be faster and more stable, and do not suffer
from blurring and garbage growing. They are, however, less flexi-
ble since they generate textures by copying whole patches from the
input. Xu’s chaos mosaic [23], Efros/Freeman’s image quilting [5],
Liang’s [13], and Kwatra’s Graphcut [12] algorithms all belong to
this category. We use image quilting in our system, since it is effi-
cient and also easy to implement. For 3D applications, Graphcuts
[12] also seem to be a good choice.

For our application, we combine pixel-based synthesis [21],
image quilting [5], and our pattern-based synthesis. Our approach
is fundamentally different from that of Nealen and Alexa [15] who
use pixel-based re-synthesis to eliminate remaining errors in the
overlap regions of patch-based synthesis. In contrast, we apply dif-
ferent types of synthesis methods to synthesize different regions
and features in an image. Further, our pattern-based synthesis is
location constrained and differs from the algorithms based on pat-
tern placement in the surface texture synthesis domain, such as
pattern-based texturing revisited [16], and texture particles [3].

In our application, we make frequent use of constrained texture
synthesis, where the patch selection and texture generation is made
dependent on some underlying constraints. This technique has
been utilized in image processing, such as image restoration [24]
and texture transfer [1][2][5][10]. Another example is the texture-
by-numbers technique [10], which is able to perform synthesis
from images in which the texture distribution is not stationary but
is based on the labeling of the component textures of images.
These label images, representing the segmentation information of
images, are created beforehand, possibly by the user. Some auto-
matic color or texture segmentation methods are used for guiding
the texture synthesis process in [11][4]. Our constrained texture
synthesis follows a similar idea, but here only the segmentation of

the sample images can be performed in advance. The features or
patterns in the synthesized images have to be detected and labeled
automatically when they are needed during zooms (see Section 3.2
for further detail). To enable proper semantic relationships across
zoom levels, component textures should be placed carefully, fol-
lowing certain constraints including color, intensity, distance
fields, location, and features/patterns of the image. 

In contrast to Freeman’s super-resolution algorithm [8] which
generates enlarged images on the same semantic level than the
base image, our application performs enlargement/zooming [14]
that spans several semantic levels. Our main contributions are:
• Semantic zooming uses texture synthesis to extend image-

guided detail enhancement to multiple levels of scales. 
• Constrained texture synthesis facilitates smooth semantic evo-

lution and detailing of features across zoom levels.
• Feature-guided texture synthesis considers the properties of

features or patterns in the image at a certain semantic level and
chooses image quilting, pixel-based, or pattern-based texture
synthesis methods in accordance with the region’s synthesis
requirements.

3 THE VIRTUAL MICROSCOPE −− A 2D VIEWER

We first discuss the 2D application, which acts like a microscope
with a wide range of magnification. Then, in the next Section, we
will discuss its extension to 3D. A system overview is shown in
Fig. 3. First the underlying multi-resolution image data are
collected and preprocessed to build a set of sample images. Then
the sample images are analyzed to choose the appropriate texture
synthesis approaches and constrained rules for each pair of adjacent
levels. All these are stored in a small database, which will be used
during the semantic zoom operation. 

At the beginning, the user views the image at the coarsest reso-
lution (Fig. 2a). Once the user specifies a region of interest in this
image and zooms in, this part of the image is gradually magnified.
When the image magnification reaches a certain scale, the image
detail of the next level is generated through semantically con-
strained texture synthesis based on the currently magnified image
region. For instance, when the user zooms into the image from the
MRI level to the histology level, the system needs to synthesize the
corresponding histology level image. The same is the case for the
cell level. Blending of two consecutive levels enable the system to
go smoothly from small-scale features to high-scale features.
Thus, there are three main tasks in our system: data preprocessing,
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constrained texture synthesis, and level blending. We will now
describe each of them in detail.

3.1 Preprocessing

We first need to collect data corresponding to the various levels and
perform some amount of preprocessing on them. Fig. 4 shows the
sample images used in the liver example: an MRI image, a low-
scale histology image, and a large-scale histology image. These
three levels will be referred to as MRI level, histology level, and
cell level, respectively. However, it is easy to increase the number
of levels as long as the corresponding texture data are available.
Once the images have been collected the following pre-processing
steps have to be performed. 

