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1. Introduction

Volume rendering has become an integral technology in
many areas of science, engineering, and medicine, and even
entertainment thanks to the emergence of programmable
graphics hardware (GPUs), available at affordable cost
everywhere. The use of graphics hardware for volume ren-
dering began with SGI workstations equipped with 2D and
3D texture mapping hardware and progressed to early gener-
ations of PC-grade graphics boards [RSKB*], which prop-
erly shifted and composited a set of axis aligned slices in
front-to-back order. Pre-integrated volume rendering
[EKE01] was later introduced to cope with under-sampling
artifacts, that were produced when the above scheme was
used with oblique viewing directions. The accelerated view-
ing capabilities enabled interactive transfer function design
with a multi-dimensional framework [KKH02]. Accelera-
tion techniques, such as early ray termination and empty
space skipping [LMK03], and hierarchical acceleration
structures [GWGS02] were also introduced. The slice-based
rendering scheme was retained until the render-to-texture
capabilities emerged, facilitating the storage of intermediate
results onto textures and effectively driving program flow.
This, in fact, gave rise to the ubiquitous GPGPU movement,
and enabled the departure from the slice-compositing
scheme of the early years. A noteworthy contribution in this
regard is the paper by Krueger and Westermann [KW03],
who implemented a ray caster on the GPU. This effort was
followed by Weiskopf et al. [WSE04], who extended this
framework to non-linear ray tracing. Both methods explic-
itly enforced the program flow by rendering control poly-
gons for every major step of the ray casting algorithm, using
textures to hold the intermediate computation results. The
repeated sequence of individual steps are: advancing the
rays, interpolation of samples in the 3D data texture, shad-
ing, compositing. While the programming model of graphics
hardware is already SIMD (Single Instruction/Multiple
Data, where the parallel processor performs the same opera-
tions on different data), the explicit decomposition and
enforcement of the volume rendering process into these var-
ious pipeline steps created an even stronger SIMD lockstep
processing mode. This gave rise to significant overheads
associated with rendering the control polygon at each step,
and requiring multiple passes. The upside to this is that due
to the strong decomposition, rays that have become opaque

could be eliminated (terminated) between steps and empty
space could be culled [KW03]. Hadwiger et al.[HSS*05]
presented a GPU-ray casting system for isosurface rendering
which uses a block-based space-skipping acceleration
scheme and performs screen-space shading. Splatting was
also accelerated on the GPU using early-z culling [NK05].
Finally, Xue et al. [XZC05] introduced isosurface-aided
hardware acceleration techniques to slice-based rendering,
and Weiler et al. [WMKE04] provided a hardware acceler-
ated ray-casting framework for rendering texture encoded
tetrahedral strips.

The addition of loop and branch capabilities into the GPU
programming set has enabled the more natural and free-
flowing pipeline execution mode used in single-pass ray-
casting [SSKE05]. In the new ray casting programs, a ray is
first initialized and then steps across the volume and repeat-
edly executes all pipeline steps to integrate the discrete vol-
ume rendering integral. This only requires a single control
polygon to be rendered, sending the ray fragments on their
ways. We have found that the present framework lacks the
capabilities to focus program flow on the relevant data, and,
due to the GPU-native SIMD programming model, the slow-
est ray determines the rendering speed. We explore solutions
to enforce better control over the rendering process, with the
special SIMD programming model in mind, giving speedups
of up to 8.
2. Single-Pass Ray-Casting

The latest generation of NVidia and ATI hardware, which
support the DirectX Pixel Shader 3.0 API and NVIDIA's
NV_fragment_program2 extension, enabled the introduction
of single-pass ray-casting. This improved approach, thor-
oughly described in [SSKE05], takes advantage of the new
branching and looping capabilities of the GPU in order to
completely eliminate the need for intermediate passes
required in previous implementations [KW03]. These addi-
tional passes were necessary to trace through the entire 3D
volume, but also to stop rays that are outside of the volume
or in already opaque regions.

Single-pass ray-casting is significantly faster than multi-
pass ray-casting when rendering in semi-transparent mode,
where very few rays will terminate due to opacity. Since the-
oretically the two approaches have exactly the same com-
plexity, the difference in performance is defined by their
overheads. In this case, the single-pass approach has much
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less overheads.
In certain scenarios, such as iso-surface rendering, and in

cases where the opacity accumulates faster, depending on
the transfer function, the multi-pass approach can be
expected to perform better, since certain hard-wired optimi-
zations including early-z culling can be applied to eliminate
fragments from rendering on subsequent passes. These opti-
mizations take advantage of the local coherence of neigh-
boring rays since the whole process is inherently
synchronized to lock-step.

