
Dispersion Simulation and Visualization for Urban Security
Feng Qiu Ye Zhao Zhe Fan Xiaoming Wei Haik Lorenz Jianning Wang

Suzanne Yoakum-Stover Arie Kaufman Klaus Mueller ∗

Center for Visual Computing and Department of Computer Science
Stony Brook University, Stony Brook, NY 11794-4400

ABSTRACT

We present a system for simulating and visualizing the propaga-
tion of dispersive contaminants with an application to urban secu-
rity. In particular, we simulate airborne contaminant propagation in
open environments characterized by sky-scrapers and deep urban
canyons. Our approach is based on the Multiple Relaxation Time
Lattice Boltzmann Model (MRTLBM), which can efficiently han-
dle complex boundary conditions such as buildings. In addition,
we model thermal effects on the flow field using the hybrid thermal
MRTLBM. Our approach can also accommodate readings from var-
ious sensors distributed in the environment and adapt the simulation
accordingly. We accelerate the computation and efficiently render
many buildings with small textures on the GPU. We render stream-
lines and the contaminant smoke with self-shadowing composited
with the textured buildings.

Keywords: Lattice Boltzmann Model, GPU, Visualization

1 INTRODUCTION

According to the National Research Council report Tracking and
Predicting the Atmospheric Dispersion of Hazardous Releases,
“Our nation’s capacity to respond to atmospheric C/B/N (chemi-
cal/biological/nuclear) events stands, like a three-legged stool, on
the strength of three interconnecting elements: (1) dispersion mod-
els that predict the path and spread of the hazardous agent; (2) ob-
servations of the hazardous plume itself and of local meteorologi-
cal conditions; and (3) interaction with emergency responders who
use the information provided by the models.” The simulation work
we present in this paper is directly relevant to the first and third
elements. The Lattice Boltzmann Model (LBM) that we use can
accurately model air flow and contaminant transport and mixing in
geometrically complex environments with the inclusion of thermal
effects due to surface heating. By exploiting the inherent locality
of the LBM and implementing the computation on the GPU, we
further demonstrate that it is feasible to build large scale simula-
tions that span a whole city. We also show the performance and
visualization advantages that result from using the GPU for scien-
tific computation. The importance of visualization stems from its
ability to enhance the usefulness and accessibility of the informa-
tion provided by the model. Our demonstration application illus-
trates how the combination of LBM modeling and GPU compu-
tation can enhance our understanding of meteorological and fluid
dynamic processes governing dispersion in urban areas and also al-
low emergency management, law enforcement and other personnel
to adequately plan for, train for, and respond to potential accidents
or attacks involving toxic airborne contaminants.

∗Email:{qfeng, yezhao, fzhe, wxiaomin, hlorenz, jianning, suzi, ari,
mueller}@cs.sunysb.edu

2 RELATED WORK

Researchers have conducted dispersion observation experiments in
various environments. The urban tracer and meteorological field
campaign (URBAN) conducted in Salt Lake City in 2000 investi-
gated meteorological and fluid dynamic processes governing dis-
persion in urban environments. In particular, the study attempted
to resolve interacting scales of atmospheric motion from the scale
of individual buildings to that of whole cities and entire regions
[2]. Another meteorological field campaign conducted during Oc-
tober 2000 in the Salt Lake Valley studied vertical transport and
mixing (VTMX) processes [13]. The focus of that project was to
measure, characterize and analyze VTMX processes, especially in
urban areas larger than that of URBAN 2000. The data and insights
resulting from these campaigns will help to build better models and
evalute the performance of existing numerical simulations for dis-
persion in urban environments.

In terms of modeling, Pardyjak et al. [31, 30], Williams et al.
[42, 43] and Boswell et al. [6] have proposed a fast-response ur-
ban dispersion modeling system that computes 3D wind patterns
and dispersion of airborne contaminants in urban areas with many
buildings. The wind model (QUIC-URB) uses empirical algorithms
that estimate the wind fields around buildings. The Lagrangian
dispersion model (QUIC-PLUME) computes the dispersion using
random walk equations based on the mean wind field produced by
QUIC-URB. Brown et al. [7, 8] have presented a modeling ap-
proach to compute wind fields and simulate the transport of agents
in three different scales. A numerical weather prediction model
called COAMPS [21, 10] computes the wind field and other me-
terological physical effects such as temperature at the urban scale.
At the many-building scale, HIGRAD [8, 34] computes the flow
field around buildings and simulates contaminants transport. This
model is a second-order accurate computational fluid dynamics
(CFD) model based on the Navier-Stokes equations (NSE) with fi-
nite difference approach. For single to few-building scale, another
CFD model called FEM3MP [9] was used. This is a finite element
model that can simulate a flow field and dispersion around indi-
vidual buildings in great detail. The three models take appropriate
scale-dependent physics into account and share data together.