Colorization: Typically, the images that are collected have dif-
ferent colors. In order to reduce the distinct discontinuities arising
from mismatched colors during zooms, we need to match the col-
ors across levels. The color correction can be easily done by image
processing methods or tools, such as Adobe Photoshop. The col-
orized images shown in Fig. 4 are the sample images that will be
used to guide the synthesis later on. Since we use the color of the
low-scale histology image for transfer, this image requires no
change.

Segmentation: The sample images need to be segmented into
prominent features or patterns, based on color, shape, or pre-
knowledge. In our particular example, for the MRI image, we seg-
ment out the liver region as well as the portal vein and the artery
elements. The segmentation can mostly be done via image pro-
cessing methods [9] or tools. The segmentation results, which will
later help us to match texture synthesis methods with different fea-
tures or patterns, are stored in tag images (see Fig. 5).

The data preprocessing is the only part in our system which
may require some manual work to refine the image processing
results, but it needs only to be done once. After that, no manual

work is required. The colorized sample images and the corre-
sponding tag images are then stored in a database.

3.2 Constrained Texture Synthesis

3.2.1 Synthesis approaches
As mentioned before, a variety of texture synthesis approaches

could be applied to generate the image detail for semantically dif-
ferent levels. For each pair of adjacent levels, which texture syn-
thesis approaches should be used depends on the texture features,
and the region in which the texture will grow.
• If the texture is isotropic, semi-structured, or structured, and

grows in a large region, image quilting or other patch-based
algorithms produce better quality results than pixel-based
methods. The primary parameters in image quilting include
patch size and overlapping region size. Both mainly depend on
the prominent structures of the texture and should be decided
before synthesis.

• If the texture has layers and/or grows within a small irregularly
shaped region, then a modified pixel-based approach forms a
convenient way to add fine detail in the magnified images. We
give the details of our algorithm in Section 3.2.3. The parame-
ters in a pixel-based synthesis algorithm [21] include the shape
and size of the pixel neighborhood, as well as the number of
levels if a multi-resolution algorithm is applied. 

• If the texture is composed of atomic patterns which should be
preserved during synthesis, our pattern-based synthesis is
employed to synthesize the patterns, while other pixel-based or
patch-based approaches can be applied to synthesize the back-
ground color (see Section 3.2.4 for further details).

Why do we need constrained texture synthesis? We need it to
ensure that the generated textures on one level are semantically
consistent with the level before. Since we use level blending to
facilitate intermediate zooms, this is obviously very important.
Standard texture synthesis algorithms only use the present layer
information in the generation process, and Fig. 6 demonstrates the
poor blending that will occur if we perform texture synthesis on
the histology level without constraining it to the lower-scale MRI
level. Similar problems arise for the cell level and the lower-scale
histology level. Thus, textures of the high-scale image should
always be synthesized to match the features of the low-scale image
under specific constraints. For this reason, the system always com-
putes a tag image of the current result image to facilitate the
matching process. This is somewhat similar to the label-constraints
used in [10] and [1], but in our application the constraint tags are
not specified by the user but generated automatically, using image
processing techniques. 

Figure 4:   Image data and pieces of colorized sample images.
(a) MRI liver image, (b) colorized, (c) low-scale histology
image, (d) high-scale histology image, (e) colorized. (Images
(c) and (d) courtesy of http://www.bu.edu/histology)
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Figure 5:  Some tag images for
the liver example. (a) MRI image,
(b) histology-level image, (c) cell-
level image.

portal vein

artery



In our system, three texture synthesis methods are combined to
synthesize the image. We mainly discuss the algorithm modifica-
tions which need to perform constrained synthesis.

3.2.2 Constrained image quilting
Image quilting is used to generate the background texture for the

histology level and the cell level image, but other patch-based syn-
thesis methods, such as Graphcuts, may also work. In the histology
level, background is defined as everything except the vessels and
their surrounding layer. In the cell level, background is defined as
everything except the cells, the vessels and their surrounding layer.
We also tried pixel-based synthesis methods to generate the back-
ground as well, but neither the single resolution nor the multireso-
lution (with TSVQ acceleration or PCA and ANN acceleration)
algorithm seemed to work well for the textures used here, mainly
because the features in the texture tended to come out blurred.

