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For real-world learning tasks (e.g., classification), graph-based models are commonly used to fuse the informa-
tion distributed in diverse data sources, which can be heterogeneous, redundant, and incomplete. These models
represent the relations in different datasets as pairwise links. However, these links cannot deal with high-order
relations which connect multiple objects (e.g., in public health datasets, more than two patient groups admitted
by the same hospital in 2014). In this paper, we propose a visual analytics approach for the classification on
heterogeneous datasets using the hypergraph model. The hypergraph is an extension to traditional graphs in
which a hyperedge connects multiple vertices instead of just two. We model various high-order relations in
heterogeneous datasets as hyperedges and fuse different datasets with a unified hypergraph structure. We
use the hypergraph learning algorithm for predicting missing labels in the datasets. To allow users to inject
their domain knowledge into the model-learning process, we augment the traditional learning algorithm
in a number of ways. Besides, we also propose a set of visualizations which enable the user to construct
the hypergraph structure and the parameters of the learning model interactively during the analysis. We
demonstrate the capability of our approach via two real-world cases.
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1 INTRODUCTION
Real-world learning tasks typically utilize information that is distributed across many disparate
data sources. These data are often heterogeneous and contain different types of objects and various
relations. Fusing these "real-world data" is frequently implemented via a graph structure [16] where
an edge represents the pairwise relation of two objects in different datasets.
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One application, in which these types of heterogeneous data typically occur, is hospital read-
mission prediction in public health. Readmission is the event when a patient checks back into a
hospital within 30 days after discharge. Readmissions put a significant cost burden on the health
care system (and cause stress for the patients), and therefore should be prevented [17]. We have
been collaborating with a researcher in public health whose job is to predict readmission levels for
specific target hospitals and patient groups. Here prediction can be considered as a classification
problem where the readmission levels are the labels. The basis of this task is a set of disparate
data tables related to readmission, encompassing factors like hospital ratings and past hospital
readmissions (see the tables in Fig. 1 (a)). Via existing tools, he fuses these tables by connecting
related objects (e.g., hospitals and patients) with the edges of a graph (see Fig. 1 (a)). Using the
labeled nodes in the graph, classifying other unlabeled nodes can then be done using link mining
methods [16]. For example, he can infer the readmission level of a specific patient group from the
labeled readmission instances.

Patient Groups
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Queens
#1

#3

G4 G5G2

Patients' Survey

#2

 

…

Hospital Location …

#1 Brooklyn …

#2 Queens …

#3 Brooklyn ……

Hospital Rating …

#1 4 …

#2 ? …

#3 5 …

#4 ? ……

Readmissions

R

Counties

?=missing value

G1G3

Fig. 1. (a) An example of predicting hospital readmission level with five heterogeneous tables. The readmission
table is partially labeled as shown in the last column. Traditional graph-based methods use pairwise links to
model pairwise relations among the tables. (b) In a hypergraph model, the hyperedges are able to encode
higher-order relationships.

A shortcoming of the traditional graphmodel is that it has difficulties in dealing with higher-order
relations. For example, in Fig. 1 (a), patient groups G1, G2 and G5 were all admitted by Hospital
#1 in 2014. Such co-occurrences of multiple objects, however, cannot be easily viewed from the
pairwise edges (red links in Fig. 1 (a)). This makes it difficult to efficiently recognize these type of
joint relationships, especially at scale. Conversely, the hypergraph is able to represent these types
of high-order relations. It is an extension to the ordinary graph, where a hyperedge can connect
multiple vertices, and not just two. Fig. 1 (b) shows an example, where vertices G1, G2 and G5 are
contained in the hyperedge "Hosp.#1", but at the same time they are also included in the hyperedge
"2014". As a result, they become a part of the intersection of these two hyperedges which conveys a
possibly interesting relationship.

A crucial property of hyperedges is that they are defined based on the semantic meaning of the
specific relation. For example, the hyperedge "2014" contains objects from both the patient and the
readmission tables (purple and brown nodes in Fig. 1 (b), respectively). This makes them a natural
representation for disparate heterogeneous data.

Our primary goal is to use hypergraph to classify heterogeneous data given a partially labeling
of it, such as "Readmission level" in the readmission table in Fig. 1 (a). Existing hypergraph learning

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.



VA of Heterogeneous Data using Hypergraph Learning 0:3

methods [5] [15] [25] pre-define the structure of the hypergraph and the parameters (e.g., the
weights of the hyperedges). However, the construction process of a unified hypergraph principally
is a design task and needs to be done manually during the analysis process. The user has to test
different data sources for a proper hypergraph structure in a specific application. For example, a
census dataset may not work for predicting the unknown readmission levels since it describes all the
residents instead of only the patients. Furthermore, these users, who could be experienced domain
experts, cannot lower or elevate the influences of certain factors by tuning their weights onto the
model and its predictions, although this might be appropriate. In contrast, we have developed a
visual analytics approach that enables such interactions. It allows a domain expert to assist the
hypergraph learning process by applying his or her domain knowledge and intuition. In this way, a
more realistic actionable model can be derived.
In our method, first a hypergraph structure for the heterogeneous data is constructed visually

using a set of interactions defined on the hypergraph’s incidence matrix. The hypergraph structure
is then used for our improved hypergraph learning algorithm, which allows the user to adjust the
parameters such as hyperedge weights during the learning process. After each run of the algorithm,
the inspection, exploration and validation of the learning results is enabled using a force-directed
hypergraph visualization. Based on the feedback of the exploration, the user can go back to the
previous steps to update the hypergraph structure or hyperedge weights, and examine the effects
of the changes on the results.

The main contributions of this paper include:
• We propose an improved hypergraph learning algorithm for heterogeneous data, which
allows user input of domain knowledge.

• We propose a set of interactions based on an incidence matrix visualization, which enables
the construction of a unified hypergraph structure on heterogeneous data.

• We extend the concept of force-directed visualization to hypergraphs, which enables the
interactive verification, validation and exploration of hypergraph learning results.

The remainder of our paper is structured as follows. Section 2 reviews related work. Section 3
defines the problem and gives an overview of our approach. Section 4 introduces our improved hy-
pergraph learning algorithm. Section 5, 6, 7 describe our visual analytics approach for construction
of the learning model, modulation of the learning process, and exploration of the learning results,
respectively. Two real world cases are used to validate our approach in Section 8. Section 9 ends
with conclusions and future work.

2 RELATEDWORK
A graph structure (e.g., Resource Description Framework [8]) is commonly used to model pairwise
relations among different objects in heterogeneous datasets. Various algorithms have utilized graph
models for link mining tasks [16]. For example, Link-based Classification [28] improves the classifi-
cation accuracy by modeling the link distributions. On the other hand, a number of visualization
methods have also been proposed to help the analysis of graph models on heterogeneous data, such
as creating and designing visual representations [7] [27], searching heterogeneous networks [22],
and evaluating hypotheses [2], and exploration of multi-attribute data [11] [10] [41] [9] [43] [29].
However, as mentioned in Section 1, pairwise edges in a graph are unfit for high-order relations.
Using ordinary graphs to model these relations can lead to unexpected information loss [44].

2.1 Hypergraph Learning on Heterogeneous Data
A hypergraph extends the ordinary graph to formulate complete high-order relations. An edge in
a hypergraph can connect multiple vertices, called hyperedge (Fig. 1 (b)), as discussed. Existing
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hypergraph learning approaches [44] [20] [19] use the hyperedges to model the relations within
a table. For example, the bag-of-words model can be represented as a hypergraph in which a
document is a hyperedge containing multiple words [38]. For heterogeneous data, hyperedges
can be employed to connect related objects from different datasets, such as audiences and music
tracks [5], readers and news [25], images and textual tags [15]. Most of these existing methods,
however, pre-define the hypergraph structures according to their specific scenarios. They do not
provide users with the means to modify the structure during the analysis (e.g., removing a biased
dataset from the hypergraph). In addition, the parameters of the model are typically also pre-defined
(e.g., hyperedge weights) in the hypergraph learning algorithms. However, as motivated above, it is
beneficial to endow the user with the ability to update the weights of the learning model during
the analysis. Therefore, to deal with these two shortcomings we improve the hypergraph learning
algorithm [44] such that it accepts domain knowledge from the user. We embed the algorithm into a
visual analytics framework that allows the modulation of the hypergraph structure and parameters
interactively during the analysis process.

2.2 Hypergraph and Set Visualization
Visual exploration of the structure and the learning results of the hypergraph model can render
useful insights for the analyst. Existing set visualization techniques [1] [40] can be used since a
hyperedge can be viewed as a set of vertices. In this paper, we adopt two common types of set
visualizations: matrix-based and contour-based methods.