The current single-pass implementations, including the
one by [SSKE05] rely on a similar property of the SIMD
processing pipeline that performs the fragment processing.
More specifically, all the fragments that are “in flight” (that
is the group of fragments that are being processed at the
fragment pipeline at a given moment), are essentially run in
lock-step. This means that all the fragments included in this
currently processing group share the same instruction
counter. So, if these fragments are executing a data depen-
dent loop, then all the fragments within this group will either
be working, or in the worst case, idle-processing until all of
the fragments are ready to exit the loop.

The exact size of the “in-flight” fragment region is undis-
closed by hardware manufacturers as it varies across differ-
ent graphics hardware models, brands, and different
generations of the same model, but it is expected to be a few
hundred in the GeForce 6 series GPU [KF05]. This, depend-
ing on the fragment positioning in certain regions of the vol-
ume, translates to a few pixels/rays being able to
dramatically slow-down the performance of the whole
scene. In fact, it was also observed in [SSKE05] that early -
ray termination even when rendering iso-surfaces using a
full volume shader does not give performance that is consis-
tent with what we have observed with previous approaches
that use multi-pass rendering combined with early-z culling.

To verify this assumption, we have tested the single-pass
ray-casting approach on a full volume rendering task but
setting the transfer function to define iso-surface rendering.

Therefore, the alpha channel should saturate very quickly,
and by adding a simple check inside the rendering loop
should terminate the ray as soon as the alpha passes the
opacity threshold. In the example shown in Fig. 1, we illus-
trate the number of iterations executed in each ray. In sub-
figures (b) and (c) darker shades of red depict less iterations
for the pixel. We can clearly see that a group of edge pixels,
which do not accumulate enough alpha to reach the thresh-
old, keep executing until they reach the volume bounds.
Unfortunately, because of the way the fragments are pro-
cessed inside the GPUs SIMD pipeline, these “rogue pixels”
were able to slow down the whole scene down to about 8
times compared to the frame-rates of our suggested opti-
mized implementation. The iteration counts of the optimized
renderer are shown in Fig. 1c, where we can see that for the
iso-surface case all the pixels in the scene render with simi-
lar very shallow rays.

Experiences such as the above clearly suggest the neces-
sity for an optimization scheme which takes into account the
specific characteristics of each volume dataset and ensures
that the rendering pipeline is fully utilized most of the time.
3. Implementation

A very simple yet quite effective and efficient accelera-
tion approach for ray casting was proposed as early as 1995
in [SA95]. The Polygon Assisted Ray Casting algorithm
(PARC) uses the hardware pipeline to acquire the pixel loca-
tions of the front and back surfaces of the dataset. This is
done by rendering a polygonal model of the volume into two
different target textures, using a two-pass approach similar
to depth-peeling, where depth-buffer testing is used to ren-
der the front-most and back-most surfaces separately. The
resulting textures can then be used to define the beginning
and end of each ray. In the original implementation of
PARC, this information was later read in back to the CPU
and used later to accelerate the software based ray casting
engine.

Our suggested single-pass ray casting method uses a
polygonal model that is computed only once, using a simple
iso-surfacing approach such as the marching cubes [LC87],
based on the opacity assignments of the current transfer
function. The algorithm then introduces a setup step at the
beginning of the pipeline, which renders the polygonal
model and stores the entry and exit points for each ray of the
scene, as the PARC approach requires. The size of the
polygonal model is kept at about 100-150K triangles using

Figure 1:  Example of SIMD ray-casting slowdown. (a) An
iso-surface rendering of the foot dataset (viewport
512x512). Unoptimized frame-rate: 9.5 fps, Optimized
frame-rate: 57fps. (b) Number of iterations per fragment
for unoptimized SIMD ray casting. Darker red color equals
to less iterations. (c) Number of iterations per fragment for
optimized SIMD ray casting. We can notice from (b) that
just a few fragments are causing a slowdown of about 8.
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fps=10
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Near Intersection
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Figure 2:  The data structures used in the PARC algorithm
for SIMD raycasting. Here, the volume’s outer surface mesh
has been used to produce the near image texture and the far
texture which store the intersection coordinates in RGB. The
depth image helps to isolate the visible volume and avoid
raycasting empty space.
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the mesh simplification facilities provided by DirectX.
When the volume dataset is larger than 1283 we sub-sample
the volume and then polygonise. The resulting surface is
then slightly resized in order to include boundary features
that might have been lost in the sub-sampling step. This con-
servative approximation of the outer surface ensures the
inclusion of all features above the iso-surface threshold,
while keeping the polygonal model to a manageable size.