Our constrained quilting algorithm differs from typical quilting
in the following two ways. First, not all patches in the segmented
sample image can be used for synthesis. For example, at the histol-
ogy level, the textures around the portal vein and the artery are dif-
ferent from the background texture (see Fig. 4c). Hence, the
patches falling into those regions should not be used to generate

the background texture. Second, both patch placement and selec-
tion are constrained to satisfy the match requirement. Especially at
the cell level, in order to match the histology level features, the
quilting process is constrained by the color/intensity of the magni-
fied histology level image. An example for this are the white areas,
called sinusoids, which appear on both synthesized levels and
should be matched. Thus, when selecting a candidate patch for the
third level, the location, shape, and distribution of its sinusoids
must match that of the corresponding second-level area. This is not
a limitation since our sample database is diverse enough, and we
have never encountered a case where no fit could be found. Con-
sidering the texture structure size, the quilt patch size is chosen to
be  pixels, and the overlapping width is 6-8 pixels.

A further constraint for background texture synthesis are object
boundaries, both interior and exterior. The tag images play an
important role in complying to these boundary constraints, and this
will be discussed at the end of this section. 

3.2.3 Constrained pixel-based synthesis
Smaller structures constrained to tight and curved boundaries are
better generated using pixel-based synthesis methods, since patch-
based methods work on a scale too large to adhere well to the
object’s geometry. In our application, we use this type of approach
to generate the small textures in the surrounding layer around the
portal veins. However, at the same time it is desirable to transfer the
global characteristics of the sample texture to the output image as
well. For example, texture features, such as smooth muscle cells in
our application, which are closer to the object boundary in the
sample should also be placed closer to the boundary in the output
image. We can achieve this by constraining the texture generation
process by a measure imposed by the object geometry – distance
fields, which we use here to (i) constrain the texture generation and
(ii) help to find the outside boundaries for magnified veins to guide
the synthesis process. We will first illustrate our pixel-based
algorithm for the general case (see Fig. 7) and then discuss how it
is applied within a specific example.

We calculate the distance field using a  distance transform
and normalize it to a range of [0,1]. The distance field is shown in
Fig. 7a as a grey image, in which pixel value maps to distance. If
the given sample texture has a layered appearance (Fig. 7a), then
the synthesis process must depend on these distance values. After
calculating the distance fields for both sample and result image, we
use the standard scan-line order to synthesize the pixels. There, for

Figure 6:  Mismatched levels. The histology level image (b)
does not match the specified region of the MRI level image (a),
and the cell level image (c) does not match the specified
region of (b) either.

(a) (b)
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Figure 7:  Our pixel-based synthesis methods. Pixel synthesis based on distance field: (a) sample image and its distance field, (b) reference
distance fields and corresponding synthesis results. Pixel synthesis based on distance field and gradient field: (c) sample image and its dis-
tance and gradient fields, (d) synthesis process and result, (e) sample image and the result of synthesizing a thick skin histology image.
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each pixel in the result image, the matched pixel must be chosen
from the set of pixels that (i) observe the usual texture synthesis
metrics [21] and (ii) have a similar distance field value. 

If the input image is part of a layered texture, or if we want to
reduce the sample image size to speed-up the synthesis, our pixel-
based synthesis method will not only depend on the distance value,
but also on the texture direction, which is calculated from the dis-
tance field and represented by a gradient field (see Fig. 7c). The
pixel synthesis order depends on the distance values, and, based on
the gradient, rotated L-neighborhoods are compared to find the
best match. 

In our bio-tissue example, we pre-compute the normalized dis-
tance field around the portal vein based on the tag image of the
sample histology level image (see Fig. 8a). When synthesizing the
histology level image, we compute a similar distance field around
the vein of the magnified MRI image to find the boundary of the
vein structures (Fig. 8b). The detail in the vein periphery is then
synthesized based on the distance and gradient values.   

3.2.4 Pattern-based synthesis
Our pattern-based algorithm is designed to preserve potential
atomic structures, i.e., structures that cannot be cut, such as cells.
Pixel-based or patch-based synthesis methods cannot generally
guarantee that features remain uncut or undistorted, since they have
no knowledge about which part of the texture constitutes a whole
atomic pattern. We require an algorithm that will ensure that atomic
structures remain intact and, at the same time, satisfy the match
requirements.

We can achieve this by identifying the location of the atomic
structures on the low-resolution level and replace them by high-
resolution versions in the magnified level. If these structures have
fuzzy boundaries that blend with the background, it is useful to
keep these as well. They can then later help to integrate the fea-
tures into the background in a coherent way.