Recently, LBM [36] has been introduced to the graphics commu-
nity for modeling various flow phenomena including wind, smoke,
fire, and melting [38, 39, 41, 45]. Although LBM is a relatively
new CFD procedure, it has the advantages of being simple to im-
plement, parallelizable, and can accommodate complex boundaries.
It can also be extended to model thermal effects, reactive flows, and
other physics with relative ease. In contrast to the flow simula-
tion methods described above, the LBM does not model the NSE
directly. Rather, it models the micro-scale Boltzmann kinetics of
fluid elements streaming and collision. As a numerical scheme, it
is explicit, synchronous, second-order space-time accurate with an
advection limited time-step. In the limit of zero time step and lattice
spacing, LBM yields the NSE for an incompressible fluid. As a kind
of explicit finite difference method, LBM is consistent for flows
with low Mach number (i.e., flow velocities small compared to the

speed of sound) and its time step is advection limited. Although
LBM is only conditionally nonlinearly stable, a subgrid model that
represents small scale energy damping and the MRTLBM method
that presented in this paper can be used to enhance the stability for
flows with higher Reynolds numbers. The properties of LBM, such
as stability, restrictions and configuration of the simulation param-
eters, are elucidated in [36] and [40]. Comparing with the stable
solver for Navier-Stokes equations, the LBM takes more time steps
as an explicit method. However, the LBM has simple operations
(no need to solve the linear systems for each step) and it is able to
handle complex and moving boundaries. Furthermore, its parallel
nature and locality facilitate the GPU acceleration. These advan-
tages make LBM a good choice to simulate dispersions in urban
area.

GPU acceleration has been found useful for a broad range
of non-graphics computations, including several physically-based
simulations. Harris et al. [20] implemented the Coupled Map Lat-
tice (CML) on GPUs, and simulated cloud dynamics using partial
differential equations [19]. Gootnight et al. [18] have implemented
a multigrid solver on the GPU. Krüger and Westermann [26] have
presented a GPU implementation of several linear algebra opera-
tors and used them to solve the NSE. Bolz et al. [5] have developed
a GPU-based multigrid solver, and presented a conjugate-gradient
solver on the GPU based on a sparse matrix representation which
they applied to the Navier Stokes equations. In our previous work,
Li et al. [29] have accelerated single-relaxation-time LBM compu-
tation on GPU and Wei et al. [38, 39, 41] have used the accelerated
LBM to model gaseous phenomena, such as fire, smoke and wind.
(More examples can be found on the web site of GPGPU (general-
purpose computation using graphics hardware) [1]). In this paper,
we extend our previous work to speed-up the more complicated
Multiple Relaxation Time LBM simulation, which is more stable.

Textures for city models are usually captured together with the
geometry. For example, Wang et al. [37] have generated both ge-
ometry and texture from a large set of registered images taken au-
tomatically. On the other hand, Früh and Zakhor [17] have imple-
mented texture capturing as a separate video based process paral-
lel to geometry scanning. All these methods, however, generate
huge amounts of texture data since every building gets its own tex-
ture. There are several approaches to reduce the number of textures.
Wonka et al. [44] have done so by creating a detailed semantic
based geometry using grammars, which is textured with few re-
peated textures. Legakis et al. [28] have concentrated on brick
patterns by synthesizing textures using a cell based method. An-
other approach common to commercial solutions is to concentrate
on landmarks, which are postprocessed by hand using CAD appli-
cations or taken from libraries. Other parts of the city model are left
without texture. In contrast, our texturing is not part of the model
generation process. Instead, we have used pictures of the real build-
ings and incorporate them into the geometry.