Matrix-based visualizations allow the user to easily get an overview of either the inclusions
of elements in the set [23] [35], or the intersections of two sets [24]. Usually, those relations are
encoded by the visual properties of cells in a matrix, such as color.

Contour-based visualizations can be more intuitive to encode the containment and the inter-
section relationships of multiple sets. Generally, the nodes inside a contour represent the mem-
bership of elements in a set, such as in Euler and Venn diagrams [37]. Some of these approaches
(e.g., Bubble Sets [13], KelpFusion [31], and Data Context Map [12]) generate contours based on a
pre-determined node layout. Other methods adopt existing layout algorithms (e.g., force-directed
layout in Vizster [18]) to calculate the node positions.

Other types of set visualizations have been proposed, such as the Parallel Sets plot [3]. Most of
these existing visualizations focus on the visual representation of the set data (e.g., encoding or
layout), while a few of them exploit a set structure visualization to enhance learning tasks such
as classification. In this work, we integrate the set visualization approaches with the hypergraph
learningmodel, which allows the visual analysis of the classification using the hypergraph structure.

3 PROBLEM DEFINITION AND APPROACH OVERVIEW
This paper aims to address the classification problem [45] on a set of heterogeneous tables {V }. We
use the data in Fig. 1 as an example. Given a part of the readmissions labeled as "High" (y(v) = +1)
or "Low" (y(v) = −1) (see the last column in the readmission table in Fig. 1 (a)), the user wants
to predict the readmission levels f of all unlabeled instances, including the unlabeled hospitals,
unlabeled patient groups, and the unknown labels in the readmission table (e.g., the readmission
levels in rows 3 and 5 in Fig. 1 (a)). We will use this example in our paper to illustrate our approach.
The classification problem is defined as follows: suppose Vi = {v(i)

1 ,v
(i)
2 , ...} is the instance set

of table Vi andV = V1 ∪V2 ∪ ... is the set of all instances; given a partial labeling y ofV , assign
labeling f to the rest of the unlabeled instances inV . For binary classification, the vertex label y(v)
is +1,−1 and 0 for positive label, negative label, and unlabeled instance, respectively. The notations
used in this paper are summarized in Table 1.
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Notation Description
G = (V, E,u,w) The unified hypergraph G.

v A vertex in G, which is also an instance in a table.
V = {v1,v2, ...,v |V |} Vertex set of G.

Vi Instance set of the ith table.
e A hyperedge in G, which is also a level of a categorical variable.

E = {e1, e2, ..., e |E |} Hyperedge set of G.
E A categorical variable in a table.

u(v) The weight of vertex v .
U ∈ R |V |×|V | The diagonal matrix form of u.

w(e) The weight of hyperedge e .
W ∈ R |E |×|E | The diagonal matrix form ofw .

d(v) The degree of the vertex v .
Dv ∈ R |V |×|V | The diagonal matrix of d .

δ (e) The degree of the hyperedge e .
De ∈ R |V |×|V | The diagonal matrix form of δ .
H ∈ R |V |×|E | The incidence matrix representation of G.

y = [y0,y1, ...,y |V |]T The given partial labeling vector of V .
f = [f0, f1, ..., f |V |]T The labeling vector of V to be learned.

wd (e) The prior weight of hyperedge e which is set by the user.
Table 1. Notations used in our paper

The classification of the heterogeneous data is accomplished by our visual analytics approach
with the following steps (see Fig. 2):

Visual Construction 

of the Unified 

Hypergraph Model

(a) (b) (c) (d)

Heterogeneous

Data

Visual Modulation 

of the Learning

Process

Visual Exploration

of the Learning

Results

Fig. 2. Conceptual overview of our approach for classification on (a) heterogeneous data. The user is able to
(b) construct, (c) modulate, and (d) validate the hypergraph model with visual interactions. The user can go
back to the previous steps in this iterative process.

Step 1 Visual construction of the unified hypergraph model: The user can select tables
of interest and present them in an initial incidence matrix visualization. He or she can then link,
merge, include, and exclude the tables interactively within the matrix visualization to construct the
hypergraph structure.

Step 2 Visualmodulation of the learning process:With the constructed hypergraph in hand,
our improved hypergraph learning algorithm is engaged to classify the unlabeled instances in the
tables. The user is allowed to change the parameters (e.g., weights of hyperedges) interactively to
update the learning results.

Step 3 Visual exploration and validation of the learning results: The user can select a
subset of the interesting hyperedges from the matrix visualization. Then the structure and the
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learned labels of the hyperedge subset are shown in a force-directed hypergraph visualization for
exploration and validation.

For each step, the user can return to the previous steps to change the structure or parameters of
the hypergraph model until satisfying results are achieved (Fig. 2).

4 HYPERGRAPH LEARNING
In this section, we first describe the definition of hypergraph (Section 4.1) and the traditional hy-
pergraph learning algorithm (Section 4.2), then introduce our improved algorithm for classification
on heterogeneous tables (Section 4.3).

4.1 Formulation of Weighted Hypergraph
A hypergraph G = (V, E,u,w) is a generalization of a graph (Fig. 3 (d)). In detail, V is the set
of vertices and E is the set of hyperedges in G. While a regular graph edge is a pair of nodes,
a hyperedge e ∈ E connects a set of vertices {v} ⊆ V . w represents the vector of weights
of hyperedges E. Different from the traditional hypergraph model [44] [38], we also add the
weights u for the vertices V . The motivation and the benefits are explained in Section 4.3 and
Section 8.3.3. In another perspective, G can also be represented as a vertex-hyperedge incidence
matrix H ∈ R |V |×|E | , whose entry h(v, e) is 1 if v ∈ e and 0 otherwise (Fig. 3 (b)). Similar to the
definition of the vertex degree in an ordinary graph, the hyperedge degree δ (e) and the vertex degree
d(v) is defined in Eq. 1. Additionally, the diagonal matrix form forw , u, δ and d are denoted asW ,
U , De and Dv respectively, which are used in the hypergraph learning algorithm in Section 4.3.

δ (e) =
∑
v ∈V

u(v)h(v, e) and d(v) =
∑
e ∈E

w(e)h(v, e) (1)
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Fig. 3. The process of unifying all of the tables in Fig. 1 with a hypergraph model. (a) The incidence matrices
H1 -H5 are generated from the tables in Fig. 1. The empty cells in the matrices represent zeros. By linking the
variables and combining datasets, (b) a unified incidence matrix H can be constructed, which is the matrix
form of the hypergraph G. (c) H can be represented as a matrix of sub-matrices, the orange and grey cells
represent nonzero and zero sub-matrices, respectively. (d) Hypergraph G can be regarded as a collection of
sets, in which each hyperedge is a set of vertices.

Now we have the definition of a hypergraph, given the categorical tables, a hypergraph can
be built for each table by treating it as set data [44] (Fig. 3 (a)). In specific, let E be a categorical
variable (e.g, "Location"), each of the possible values e ∈ E is a level, such as "Brooklyn". Then the
levels {e} and the instances {v} in the table are modeled as hyperedges and vertices, respectively.
For example, a hospital vl is a vertex and ek = "Brooklyn" is a hyperedge. If the E value of v is e
(e.g., the "Location" of hospital vl is Brooklyn ek in Fig. 3 (a)), then v ∈ e and h(v, e) = 1 in the
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incident matrix. In this way, a hypergraph and its incidence matrix can be constructed for each
table, as shown in Fig. 3 (a).
For different tables {Vi }, a unified hypergraph G can be constructed (Fig 3 (b)) by linking the

variables in different datasets (Section 5.2.2) and combining the datasets (Section 5.2.3). The vertex
set V and the hyperedges set E of G are the union of all instances V = V1 ∪ V2 ∪ ..., and all
variables E = E1 ∪ E2 ∪ ..., respectively. Next, the constructed G can be used as the model for
hypergraph learning.

4.2 Traditional Hypergraph Learning Framework
The hypergraph learning framework of Zhou et al. [44] calculates the labels f of the vertices V by
minimizing the loss function in Eq. 2.

f ∗ = argmin
f

Ω(f ) + µRemp (f ) (2)

The first term Ω in the loss function is defined in Eq. 3. It aims to assign similar labels f (v) to
vertices vi and vj which are contained in many common hyperedges {e}. For example, if two
patient groups are in the same age group and the same disease category, they may have the same
readmission level (e.g., high readmission f (v) = +1). Hyperedges with high weightsw(e) in Eq. 3
will dominate the label assignment. In our case, those hyperedges can be regarded as important
factors of readmission.