The first step involves identifying the atomic features. In our
liver tissue example, these atomic features are represented by the
cells in the cell level sample image (Fig. 4e) and are segmented as
patterns (Fig. 5c). When synthesizing the cell level image, the
algorithm first detects all possible cells (dark points) of the magni-
fied histology level image based on the image intensity, and
records this location information. We detect the dark points using
two thresholds. Then location-constrained pattern placement pro-
ceeds, and the cell patterns are chosen randomly to increase the
variation of the result. A similar method can also be used for mag-
nifying the cells in the layer around the portal veins. 

As we have mentioned above, the tag image, which corresponds
to the current zoomed image, is important to comply with the
match requirement. For example, the vessels (portal veins and
arteries) represent interior objects which should be preserved as

they are and properly scaled under zoom. However, scaling the tag
image presents a problem. When the image is magnified, the corre-
sponding tag image should also be enlarged at the same rate. With-
out any specific process, the boundary of the enlarged tag image
will have a binarized effect (Fig. 9a). To prevent this, we use a
smooth interpolator for the tag values, and then choose an interme-
diate value as the threshold to decide the boundary. Using this pro-
cedure, the magnified image will still have a smooth boundary
(Fig. 9b). Another possible solution is to represent the boundary as
a spline curve. If the segmentation information is stored using a
spline curve, the enlarged spline curve can be calculated based on
several control points while the image is magnified. In this way,
the boundary can be very accurate. 

3.3 Smooth Semantic Zooms

When zooming into a specific region of the image, our system
combines two processes: (i) magnification of the current level
image, and (ii) minification of the synthesized next high-scale level
image. This achieves any level of magnification from only a few
images with different semantic detail. 

The system has a number of parameters, some are set by the user
and some are decided by the available data. The first such parame-
ter is the size of the output image, , which specifies the
screen size of the microscope. A second parameter is the maxi-
mum zoom scale Zmax for each level, which is determined by the
resolution of the subsequent, more fine-scale level. This factor
determines the amount of standard magnification that needs to be
performed using the current level data before new semantic detail
can be filled in by synthesizing from next-level data. Obviously,
the more levels are available, the less blur will be encountered
when zooming in. Since for real optical, confocal, or electron
microscopes the maximal zoom scale can be from thousands to
millions, our application accelerates the zooming activity by dra-
matically reducing Zmax. When the present level data is magnified
at Zmax, the resolution has been reached at which the next higher
level data can be synthesized to provide the missing detail. 

Also, at the beginning, the user specifies a zoom focal point F,
which determines the center of the region of interest R. This region
R has a size  and is calculated by the system, such that

. R marks the image region that will be replaced by
the next higher level detail when the zoom scale Z reaches Zmax (in
our example, this region is shown as the white square in Fig. 2a). 

The last parameter that our system maintains is the view port VP
which is centered at F and has a size . It varies with Z, such
that . At any given Z, the system will capture the image
inside the VP, and then magnify and fit it into the output image. At
startup, the image is not magnified, i.e.,  and Z=1, and is
shown as the output image directly (Fig. 2b). When the image is
gradually magnified by the user, Z increases, while the VP

Figure 8:  Vein periphery synthesis based on distance fields. (a)
generated from the segmented sample image, (b) generated from
magnified MRI image, (c) texture detail.

(c)(b)(a)

calculate vein periphery
via distance transform

Figure 9:  Smooth boundary problem caused by tag image
magnification: (a) dentate boundary, (b) smooth boundary.
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decreases. Once the VP has reached R, synthesized image data due
to the next higher-level detail should be made available.

It is desirable to avoid a sudden change of the display, where the
image generated from the next higher level of resolution suddenly
pops in. We accomplish a graceful transition by blending the
images of two consecutive levels over some range of zooms, prop-
erly weighted by a zoom-related weighting function. In addition,
we prefer to do this without having to view blurred features of the
present level. We can achieve both of these requirements by speci-
fying a transition point t with a zoom scale Zt, where , at
which we compute the image for the next level, minify it, and
blend it with the magnified present level. This early computation
of the high-resolution image, however, requires the computation of
extra data at boundaries, later culled with further zooming until the

. More specifically, suppose that the synthesized image
has size , then . The advantage of having
a larger image available is that it allows more panning activity
within the next semantic level. 