The resulting front-location and back-location textures
store the entry and exit positions for each ray in perspective
viewing, and can then be used inside the single pass frag-
ment shaders to lookup these values (See Fig. 2). This
approach provides a very tight bound, which encloses all
possible volume locations to be sampled and restricts com-
putation only to these necessary locations. In addition, as
shown in the illustrated example of Section 2, this also
ensures that any “rogue rays” that don’t adhere to the termi-
nating conditions do not keep processing until the volume’s
bounding box is reached. In fact, the proper depths of the
rays passing through the boundary voxels that were causing
the original approach to stall are very small. Therefore these
rays should not stay too long in the pipeline anyway.

The next step is equivalent to empty-space skipping.
After the front and back location textures are computed, a
depth setting pass is run in order to prepare the depth-buffer
for early-z culling that will eliminate all rays with zero
depths.

Following is the final step, which defines the ray casting
pass. Inside the ray casting loop, each ray first looks up it’s
starting and ending position using the front and back posi-
tion textures, and sets up the termination conditions for the
rendering loop. Since we are using DirectX Shader Model
3.0, the instruction counter of the loop can only go up to
255, so depending on the size of the volume and the step
size of the ray, a second loop inside the main loop is used to
adjust the final loop counters. 

A flexible shader loading mechanism is available on the
system, which allows the user to dynamically load new
shaders to be used in the ray casting step of the pipeline.
Current examples include a full volume rendering shader
which is able to load the xml transfer function sets shared by
our collaborating visualization projects, as well as X-Ray
and MIP projection shaders and step counters for illustration
purposes.

The front and back surface position textures are available
to the volume shaders at all times. This would be useful in
scenarios where the ray direction changes, such as refrac-
tion, where the exit point is different from what was com-
puted in the beginning. In this case, the front and back
position textures may be used by the shader at each step to
re-compute direction and exit points inside the main render-
ing loop.

The whole system has been implemented using the
DirectX framework, which provides some standardized
functionality in handling mesh data-structures, 3D textures
2D textures that are easily attached to rendering surfaces
and available depth-buffers, in a very similar fashion to
frame buffer objects. Our implementation has also made it
very easy to also handle non-uniformly sampled volumes by
using simple adjustments. This is possible by just introduc-
ing an additional scaling transform onto the surface mesh
before it is rasterized in the pre-processing pass. This step
assures that all rays now conform to the loaded volume sam-

pling rate along X, Y, Z directions and a minor adjustment is
also done inside the shader when volume samples are
fetched.
4. Performance Evaluation

We have evaluated our system implementation on a
workstation equipped with a Athlon64 3200 2Ghz proces-
sor, with 1GB memory and the NVidia 7600GT graphics
board. Our SIMD-aware ray caster was build using DirectX
9.0 and the fragment shaders were compiled using Pixel
Shader V3.0.

Our proposed optimization approach uses the PARC
algorithm which requires two rasterization passes of the sur-
face mesh, in order to create the near and far intersections
for all the rays. We have evaluated the overall overheads of
our approach by rendering only the first two passes without
the ray-casting step. The incurred costs averaged about
400fps, or about 2.5 mSec per frame for all the tested
datasets. This is the only cost that our SIMD-aware
approach imposes to the pipeline. In a full shaded volume
rendering scenario, at 32-bit resolution which is now
achieved by current single-pass ray-casting implementa-
tions, this cost is considered negligible, given the average
rates of current approaches for a 512x512 viewport and vol-
umes of up to 2563. The average size of the mesh is about
100-150K triangles. If this mesh becomes larger than 150K
triangles, then the system uses subsampling as described in
Section 3 and the mesh simplification utilities provided
within the DirectX suite to reduce the size of the mesh, in
order to keep the overall overhead of our optimization
approach below 4 mSec.