Ω(f ,w) = 1
2

|V |∑
i, j=1

∑
e ∈E

1
δ (e)

∑
vi ,vj ∈e

w(e)u(vi )u(vj )
 f (vi )√

d(vi )
−

f (vj )√
d(vj )

2 (3)

The second component Remp (f ) in Eq. 2 is defined in Eq. 4. It measures the difference between the
learned labels f and the pre-given labels y (see the last column y in Fig. 3 (b)). The parameter µ in
Eq. 2 controls the relative importance of Ω and Remp .

Remp (f ) =
|V |∑
i=1

u(vi ) ∥ f (vi ) − y(vi )∥2 = (f −y)TU (f −y) (4)

The traditional method [44] does not define the vertex weightu(v), which is equivalent to setting
all u(v) to 1 in Eq. 3 and Eq. 4. The hyperedge weightw(e) is usually assigned manually according
to a specific case before the optimization process of Eq.2.

4.3 An Improved Hypergraph Learning Algorithm
To integrate the expert-provided knowledge into the analysis process, we augment the traditional
hypergraph learning algorithm by allowing the user’s initialization and modification of the weights.
In our problem, instances are aggregated in some of the tables. For example, the first patient

group has 24 patients while the second patient group only contains 1 person (see patient group table
in Fig. 1 (a)). Using uniform vertex weights will reduce the influences of the aggregated instances
on the learning results. A reasonable solution is to set the weight of a vertex to its aggregation size.
For the hyperedge weightsw , pre-defined values are not sufficient since the user will wish to

modify the weights according to some domain knowledge or feedback obtained from the learning
results. We integrate the learning algorithm with the prior knowledgewd provided by the user via
adding an additional term Ψ(w) to Eq. 2. Ψ(w) is defined in Eq. 5.

Ψ(w) =
∑
e ∈E

∥w(e) −wd (e)∥2 (5)
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The augmented optimization is shown in Eq. 6, where ρ sets the importance of Ψ(w). In this way,
injecting domain knowledge is enabled by changing the priorwd during the analysis. For example,
the user can setwd (e) = 0 for all of the edges e (e.g., "Brooklyn") in "Location" E, if she or he knows
that "Location" is not related to readmission. The reason why the user is prevented from settingw
directly is thatw needs to satisfy the vertex degree constraint in Eq. 6.

(f ,w) = arдmin
f ,w

Ω(f ,w) + µRemp (f ) + ρΨ(w)

s .t . d(v) =
∑
e ∈E

w(e)h(v, e) (6)

In Eq. 6, it is difficult to optimize f andw at the same time since Ω may not be convex in (f ,w).
However, we find that if f andw are optimized independently, the local optimal solution of (f ,w)
can still be derived. We propose a two-step iterative method that alternatively finds the optimal f
andw in Eq. 6 as follows:

For the ith iteration in our method, we first fixw = w (i−1) in Eq. 6. Since Ψ(w (i−1)) is a constant,
we can get f (i) using Eq. 7. Because Ω ≥ 0 and Remp ≥ 0, the minimum value of Ω + µRemp exists.

f (i) = argmin
f

Ω(f ,w = w(i−1)) + µRemp (f ) (7)

It can be proven1 that Ω(f ) can be written in the form: Ω(f ) = f T∆f , in which ∆ = U −
UD

− 1
2

v HWD−1
e HT D

− 1
2

v U . The optimal f (i) of Eq. 7 can be found by solving the system of linear
equations in Eq. 8.

∂(Ω+µRemp )
∂f

���
f =f (i )

= 0

⇒2∆f (i) + 2µU (f (i) −y) = 0

⇒(∆ + µU )f (i) = µUy (8)

In the second step, f is fixed to f (i), then Ω(f = f (i),w) is a linear function ofw and Remp (f ) is a
constant. The optimalw(i) is derived by solving the quadratic programming problem in Eq. 9.

w(i) = argmin
w

Ω(f = f (i),w) + ρΨ(w)

s .t . d(v) =
∑
e ∈E

w(e)h(v, e) (9)

The above two steps are repeated until the loss function Ω + µRemp + ρΨ in Eq. 6 converges,
as shown in Algorithm 1. For the learning results, a vertex v is labeled as positive if f (v) > 0,
otherwise negative. The user can always change the priorwd (Sec. 6) and run the algorithm for an
updated f .

ALGORITHM 1: Iterative Hypergraph Learning with Prior Weights

Input:w(0) = [1, 1, ..., 1]T , f (0) = y(0), i = 0,wd , ϵ
1: do
2: i = i + 1
3: Solve f (i) by fixingw = w(i−1) according Eq. 8.
4: Optimizew(i) by fixing f = f (i) according to Eq. 9.
5: while (The loss function value in Eq. 6 changes less than ϵ)

1The proofs are provided in the supplementary file.
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Formulti-class classification, let us suppose there are c classes. Vector f andy can be replacedwith
labeling matrices F = [f1, f2, ..., fc ] andY = [y1,y2, ...,yc ].yj (v) = 1 indicatesv is labeled as the jth
class. Ω(f ,w) and Remp (f ) in the learning algorithm is replaced by

∑c
j=1 Ω(fj ,w) and ∑c

j Remp (fj ),
respectively. Then v are predicted as the jth class if fj (v) is the largest in [f1(v),f2(v),...,fc (v)].

5 VISUAL CONSTRUCTION OF THE HYPERGRAPH MODEL
The first step of our visual analysis is to build a unified hypergraphG which fuses the heterogeneous
tables. This is done by constructing the incidence matrix H of G (Fig. 3 (b)). As mentioned in
Section 1, testing different hypergraph structures during the analysis is necessary for achieving
the best classification performance. To allow this process, we visualize the incidence matrix H
(Section 5.1) in our approach. Along with the visualization, several interactions for initializing
and modifying the hypergraph structure are provided (Section 5.2). The capability of changing
hyperedge weights during the analysis can also be incorporated in this visualization (Section 6).

5.1 Hierarchical Incidence Matrix Visualization
It is natural to present the incidence matrix H using a matrix-based visualization [24] [35]. As
shown in Fig. 3 (b), each row represents an instance v and each column is a level e . The color of
each cell is used to encode h(v, e): a cell is filled with orange if h(v, e) = 1, otherwise it is gray.

It is challenging to display a matrix with large numbers of rows or columns due to finite screen
space. We therefore combine the rows {v} from the same table into one row V , and aggregate all
levels {e} of a variable in one column E (Fig. 3 (c)). In the aggregated matrix, each cell represents a
sub-matrix. The color of an aggregated cell is set to gray if it is a zero matrix, otherwise it is filled
with orange. For an aggregated column, the user can expand it to check its level set {e} (see "Nurse
Rating", "Pain Management" and "Care Rating" in Fig. 4 (d)). To show its difference from an original
column, an aggregated column is slightly wider and darker. The user still has the option to view
the columns without aggregation.

5.2 Visual Construction of the Incidence Matrix
With our matrix visualization, we define four operations onH to interactively fuse the sub-incidence
matrices of disparate tables into a unified matrix: inclusion, linking, merging, and exclusion.

5.2.1 Inclusion of Variables and Tables. At the beginning of the construction, the user can select a
set of interesting tablesV = {V } and their variables E = {E} to be included in the initial incidence
matrix H . Fig. 4 (a) shows that several disconnected tables (V1, V2, ...) and their variables (E1, E2, ...)
are included in the initial H . An aggregated row and an aggregated column in H represent a table
V and a variable E, respectively.

5.2.2 Linking Variables in Different Tables. Two different tables may have a shared variable. For
example, hospital ID occurs in the hospital and readmission tables. The common variable in the
two tables can be connected using the linking operation.

Linking two variables Ek and El is performed by first combining their levels. Then the same level
of e(k )i ∈ Ek and e(l )i ∈ El are combined into one column ej . For example, both column e(1)1 and e(2)1
are "Hosp.#1" in the readmission and hospital tables (H1 and H2 in Fig. 3 (a)), they are combined
into e1 in H in Fig. 3 (b). Then in the second step, we assign vertices {v} to each combined edge ej
by setting h(v, ej ) in H . h(v, ej ) is set to 1 if h(v, e(k )i ) = 1 or h(v, e(l )i ) = 1, otherwise h(v, ej ) = 0.

The user can perform a linking operation by dragging the aggregated column El into Ek (see the
purple lines in Fig. 4 (a)). Fig. 4 (b) shows the result matrix after the linking operations.
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Fig. 4. (a) The initial incidence matrix visualization contains multiple disparate tables. An aggregated column
and an aggregated row are a variable and a table, respectively. The orange cells mark the tables that contain
the variables. Linking two variables can be done by dragging a column into another (purple lines). (b) The
merging operation is performed by dragging a row into another (blue line). (c) The final matrix after the
linking and merging operations. (d) The bar charts above the columns show the learned weightsw and the
prior weightswd . The columns of the matrix are reordered according tow of the variables. The user expands
the aggregated columns of "Nurse Rating", "Pain Management" and "Care Rating" to view their levels. (e) The
construction operations such as linking and merging are also supported in the dataset view.