The smooth image transition process over a range of consecu-
tive zooms is illustrated in Fig. 10 below. After the transition
point, the magnified present image and minified synthesized image
are smoothly blended by gradually changing their weights
inversely, i.e., the magnified image will fade out while the synthe-
sized image will fade in. 

3.4 Results

In this section we report on our specific application – the virtual
microscope viewing a liver datasets at three levels of semantic
scales. The sample images and corresponding tag images stored in
our database have been shown in Fig. 4 (b,c,e) and Fig. 5. A few
frames of the resulting image sequence during a semantic zoom are
shown in Fig. 2. When the user specifies a region-of-interest in the
MRI image of a liver and zooms in, then this part of the MRI level
image is gradually magnified and blended with the synthesized
histology level image. If the user further zooms in from the
histology level, the histology level image is magnified and
eventually blends with the synthesized cell level image. This
resembles the functionality obtained with a real microscope, when
slowly examining an interesting part of a liver. Besides zooming,
the user can also pan to inspect nearby regions. 

In our algorithm, once the sample images are chosen, the time to
synthesize a certain level image mainly depends on the output
image size M and the magnification scale Zt of the transition point.
When M is fixed, the time spent on synthesis and the blending pro-
cess can be adjusted by Zt. For example, suppose the output image
size is fixed on  and the maximal scale Zmax= 4. If the
specified scale Zt of the transition point is 2, then the synthesized
image has a size of . With the current implementation, it
will take several minutes to generate the result image. If Zt is

increased to 3, the corresponding synthesized image becomes
, which reduces the time spent on synthesis. However,

the blending effect is also reduced, which means the synthesized
next-level image will pop in more abruptly.

4 EXTENSION TO 3D

The idea extends well to volumetric data. In order to generate sub-
resolution detail for volume data, we extend image quilting to
volume quilting, and also apply a 3D pixel-based synthesis
algorithm. In volume quilting, we apply the graph cuts algorithm
[25][26] to find the best seam surface between two neighboring
blocks, instead of using the shortest path algorithm, which is
applied in image quilting but not easy to be extended to 3D [12].    

From the Visible Man’s cryosection data, we reconstructed the
volume and segmented out the liver. Similar to the 2D case, the
volume data is also colorized to match the histology data. The
sample histology volume is built based on the features in the 2D
image and certain 3D growth rules. We could also apply Wei’s
solid texture synthesis method [22] to generate a sample volume,
however, it is difficult to get a high quality solid texture. Fig. 11
shows the volume data required by the synthesis procedure.

In the 3D extension of our viewer, the user specifies a volume-
region-of-interest (Fig. 12a), and this volume region is cut out
from the original volume and rendered. During 3D zooms, the vol-
ume region is magnified and smoothly blended with the minified
synthesized higher level volume. The observed volume size
changes during zooms, in contrast to the fixed-size output images
in the 2D system. Some volumetric semantic zooms are shown in
Fig. 12. For the histology level, as in 2D, the textures around the
vein are synthesized by a pixel-based algorithm, while other tex-
tures are created by volume quilting. Fig. 13 shows volume with
cut and translucent rendering results. The translucent volumes are
rendered using the OpenQVis software (http://openqvis.source-
forge.net/). An advantage of volume synthesis over traditional sur-
face synthesis is that only the former can illustrate the translucent
effect of internal structures.

Zt Zmax<

Z Zmax=
S S× S M Zmax Z⁄× t=

Figure 10:  Image transition process. 
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Figure 11:  Volume data and colorized volume. (a) visible man’s vol-
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5 CONCLUSIONS

We have described a new constrained multi-scale texture synthesis
method to facilitate semantic zooms. Pixel-based, image quilting,
and pattern-based synthesis methods were unified to generate high-
detail images under certain constraints. Our demo application, a
virtual microscope, demonstrated that quite interesting and useful
image sequences can be generated using our framework.

In future work, we would like to improve our algorithm in terms
of accuracy and speed. For the former, more sophisticated segmen-
tation and constraints may yield more refined small detail. We
would also like to explore better interpolation methods for the ori-
ented texture synthesis to overcome some of the remaining visual
artifacts. Finally, optimization and GPU acceleration of our algo-
rithm will provide more interactive capabilities, i.e., for generating
the detail on demand when zooming into an image or volume. 
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