In the next part of our evaluation process we measure the
overall impact of the optimization approach to performance.
For the following measurements, we have used full-shaded
volume rendering with half-step ray sampling and compared
the single-pass ray-casting algorithm in 3 modes: (I) Naive
algorithm, using volume bounding box and opacity culling,
(II) Using volume surface with early-z culling for empty-
space skipping, (III) SIMD-aware, using ray-entry and ray-
exit points to restrict the number of ray iterations. All vol-
umes were scaled to fully cover a 512x512 viewport win-
dow. The corresponding images are shown in Fig. 3 and
frame-rates are tabulated in Table 1. The I,II,III columns
show the frame-rates for the respective rendering modes,
and the last two columns show (II*) the speedup of II over I,
which is due to empty-space skipping, and (III*) the
speedup of III over II, which is due to bounding the ray iter-
ations. 

In addition to the expected speedups resulting from
empty space skipping (which is achieved by culling all frag-
ments with no ray-entry point), the results in Table 1 show
significant speedups ranging from 2 up to 8 times from
bounding the number ray iterations. We can also notice that
the datasets rendered in iso-surface mode gained higher
speedups using this optimization. The wide range of speed-
ups is easily explained by the fact that in transparent render-
ing most of the rays have to traverse the entire volume, thus
the gain of using the ray length bounds provided by the
algorithm has less impact. 

Looking at the bottom half of the table, where the last
four volumes are rendered in both transparent and iso-sur-
face mode, we can compare the impact of opacity culling,
which is present in all I,II,III rendering modes. It is clear
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from this part of the table, that opacity culling (early ray ter-
mination based on alpha accumulation) has much less
impact on performance in rendering modes I and II, a result
that is also consistent with what was observed in [SSKE05].
On the other hand, the SIMD-aware approach enables opac-
ity culling to have a more significant impact on perfor-
mance, and it is consistent with the results of the past slice
based approaches.

Overall, these results justify the use the PARC algorithm
to accelerate single-pass ray-casting despite the incurred
costs of at most 2-4 mSec per frame.
Conclusions

In this paper we have explored solutions that address
some of the problems of current single-pass ray-casting
algorithms, which utilize the latest features on GPU hard-
ware such as loop flow control and branch capabilities. We
have identified that the main flaw of the current SIMD ray-
casting systems lies with the fact that very few unbounded
rays are allowed to slow down the entire scene. We have
proposed the use of the PARC (Polygon Assisted Ray Cast-
ing) algorithm, in order to ensure that all rays are bounded to
the limits of the volume’s outermost surface. We also pro-
vided a performance analysis which shows that for the mini-
mal cost of about 2-4 mSec per frame, one can gain up to 8
times speedup on typical volumes. We are currently focus-
ing on a load-balanced SIMD-aware ray casting system.
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TABLE 1. Impact of SIMD-aware ray-casting approach. (I)
Naive raycasting using volume bounding box (II) Empty-
space skipping (III) SIMD-Aware with ray bounds 
(II*) Speedup of II over I, (III*) Speedup of III over II.

Volume Size I II III II* III*

Lobster 3202x36 4.0 7.0 32.0 1.8 4.6
Bonsai 1283 3.4 8.5 16.9 2.5 2.0
Aneurism 1283 3.4 10 32.0 2.9 3.2
Foot Trs. 1283 3.1 7.8 35.0 2.5 4.5
Foot Iso 1283 3.6 10 79.0 2.7 8.0
Teddy 1283 4.0 4.7 13.0 1.2 2.8
CT-Head 1283 4.6 5.1 14.0 1.1 2.7
Engine trs 2563 3.1 3.3 13.0 1.1 3.9
Engine iso 2563 5.0 10.5 38.0 2.1 3.6
VisMale trs 2563 3.9 4.5 10.3 1.2 2.3
Vis Male iso 2563 3.2 5.5 30.6 1.7 5.6
Foot Cat. trs 2563 3.2 3.7 11.0 1.2 3.0
Foot Cat. iso 2563 5.4 5.5 17.0 1.0 3.1
Frog trs 2562x44 3.2 6.9 25.0 2.2 3.6
Frog iso 2562x44 3.3 11.3 37.0 3.4 3.3
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Figure 3:  Various volume rendering results using the SIMD-aware ray casting system. from top left to bottom right: (a) The
Stony Brook lobster, (b) Bonsai Tree, (c) Vessels/Aneurism dataset, (d) CT-Foot semi-transparent (e) CT-Foot iso-surface,
(f) CT-Head, (g) Teddy Bear, (h) Engine Block semi-transparent and iso-surface with transfer functions, (i) Visible Male
Head semi-transparent and iso-surface with transfer functions, (j) Frog semi-transparent and iso-surface with transfer func-
tions, (k) Foot from cadaver (by Philips Germany). 
Comparative frame-rates are shown in Table 1.
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