5.2.3 Merging Instances in Different Tables. Two linked tables may describe the same set of
objects. For example, the patient survey and hospital tables are linked by hospital ID, and they
describe the ratings and the general information, respectively, of the same set of hospitals. Such
two tables can be combined with a merging operation.

Merging two tables Vk and Vl is done by first merging their corresponding instances according
to the linked variable E. For instances v(k )

i ∈ Vk and v(l )
j ∈ Vl with the same level e ∈ E, they are

merged into one row vm . For example, both v(2)
1 and v(3)

1 is "Hosp.#1" in the patients’ survey and
hospital tables (see H2 and H3 in Fig. 3 (a)), they are combined into vl in H in Fig. 3 (b). Then in the
second step, we assign each combined vm to hyperedges {e} by setting h(vm , e) in H . h(vm , e) is
set to 1 if h(v(k )

i , e) = 1 or h(v(l )
j , e) = 1, otherwise h(vm , e) = 0.

This operation can be done by dragging an aggregated row Vk into another Vl (see blue line in
Fig. 4 (b)). Fig. 4 (c) shows the result matrix after merging operations.

5.2.4 Exclusion of Variables and Tables. During the construction, the user can exclude an unde-
sired variable E or a table V from H by deleting the corresponding column or row. The user can
put the deleted tables or variables back into the incidence matrix by the inclusion operation.

5.2.5 Dataset View. When the number of variables or tables is large, it will be inconvenient to
drag a column or a row in the matrix. A dataset view (Fig. 4 (e)) is provided which supports the
same set of construction operations. The linking operation can be done by connecting two variables
with a link (see purple lines in Fig. 4 (e)). The merging operation is performed by dragging a table
into another (see blue line in Fig. 4 (e)).
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Since it can still be labor-intensive to perform search and link operations among large amounts
of variables, hints for linking operations will be user-friendly. Specifically, two variables whose
level sets and names are identical may be a candidate pair for the linking operation. The user has
the option to show these pairs with dotted lines in the dataset view, such as the dotted line between
"County" of V2 and V3 in Fig. 4 (e).

Finally, the user is also able to undo the construction operations to restore a previous constructed
hypergraph model.

6 VISUAL MODULATION OF HYPERGRAPH LEARNING
With the constructed hypergraph, the user is allowed to adjust the parameters of the model and run
Algorithm 1 to see the learned labels f . To be more specific, µ, ρ, and the prior hyperedge weights
wd (Eq. 6) can be modified interactively according to the domain knowledge or the feedback of the
visual exploration. This process can be repeated until the user is satisfied with the learning results.

In this section, we first introduce the approach we designed for injecting the prior weights
(Section 6.1), then we will discuss methods that deal with scalability and usability of the weight
modification (Section 6.2 and 6.3).

6.1 Setting the Prior Weights of the Hyperedges
For a better understanding of the hyperedge weights, we use bar charts above the columns to
visualize the learned weights w and the prior weights wd , as shown in the white and gray bars
respectively in Fig. 4 (d). For an aggregated column of a variable E, the weights are defined as the
averagewd andw of its levels e ∈ E.
To support the modification of the prior weightwd (e), we initially designed an interaction on

the bar charts, where the user could adjust the bar length of column e to setwd (e). However, in our
experiments, we found that asking the user to set the exact value ofwd (e) was not practical, since
(s)he may not understand the meaning and effect of the exact value of a weight. But the user may
have an idea about setting the change ratio of wd (e). As a result, we improve the interaction by
providing a few popular options, such as half thewd value, double thewd value, setwd to 0 or the
maximum value inwd . Alternatively, the user can also input a self-defined change ratio.

Each time the weights are changed, the learning results will be updated. Performance information
such as test accuracy is provided so the user can evaluate the effects of the modification. The test
accuracy also reveals whether the change caused overfitting. Since the user may want to try
differentwd to find better learning results, there is an undo operation for the modification. Finally,
our system can also be asked to return to a previous analysis step to view the learning results under
a previouswd .

6.2 Reordering of the Hyperedges
Since there are large numbers of hyperedges, it will be time-consuming for the user to examine
and modify all the weights. To deal with this scalability problem, we can focus on the hyperedges
which have major influences in the model. According to Eq. 4, hyperedges with higher weightsw
have more significant effects on the learning results. Therefore, it is preferred to inspect and adjust
the hyperedges with higher weights first. A simple reordering of the columns byw enables this.
Fig. 4 (d) shows the incidence matrix ordered by the variable weights. The variables related

to hospital ratings (e.g., "Nurse Rating") have higher weights than those related to counties (e.g.,
"Smoking Rate"), which means hospital ratings are regarded as important predictors of readmission
by the algorithm. Because the weightsw are affected by their priorwd , ranking the columns bywd

is also available.
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6.3 Recommending the Prior Weights
During our experiments, we found that setting the prior weights wd can be impractical in the
following two situations: 1) At the beginning of our algorithm, it is laborious to ask the user to set
the initialwd of the hyperedges one by one. 2) The user is usually interested in only a part of the
hyperedges and may not have priors for others.

Due to the above reasons, a method for recommendingwd would be more user-friendly, essen-
tially providing the user the option to setwd to some recommended values during the analysis. We
calculate the recommendedwd (e) by making use of the Hellinger Distance [36], which measures the
divergence of learned labels f in a hyperedge e (Eq. 10). For example, with the Hellinger Distance,
a disease e which contains only patient groups with low readmission levels will have highwd (e),
and e can be recognized as an indicator of low readmission. In Eq. 10, f +e and f −e represent the
set of positive and negative instances in e , respectively; f + and f − represent the set of positive
and negative instances in all the datasets, respectively. Other weight measures can be adopted as
well [15] [19] in our algorithm.

wd (e) =
(√

| f +e |
| f + | −

√
| f −e |
| f − |

)2
(10)

Via the recommendedwd , the user is now free to only focus on the weights of those hyperedges
of interest. For example, the user may halve the wd of the hyperedge "Newborns" and keep the
recommended values for the rest of the hyperedges.

The recommended weights bring several additional benefits. First, hyperedges e with highwd (e)
will have low diverse labels, which can be a good predictor of labels. Sometimes wd can be a
better indicator than w since w needs to satisfy the vertex degree constraint in Eq. 6, while the
recommendedwd is only based on the result f . In our system, ordering the matrix by eitherw or
wd is enabled for the user to explore potentially important hyperedges. Second, the user does not
have to assign an initial value wd for the algorithm. Instead, a default wd = [1, 1, ..., 1]T is used,
which can be updated later by the recommended values based on the learning results.

7 HYPERGRAPH VISUALIZATION: EXPLORATION AND VALIDATION OF THE
LEARNING RESULTS

Although the visual exploration of the learned labels f provides insights both into the model as
well as into the effects of a user’s modifications, this type of interaction is typically not available in
most of the existing learning approaches. Specifically, the following tasks are usually performed by
the user during the visual exploration and validation: T1: Examine the learning results of vertices
or hyperedges of interest. T2: Examine the learned distributions of the intersections of different
hyperedges. For example, the user may want to interactively query the learned readmission levels of
the patient group from "Brooklyn" (e1 in Fig. 5) who suffer from "Fever" (e2 in Fig. 5). T3: Compare
the learning results of different vertices in a hyperedge. T4: Examine the changes of the learning
results after updating the model.

7.1 Design Rationales
Learning result visualization is necessary to support the exploration tasks. One straightforward
strategy is showing the labels as an additional column in the incidence matrix H . However, there
are some drawbacks of presenting the learning results in the matrix. First, the distributions of the
learned labels in a hyperedge (T1) are not visualized. Second, the matrix can be large, which makes
it time-consuming for the user to check the vertex labels (T1) row by row. Third, it is difficult to
find the hyperedge-hyperedge (T2) or vertex-vertex (T3) relations in the matrix visualization.
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As discussed in Section 2.2, contour visualizations allow the intuitive exploration of the learning
results, especially for T1 - T3. Some approaches (e.g., Bubble Sets [13]) are not applicable in our
case since they require the input of vertex layout. In contrast, Vizster [18] proposes an effective
solution which generates contours based on the force-directed layout [14] of an ordinary graph.
Following Vizster, our approach extends the force-directed layout for hypergraph visualization.

7.2 Force-directed Hypergraph Visualization
In initial studies with a prototype of our system we observed that during analysis users typically
focused only on a small set of hyperedges at any one time. Hence, our system in normal operation
only visualizes a subset EI of interesting hyperedges which can be selected by the user (e.g,
EI = {e1:"Brooklyn", e2:"Fever"} in Fig. 5 (a)).

(a) (b) (c)

e2 Fever
v3

Patient
Group

Hospital

v4

v5

Low
High

(d)

Dataset Class

v7

e1 Brooklyn

e2 e2

v7

v6

Fig. 5. (a) The force-directed layout of the vertices in two hyperedges e1 and e2. (b) For each hyperedge, the
convex hull is calculated and the curved contour is generated by extending the convex hull. (c) Vertices from
the same dataset can be aggregated. (d) The distribution of the learned labels of each aggregated vertex can
be encoded with a pie chart.

7.2.1 Force-directed Layout of Vertices. To minimize the visual clutter generated by unnecessary
contour overlap, an optimized layout is expected to satisfy the following principles: 1) Vertices
sharing more hyperedges should be closer, which keeps the area of a hyperedge compact. 2) Vertices
with no common hyperedge should be placed as far as possible, which reduces the possibility of an
overlap of disjoint hyperedges.
Our algorithm positions the vertices by assigning forces among them. For two vertices vi ,vj ∈

V ⊆ EI , their mutual attractive force fa(vi ,vj ) and repulsive force fr (vi ,vj ) are defined according
to principle 1 and 2, respectively (Eq. 11).

fa(vi ,vj ) =
m · dis(vi ,vj )2

k
and fr (vi ,vj ) = − k2

dis(vi ,vj )
(11)

In Eq. 11, k is a constant and dis(vi ,vj ) is the distance of vi and vj . The difference between Eq. 11
and the original force-directed algorithm [14] is that we multiply fa by a factorm.m is defined as
the number of common hyperedges which vi and vj are in:m =

∑
e ∈EI h(vi , e)h(vj , e). For example,

m = 2 for v1 and v2 in Fig. 5 (a) since they share 2 common hyperedges in EI : e1 and e2. As a
result, vertices that share more common hyperedges will be placed closer by fa . Then the regular
force-directed layout algorithm is used to calculate the positions of the vertices (Fig. 5 (a)).

Each vertex is visualized as a circle, whose size is encoded with the vertex weight u(v). For the
color of a vertex, we provide different options to the user, such as the class label or the dataset type.

7.2.2 Contour Visualization of Hyperedges. Since the user will set EI interactively during the
exploration, the contours of the hyperedges should be generated in real-time. Some approaches
(e.g., Bubble Sets [13]) fail to meet this requirement due to their high complexities. Using the same
method as Vizster [18], we create the contour of a hyperedge by calculating the convex hull of its
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vertices (see solid line in Fig. 5 (b)). The curved contour is computed by extending the convex hull
outwards (see dashed line in Fig. 5 (b)). Other methods such as quadratic splines can also be used to
get a smooth border [18]. The user is able to change the hypergraph layout manually by dragging
the vertex. Then the contours will also be recalculated according to the updated vertex positions.

After some experiments, we decide to leave the contour areas uncolored. This keeps the vertex
colors well visible and also avoids blending issues when differently colored hyperedges overlap.
The omission of fill colors, however, can lead to ambiguities. Fig. 6 (a) shows an example of three
overlapped hyperedges e1 − e3, which are selected from Fig. 4 (d). Initial testing with a prototype
reveals that sometimes it is difficult to recognize the hyperedges (Fig. 6 (a)). In order to make the
contours more distinguishable in the general case, we randomly resize the contours slightly to
avoid any ambiguity of the contour lines (Fig. 6 (b). Finally, for further disambiguation we can also
use different grayscales for the contour lines.

(a) (b)

e1: Nurse
Rating 5

e2: Pain Management

Rating 4

e3: Care Rating 4

e2: Pain Management

Rating 4e1: Nurse
Rating 5

e3: Care Rating 4

Readmission Levels

(c) (d)

e1
e2

e3

e1
e2

e3

Fig. 6. A subset of interesting hyperedges EI = {e1, e2, e3} are selected from Fig. 4 (d) and presented in the
contour visualization. The hyperedges contain the aggregated vertices of high-rating hospitals. The label
distributions inside the vertices show the learning results of Algorithm 1. The readmission levels of these
hospitals are mainly labeled as "Low" or "Medium". It suggests that high ratings could be good indicators
of low hospital readmission. Different design options are provided for contour and vertex visualizations.
(a) Contours with the same size and grayscale. (b) The contour borders are adjusted to different sizes and
grayscales, which makes the contours more distinguishable. (c) The label distributions of vertices are visualized
with histograms. (d) The distributions are shown in aster plots.

7.2.3 Vertex Aggregation. The calculation of the convex hull and the visualization of large
numbers of vertices are both challengingwhen the number of vertices in EI is large.We deal with this
problem by aggregating vertices that are of the same data type and have exactly the same inclusion
relations in EI . For two vertices vi ∈ V and vj ∈ V , we aggregate them if ∀e ∈ EI ,h(vi , e) = h(vj , e).
Fig. 5 (c) shows an example of a hyperedge visualization with aggregated vertices. Patient groups
which are not in "Brooklyn" and have "Fever" (v3 - v6) are merged into vertex v7.

The aggregated vertex weight, which is encoded by the vertex size, is the sum of its original
vertex weights. The data type of an aggregated vertex can be encoded with color. However, the
class information cannot be represented by a single color, since the original vertices may have
different labels. To show the class distribution in an aggregated vertex, we provide several design
options, including pie chart (Fig. 6 (b)), histogram (Fig. 6 (c)), and aster plot (Fig. 6 (d)). For an aster
plot, the size of the inside circle represents the weight and the lengths of the outside pie slices
encode the label distribution. The users in our studies preferred the pie chart, as they found a label
corresponding to a small magnitude (e.g., "High (9-12%)" in Fig. 6) in the aster plot or histogram was
too small to be seen. Later in the study, one of our users mentioned that comparing distributions of
different vertices with a pie chart may not be as easy as with histogram. We solve this problem by
adding histogram visualizations of interesting vertices in a more detailed view (Section 7.3).
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Each time the learned labels are updated, the distributions of the vertices will also change
accordingly. The user can also switch to the visualization without vertex aggregation if she or
he wants to see the details of the original hypergraph structure. The visual encodings of the
visualizations proposed in this paper are summarized in Table 2.

Data Notation Matrix Visualization Contour Visualization
An instance A vertex v A non-aggregated row A non-aggregated vertex

A level of a variable A hyperedge e A non-aggregated column A contour
A dataset V An aggregated row Vertex color (optional) (Fig. 5 (a))
A variable E An aggregated column -

The label of an instance f (v) - Vertex color (optional) (Fig. 5 (d))
Table 2. Visual encodings of the matrix visualization and the contour visualization.

7.3 Visual Exploration
The user can query interesting results by setting the hyperedge subset EI . This can be done by
selecting/deselecting hyperedges of interest either in the dataset view or in the incidence matrix
during the exploration (e.g., EI = {e4, e5} in Fig. 7 (a)). The vertex aggregation and the contours are
recalculated upon change of EI .

The hyperedge visualization as presented so far is incomplete since the learned class distribution
of a hyperedge (T1) is not visualized, such as the overall label distribution of hyperedge e5 in Fig. 7
(d). In addition, it is also difficult to discern the distribution in the pie chart of an aggregated vertex
with small size. For these purposes, we provide a detail view to show the learned class distribution
of an aggregated vertex or a hyperedge (Fig. 7 (e)). To help the user understand the effects of his or
her modulation (e.g., updating wd ) on the learning results, both the results before and after the
user’s modulation are shown with gray and yellow histograms, respectively. The user can click
on a vertex (e.g., the highlighted vertex in e4 in Fig. 7 (d)) or a hyperedge (e.g., the highlighted
hyperedge e5 in Fig. 7 (d)) to view its distributions. Since the histograms are vertically aligned, this
view also helps to compare the change patterns of different vertices and hyperedges (T4).

8 CASE STUDIES
We conducted two case studies, which focused on topics in different fields, with two scientific col-
laborators (call them SC1 and SC2). SC1 was a graduate student majoring in Biomedical Informatics
who was interested in predicting the readmission levels of hospitals in New York State. However,
he could not find a complete table including all the potential risk factors of readmission, and so our
system offered him a welcome opportunity to make such prediction using disparate data sources.
SC2 was a Political Science graduate student with a research focus on the public opinion of the
recent US election. He wanted to analyze the 2016 election polls by comparing the real election
results and the results predicted by the polls. Both users were not experts in visualization and had
no prior knowledge about hypergraphs. The summaries of the two datasets are shown in Table 3.

Before the study, we had a number of thorough discussions with SC1 and SC2 on their problems.
Then we searched online for additional sources to supplement their datasets. Each case study
started with a training session to introduce our system. We then asked each participant to use the
system, followed by an interview to gather evaluations and subjective feedback.

8.1 Case Study 1: Readmission Prediction of Hospitals in New York State
SC1, our public health collaborator, used our system to predict the readmission levels of hospitals
using a collection of history records. He had a dataset of hospital Potential Preventable Readmission
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NY Hospital Readmission Case
Datasets Number of variables Number of levels Number of instances

V1 Readmission (PPR) 3 219 874
V2 Hospital information 6 556 250
V3 County information 17 110 62
V4 Patients’ surveys 13 246 151
V5 Hospital measures 9 217 155
V6 Hospital evaluations 11 240 173
V7 Inpatient discharges 7 272 9750

US Presidential Election Case
Datasets Num. of variables Num. of levels Num. of instances

V1 History election results by state 3 57 51
V2 History election results by county 3 3118 3112

V3 State facts 8 108 51
V4 County facts 13 3196 3112

V5 2016 polls by state 111 381 51
Table 3. A summary of the heterogeneous datasets that our study participants used in the readmission and
election case. Some numerical values in the datasets were discretized into categorical levels.

(PPR) rates (V1) from the New York Health Department website [33]. We labeled each readmission
instance as one of five levels ("Very low" to "Very high" in Fig. 6) according to its PPR rate in
the dataset. The readmissions from 2011 - 2013 were used as the labeled training data, and the
readmissions in 2014 were the test data for our algorithm.
The readmission dataset contained only two variables "Year" and "Hosp. ID", but SC1 was

interested in learning more potential readmission factors. We gathered supplementary information
of hospitals from the Medicare Open Data [30], including their general information (V2), structural
measures (V5), evaluations (V6), and the patient satisfaction surveys (V4). The inpatient discharge
dataset (V7) [33] was also obtained which described the details (e.g., age group and diagnostic
category) of the inpatient groups of each hospital. To check if the location had effects on readmission,
census information of counties in NY state (V3) was collected [6]. We discretized the numerical
variables (e.g., "Smoking Rate") in the county dataset into three levels: above, around, and below
state average. The first table in Table 3 summarizes all datasets V and their detailed information.

8.1.1 Finding Hospital-level Risk Factors of Readmission. SC1 started his prediction of readmission
with a focus on the hospital factors. He selected the readmissions (V1), counties (V3) and the hospital
datasets (V2,V4 -V6) in the dataset view (Fig. 4 (e)) to generate the initial incidence matrix (Fig. 4 (a)).
By dragging the columns in the matrix, he linked the readmissions (V1) and the hospital datasets
(V2, V4 - V6) by "Hosp. ID". The hospitals (V2) were also linked to the counties (V3) by the hospital
locations (Fig. 4 (a)). Since the hospital datasets (V2, V4 - V6) described the same set of hospital
instances, SC1 merged V4 - V6 into V2 by dragging their rows in the matrix (Fig. 4 (b)).
With the constructed hypergraph, SC1 trained the model using Algorithm 1 with the default

wd = [1, 1, ..., 1]T . The algorithm showed the test accuracy was about 0.80. To find out what factors
of readmission were important according to the algorithm, SC1 ranked the variables by the learned
weightsw (Fig. 4 (d)). He discovered that the variables related to patients’ surveys had the highest
weights, such as "Nurse Rating", "Care Rating", and "Pain Management Rating". He expanded these
variables and selected their levels of the highest rating (e.g., rating 4 of "Care Rating" in Fig. 4 (d))
for detailed inspection in the contour visualization (see e1, e2, and e3 in Fig. 6 (b)). The hospitals
were shown as the vertices in the contours. For example, the aggregated vertices in e1 represented
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the hospitals whose "Nurse Rating" is 5. From the pie charts of the aggregated vertices, he found
that the most hospitals contained in these hyperedges were labeled as "Low" to "Medium" by the
algorithm. He confirmed that good quality of health care could solve the underlying problems
and prevent unnecessary readmissions. Then by exploring the remaining portion of the incidence
matrix, he noticed that the weightsw of county census variables were low, such as the "Smoking
Rate" of each county (Fig. 4 (d)). This indicated that those variables were less important with respect
to readmission. He suggested that this might be because the county dataset described the census of
the total population, while the hospital readmission levels were only decided by the inpatients.

8.1.2 Finding Risk Factors of Readmission in Patient Groups. To find factors of readmission in
the inpatient information, SC1 modified the hypergraph by adding inpatient discharges (V7) (Fig. 7
(a)). Then the updated model showed an accuracy of 0.85. He ranked all the levels by w (Fig. 7
(b)) in the incidence matrix, then started to examine the hyperedges with high weightsw to find
important predictors of readmission. He noticed that the levels in "Length of Stay" might be closely
related with readmission since their weights were among the highest. He guessed that the length
of stay at hospital indicated the severity of the illness, which had correlation with readmission.

e4: Newborns

Age 0-17

Age 65+

e5: Circulatory System

(b)

(a)

(d)

e4 e5 e6
V7

e4

e5

(c)

(e)

(f)

V7

Fig. 7. The interface of our system. (a) The dataset view after adding the inpatient discharges dataset (V7). (b)
In the non-aggregated incidence matrix, all levels are ranked by their weightsw . (c) Reducing the prior weights
wd of the selected diagnosis categories, as shown in the purple bars above the matrix in (b). (d) Selecting four
hyperedges of "Age 0-17", "Age 65+", "Newborns" and "Circulatory System" from the dataset view and the
incidence matrix. The readmission levels of the patient groups in these hyperedges are shown in the contour
visualization. Highlighting the hyperedge of e5 and the vertex in e4 to show their learned distributions. (e)
There are different patterns of changes in the distributions of "Newborns" and "Circulatory System" after the
modification of the weightswd . (f) Adjusting the hyper parameters of the learning algorithm.

He found that there are several diagnosis categories with high weights, such as "Newborns" (e4)
and "Circulatory System" (e5). He visualized the readmission distributions of the patient groups in
those diagnosis categories and different age groups (e.g., "Age 0-17" and "Age 65+"), as shown in
Fig. 7 (d). From the pie charts of the vertices, he learned that the patient group of "Newborns" (e4)
had a higher proportion of "High Readmission" than others. He told us that "Newborns" was not
supposed to be a factor of potential preventable readmission (PPR). According to his knowledge,
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"Newborns" admissions were rarely related to their previous admissions, and so few of them were
regarded as re-admission [17]. He continued his examination on other diagnosis categories with
high weights. He expressed that some categories such "Trauma" (e6) were also usually excluded in
potential preventable readmission rate calculations, since they were always not "preventable" [17].
After this inspection, he selected some of the diagnostic categories in the matrix (see the purple
bars above the matrix in Fig. 7 (b)) and reduced their prior weightswd by half (Fig. 7 (c)).

With the updatedwd in the model, he ran the learning algorithm again. The final accuracy was
improved to around 0.89. To see the detailed changes of learned labels, he selected the hyperedges
of "Circulatory System" and the vertex in "Newborns" (Fig. 7 (d)) to visualize their detailed label
distributions. He found that more "Newborns" readmissions became "Low" after the modification
ofwd . While the overall distribution of "Circulatory System" had the opposite change pattern, it
skewed to higher readmission levels (Fig. 7 (e)). He confirmed that some circulatory system diseases
such as heart arrest had high possibilities of readmission.

8.2 Case Study 2: Bias of US Presidential Election Polls
The second participant (SC2) focused on the prediction of the 2016 US presidential election. He
collected the historical presidential election results by state (V1) and by county (V2) [39] as the
labeled data. We labeled the instances in V1 and V2 as "Republican", "Democrat", or "Others". The
election results of 2004, 2008 and 2012 were used as the training data and the results by state in
2016 were used as the test data.

He also gathered the election polls by state in a month before the election date (V5) [34], which
contained more than 100 poll providers. In the poll table, the value of a poll in a state was assigned
to "Clinton", "Trump", or "Others" according to the support rates in the poll, as shown in table V5 in
Fig. 8 (a). Since each poll provider surveyed a part of the states, there might be empty values in the
poll table. For example, "CBS News/YouGov" did not survey "FL" (see table V5 in Fig. 8 (a)).
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Fig. 8. (a) The top table shows the details of the poll dataset (V5). Each poll is a categorical variable of three
levels: "C", "T", and "O". We added the bottom candidate table (V6) as the labeled data for training. (b) Incidence
matrices of V5 and V6 respectively showed set relationships of the states and candidates to the polls.

To see if there were other factors related to the election results, we added the census datasets of
the states (V3) and the counties (V4) in US [6]. They contained the demographic information such
as the population density and bachelor’s degree rate. We discretized each numerical variable in
these datasets into three levels: above, around, and below federal average. The summary of the
datasets is shown in the second table in Table 3.

8.2.1 Prediction by History Election Results. SC2 practiced using our system at the beginning
of the study. He first constructed a hypergraph of the states, counties and their history election
results (V1 - V4). He linked V2, V4 by variable "County Fips" (i.e., county id) and V1 - V4 by "State".
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Then he trained the model with default wd , the result suggested that Democrat would win 347
out of 538 electoral votes. However, the Republicans won the majority of the electoral votes in the
2016 election. After checking the model, he admitted that using the history data might generate
significant error, since the election candidates of the parties were much different from the past.

8.2.2 Prediction by Election Polls. Because the history results did not help much and even misled
the prediction, SC2 removed these two datasets (V1 andV2) and added the 2016 election polls (V5) in
the dataset view (Fig. 9 (a)) to update the hypergraph structure. Then we realized that there was no
labeled data for training after the removal of the history results, and so we added three candidates
(V6) as the labeled instances for the training of the model. To link them with the polls, we put
the candidates into the corresponding levels of the polls (see table V6 in Fig. 8 (a)). For example,
Democratic party candidate Clinton (v2) occurred in the "Clinton" hyperedges of all the polls, as
shown in the set representation in Fig. 8 (b).
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e1
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"CBS News/YouGov")

...

 
e1 (States supporting "Clinton"
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v2

Fig. 9. (a) In the US presidential election case, the user constructed a hypergraph structure on four het-
erogeneous datasets (V3 - V6) in the dataset view. (b) The constructed structure was represented in an
incidence matrix, which was ranked bywd . Some variables ("CNN/ORC Poll", "NBC/WSJ/Marist Poll" and
"CBS News/YouGov Poll") had high wd values, indicating they played important roles in the prediction.
(c) Three hyperedges (e1, e2, and e3) selected from the incidence matrix were visualized as contours. Each
hyperedge contained states supporting "Clinton" in its poll (e.g., FL, NC, PA in e1). The candidate vertex v2
was also in the edges, since we added the candidates in the poll (see V6 in Fig. 8). The color of the vertices
encoded the learned labels. (d) The user reduced the prior weights wd of some polls since they might be
biased. (e) After running the learning algorithm again with the updatedwd , some of the learned labels were
changed (e.g., the states FL and NC turned into Republican). (f) The histograms showed the label distributions
before and after the change of weights.

SC2 linked and merged the state (V3) and poll (V5) dataset by "State" in the dataset view (Fig. 9 (a)).
Then he trained the model and found that 46 out of 51 states (50 states + D.C.) were correct (448/538
votes). However, Clinton still would win the majority votes according to the results. Since the model
was still not satisfactory, he told us that he was interested in finding which poll providers had
major influences on the learning results. He calculatedwd for all the variables with the Hellinger
Distance (Section 6.3). By reordering the incidence matrix, he noticed that the polls of "CNN/ORC",
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"NBC/WSJ/Marist" and "CBS News/YouGov" had the highestwd values (Fig. 9 (d)). He selected their
levels of "Clinton" (see e1, e2, and e3 in Fig. 9 (b)) for further validation in the contour visualization.
The states supporting Clinton in the selected poll were visualized in the hyperedge contours

(Fig. 9 (c)). For example, e1 contained the vertices of FL, PA and NC, since they supported Clinton
according to the "CNN/ORC" poll (Fig. 8). All the vertices were blue since our learning algorithm
also labeled those states as "Democrat”. SC2 told us that some of these states actually voted for
Trump, such as Florida (FL) and North Carolina (NC). According to his knowledge, these polls were
possibly biased. SC2 showed us some reports mentioning that media such as NBC, CBS and WSJ
had certain preferences for Democratic party [42]. He selected these polls and set the change ratio
of their prior weightswd to 0.1 (Fig. 9 (d)). With the modifiedwd , he ran the algorithm again and
more states turned correct (49/51 states, 508/538 votes), including Florida and North Carolina (Fig. 9
(e)). The total electoral vote distributions before and after changingwd were shown in Fig. 9 (f).
Our model failed to predict only two states: Pennsylvania and Wisconsin. SC2 checked the poll
dataset (V5) and found this was because that almost all the polls predicted them as Clinton, but
they voted for Trump actually.
During the examination of the poll providers, an interesting observation SC2 found was that

most university polls showed Clinton would win, such as "Univ. of North Florida" and "Florida
Atlantic Univ.".

He continued his exploration and noticed that several variables about the state census had high
weights, such as "Bachelor’s Degree Rate" and "Population Density". He expanded these variables
and found it was because their levels of "Above federal average" had very highwd values (see e4
and e5 in Fig. 10 (a)). To examine their detailed class distributions, he selected these two levels
and visualized them in the contour visualization. From the pie charts of the aggregated vertices of
states, he found that states with both high population densities and high bachelor’s rates were all
predicted as "Democrat", which suggested that the combination of these two hyperedges could be a
good indicator of election results (see the blue vertex in the intersection of e4 and e5 in Fig. 10 (b)).
He also noticed that the states which were not contained by e4 and e5 were mainly Republican.

...

e4 (States whose bachelor's

degree rates are
 above average)

(b)(a)

e5e4

e5 (States whose population

densities are above average)

Learned Labels

Fig. 10. (a) The user selected two hyperedges of "Above Average Population Density" and "Above Average
Bachelor’s Degree Rate" which had high weights. (b) The aggregated vertex of states in the intersection of
the two hyperedges was blue, indicating these two hyperedges together were good predictors for Democrat
party. While the states outside both hyperedges were mainly Republican.

8.3 Quantitative Analysis
Based on the datasets and settings of the two case studies, we evaluate the performance, the
parameter selection, and the complexity of our algorithm.
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8.3.1 Performance Comparison. We compare our algorithm with three baseline algorithms:
Transductive Support Vector Machine [21], Link-based Classification [28] and the traditional
hypergraph learning [44], which are denoted as TSVM, LBC, and HGT in Table 4, respectively. To
train the TSVM with the complete datasets, we use the fused incidence matrixH constructed by
each user as the set of input features. After testing different kernels, we choose the radial basis
function (Gaussian kernel), which achieves the best performance for TSVM in our datasets. The
ordinary graph structures of LBC are constructed manually with pairwise links on the datasets in
the two cases. Logistic regression is employed as the local classifier in the iterative class assignment
process of LBC. The hypergraph structures constructed in the two studies are adopted for both the
traditional hypergraph and our algorithm.w in HGT (Eq. 2) is set to [1, 1, ..., 1]T , which is usually
used as the default value [44]. For our algorithm,wd set by the users in the studies are employed.

The test error, macro-average F1 score for multi-class, and macro-average area under the Receiver
Operating Characteristic (AUROC) for multi-class are employed as the evaluation metrics. The
results of the two cases are shown in Table 4. Our approach achieves the best performance among
the compared methods. Especially, in the election case, our method is the only algorithm which
predicts Trump’s victory although other baseline methods also have high performances. The main
reason for it may be that our algorithm allows the user to tune the parameters during visual analysis,
which is critical for improving the learning model.

Methods Readmission Case Election Case
Test Error F1 AUROC Test Error F1 AUROC

TSVM 0.22 0.80 0.88 0.10 0.93 0.93
LBC 0.21 0.78 0.88 0.10 0.93 0.93
HGT 0.15 0.85 0.89 0.10 0.93 0.94
Ours 0.11 0.88 0.90 0.04 0.96 0.97

Table 4. Performance comparison of four algorithms in two cases. Bold indicates the best performance.

We perform 10-folds cross validation to detect if there is overfitting in our approach. We use
thewd set by the users in the cases. The F1 scores of the cross validation in the readmission and
election case are 0.87 and 0.91, respectively. They are close to the F1 scores in the case studies
(Table 4), indicating our models with the user-definedwd do not overfit.

8.3.2 Parameter Settings. To find the effects of different µ and ρ values on the learning results
in Algorithm 1, we test different settings of (µ, ρ). We adopt the hypergraph models which the
users constructed at the end of their studies. We ask the user to define a set ofwd and use them
to test the average iteration steps for convergence and the average test errors. The threshold ϵ in
Algorithm 1 is set to 0.1. The experiment results in the two cases are shown in Table 5.

Rows in Table 5 are ordered according to the value of ρ. When ρ increases, Algorithm 1 converges
faster. We conclude that a larger ρ makes the weight regularization term Ψ more important in Eq. 9.
As a result,w will converge with less iterations, which leads to faster convergence of Algorithm 1.

Compared to ρ, µ values have less effects on the iteration numbers. By examining the learning
results, we find that the learned labels f will become closer to y when µ is larger. Therefore, a very
small or very large µ will cause underfitting or overfitting of the algorithm.

The default (µ, ρ) is set to (1.0, 1.0), since Algorithm 1 has the lowest test error around (1.0, 1.0)
in our experiments (Table 5).

8.3.3 Complexity of the Algorithm. The complexity of Algorithm 1 is mainly decided by the
complexity of Eq. 8, Eq. 9, and the number of iterations. The complexity of matrix solving in Eq. 8
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Settings Iteration Number Test Error
Readmission Election Readmission Election

µ = 1, ρ = 0.01 5.0 4.0 0.13 0.10
µ = 1, ρ = 0.1 3.3 3.0 0.13 0.10
µ = 100, ρ = 1 4.3 4.0 0.14 0.12
µ = 10, ρ = 1 2.7 2.0 0.13 0.12
µ = 1, ρ = 1 4.0 3.3 0.12 0.06
µ = 0.1, ρ = 1 3.0 2.0 0.12 0.10
µ = 0.01, ρ = 1 2.0 2.0 0.16 0.12
µ = 1, ρ = 10 2.0 2.0 0.14 0.12
µ = 1, ρ = 100 2.0 2.0 0.14 0.12

Table 5. The average convergence iterations and the average test errors of Algorithm 1 with respect to
different µ and ρ. Our algorithm converges in constant time in both cases. The performance of our algorithm
does not degrade much with different parameter settings.

is O(|V|3), |V| is the number of vertices. The quadratic programming in Eq. 9 can be solved with
interior-point algorithm [4] with O(|E |3) complexity, |E | is the number of hyperedges.
According to Table 5, our algorithm converges within 5 iterations for both cases with different

(µ, ρ). This indicates our iterative approach for solving optimization of Eq. 6 will not increase the
total complexity. Overall, the complexity of Algorithm 1 is O(|V|3 + |E |3).

The complexity of the traditional hypergraph learning algorithm is O(|V|3), since it presets the
weightsw and does not need to solve Eq. 9. The complexity of our algorithm is not much worse
than the traditional algorithm when |E | and |V| are of the same order.
When the size of the heterogeneous data is big, there are some strategies to accelerate our

algorithm. First, since we introduce vertex weight u, it becomes possible to aggregate the instances
which have identical inclusion relationship in the hyperedges. The vertex weightu of an aggregated
instance will be the sum of weights of the original instances. For example, individual patient can
be aggregated into a patient group with weight as the number of patients. Second, Liu et al.[26]
provided a trade-off between time and accuracy. They dealt with large data by splitting the vertices
into subsets and classifying the subsets in multiple runs. Third, pre-computation is enabled if the
priorwd will not be modified.

8.4 Feedback and Discussion
We evaluated the learning cost and usability of our visual system in the training session and the
interview session, respectively.

8.4.1 Learning Cost. In the training session, our instructor gave a 15-minute demo to explain the
hypergraph learning algorithm and our system. Then SC1 and SC2 practiced our system with the
help of the instructor. Theywere free to stop practicingwhen they felt ready. To evaluate the learning
progress, each participant was given a test of 6 exercises. The exercises tested user understanding
of the proposed visualizations and interactions based on the case scenario. For example, an exercise
for SC1 was linking "Hosp. ID" in "Hospital Measures" and "Hospital Evaluation". We observed that
neither participant practiced for more than 12 minutes. In the tests, the participants were able to
respond to all exercises as expected without any help from our instructor.

When asked to rate the learning cost of our system (1 = very hard, 5 = very easy), SC1 and SC2
gave ratings of 4.5 and 4, respectively. SC1 mentioned that it was easy since the matrix-based and
contour-based visualizations followed commonly-used set visualizations. SC2 told us at first he had
some trouble interpreting the contour visualization because he was unfamiliar with the concept of
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the hypergraph learning. But he understood our visual representation as soon as he found that it
basically showed the set memberships of the data instances and the levels.

8.4.2 Usability. In the interview session, both participants rated the usefulness of our system at
5 (1 = very useless, 5 = very useful). SC1 and SC2 were also required to compare our system with
their usual tools. After that, we asked them to give detailed evaluations of the matrix construction
interactions, weight modulation, and the contour-based visualization.
SC1 mentioned that he used to join the data by database queries and search for interesting

variables in a trial-and-error process until a satisfied result was achieved. Likewise, SC2 said that
he typically would also fuse the data manually, which prevented him from updating the model in
an incremental manner. Both participants commented that they often struggled with the raw data
and statistics due to the lack of an effective visualization of the data structures and learning results.
For the interactions related to the matrix construction, SC1 mentioned that it enabled him to

test different datasets and variables in a visual interface to find the risk factors of readmission.
He confirmed that the design of the linking and merging operations was natural since they were
equivalent to the join operation in a database. SC2 said, "I realized that using the history election
results for prediction was not suitable, so changing the model during the analysis was necessary."
Then he expressed that the supported interactions for changing the incidence matrix of the election
datasets were helpful and convenient.
SC1 told us that "Setting the weights in the matrix allowed me to exclude the unrelated factors

of readmission, such as the diagnosis category of ‘Newborns’." When asked about the strategy to
adjusting the priorwd in the presence of a large number of hyperedges, SC1 mentioned that he
was interested in finding the most important factors of readmission. As a result, he would only
examine the hyperedges with high weights and adjust them according to his domain knowledge.
SC2 also indicated that ranking was useful for finding the hyperedges with important effects on the
predicted election results. He agreed that reordering helped to deal with the scalability problem of
adjusting weights of large numbers of hyperedges.
For the contour-based visualization, both SC1 and SC2 confirmed that it supported their visual

exploration tasks (T1 - T4). SC1 mentioned that he was able to view the distributions for all
interesting hospitals and patient groups at a glance (T1), which provided insights into the potential
readmission factors. SC1 also stated that the detail view (Fig. 7 (e)) was an efficient supplement to
the contour based visualization, because it informed him about the result changes caused by his
interactions (T4). SC2 noted that he discovered that many election polls might be incomplete or
biased from this contour visualization. He commented that it was very intuitive for visualizing the
structure of interesting polls and the predicted election results at the same time (T2, T3).

8.4.3 Discussions and Limitations. The participants also gave us some suggestions which we
implemented in our system, such as setting the change ratios instead of absolute values of the
weights. SC1 recommended to use wider and darker cells for aggregated columns (Fig. 9 (b)). SC2
suggested changing the sizes of different hyperedge contour lines to distinguish them.

One participant asked if he can predict other missing values (e.g., missing "Income Level" values of
counties in Fig. 1 (a)) in addition to the labels. To get good performance on predicting "Income Level",
we have to set the known "Income Level" as the new labels and construct a different hypergraph
structure on another set of tables related to the census information.
During the visual modification process, the risk of overfitting can arise from the tuning of the

weights. This is most likely to happen when the user assigns extreme weights to the selected
hyperedges. To prevent this, a widely-used solution is to add ℓ2 regularization ∥w −w0∥2 as a
penalty term in Eq. 6. Herew0 is the default value ofw (e.g., [1, 1, ..., 1]T ). On the other hand, cross
validation can be performed every time the weight is changed to prevent overfitting.
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For the existing contour-based visualizations, one common limitation is scalability [1]. The
contours can become heavily cluttered due to dense overlapping, especially for more than 7
hyperedges [40]. Our visualization can potentially be better than existing approaches, since it
avoids the color blending of the overlapped regions. In addition, our force-directed layout reduces
most unnecessary overlapping.

During the interview, both SC1 and SC2 agreed that our strategy of only visualizing interesting
hyperedges helped them filter out the less important factors. They told us that they usually focused
on less than seven hyperedges at any one time during the visual exploration. In fact, this bears a
natural relation to the well-known "Magical Number" Seven (plus/minus two) that has been found
to form an upper bound to a human’s working memory capacity [32]. Hence the problem with the
limited scalability of the contour visualization is less likely to arise. SC1 also mentioned that the
hyperedges rarely would completely overlap, which limited the risk for visual clutter.

9 CONCLUSION
We described a visual analytics approach for classification on heterogeneous data. We used the
hypergraph paradigm tomodel the high-order relations of various objects in the datasets. Interactive
construction, modulation and exploration of the hypergraph learning model were supported in
the proposed visualizations. Two case studies showed that our approach is better than existing
learning methods in both performance and usability.

For future work, we would like to set the structure and parameters of the hypergraph model by
various forms of domain knowledge, such as the knowledge graph of the heterogeneous data.
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