Many techniques have been proposed for smoke rendering. Ebert
and Parent [14] and Foster and Metaxas [16] have used volumetric
ray tracing to render smoke and other gaseous phenomena. Stam
[35] has devised a fluid solver using semi-Lagrangian advection
schemes, a projection step to ensure incompressibility, and an im-
plicit treatment for viscosity, producing compelling simulations of
turbulent flows. Fedkiw et al. [15] have used a photon mapping
algorithm for participating media [22]. However, although ray trac-
ing and photon mapping methods can render high-quality images,
they are extremely slow, usually several minutes per frame. Wei
et al. [39] have rendered smoke with textured splats, which was
proposed by Crawfis and Max [11] and used by King et al. [23] to
render fire. This method can render smoke in real-time but doesn’t
incorporate global illumination effects, such as self-shadowing.

3 SIMULATION

3.1 Multiple Relaxation Time LBM

The LBM models Boltzmann particle dynamics on a lattice. Par-
ticles stream in discrete time steps to neighboring sites. Between
streaming steps, they undergo collision. Both streaming and colli-
sion steps are applied in the local neighborhood of each cell. More-
over, the complex boundaries that represent the internal objects are
also treated as part of the collision step in the local neighborhood.
Because of these features, compared to other CFD methods, the
LBM has the advantages of being easy to implement, parallelizable,
and able to handle complex and moving boundaries. A commonly
used collision model is the single-relaxation-time LBM (SRTLBM)
model of Bhatnagar, Gross and Krook (BGK) [4]. The BGK model
represents collisions as a statistical redistribution of momentum to-
ward equilibrium. The model has one free parameter - the relax-
ation time, which controls the viscosity of the fluid. We refer the
readers to a book [36] and our previous works [38, 39, 41, 45]
for details on SRTLBM. MRTLBM uses a more general collision
model in which many of the hydrodynamic moments relax toward
their equilibria independently [12]. The additional freedom af-
forded by the decoupled relaxation parameters, gives the model bet-
ter stability and facilitates the coupling of additional physics. In this
section we provide a basic introduction to the MRTLBM.

As in the SRTLBM , the set of b lattice vectors in the unit
cell define the set of discrete velocities in the model, {ei|(i =
0,1, . . . ,b− 1)}. Corresponding to each lattice vector there is a
velocity distribution function { fi|(i = 0,1, . . . ,b− 1)}. The distri-
bution function fi(r) represents the probability that a flow element
with velocity ei exists at node r. The hydrodynamic moments, such
as mass density ρ and momentum density j, are obtained by lin-
ear combinations of these distributions. For example ρ = ∑i fi and
j = 1

ρ ∑i fiei. We may therefore define two b-dimensional vector
spaces, one called phase space, which is spanned by the fi and the
other one called moment space, which is spanned by the lowest or-
der hydrodynamic moments.

For our simulations, we use a simple 3D LBM lattice, denoted by
D3Q13. As illustrated in Figure 1, a unit cell of this lattice includes
the center node with zero velocity and the twelve second-nearest
neighbor links (the six nearest neighbor axial links are not used).
In this lattice, we have 13 distributions, { fi|(i = 0,1, . . . ,12)} and
13 moments {mi|(i = 0,1, . . . ,12)}. Each of these moments has a
physical meaning. For example, m0 is the mass density ρ , m1,2,3
are the components of the momentum density vector j, m4 repre-
sents the energy, higher order moments represent components of
the stress tensor, and so on.

The transformation from one representation to the other may be
expressed as:

|m〉= M| f 〉, | f 〉= M−1|m〉 (1)

| f 〉= (f0(r,tn), f1(r,tn), . . . , f12(r,tn))T , (2)

|m〉= (m0(r,tn),m1(r,tn), . . . ,m12(r,tn))T , (3)

where T is the transpose operator, M represents the invertible linear
mapping, r represents each lattice point, and tn is the time step.

In MRTLBM, the streaming is also performed on the discrete
velocity space, while the collision is applied in the moment space.
The MRTLBM equation is:

| f (r+ei,tn +1)〉= | f (r,tn)〉−M−1S[|m(r,tn)〉− |meq(r,tn)〉],
(4)

where |meq〉 is a vector whose components are the equilibria of the
moments, and S is a diagonal matrix whose elements are the relax-
ation rates:

S = diag(s0,s1, . . . ,s12). (5)

Figure 1: The D3Q13 lattice geometry. The particle distribution fi is
associated with the link corresponding to the ei velocity vector.

As in SRTLBM, the mass and momentum densities are con-
served, so their equilibrium values do not change. The equilibrium
values of the non-conserved moments depend only on the conserved
moments. However, because they are exposed in the Hybrid Ther-
mal LBM (HTLBM) model [27] we can modify them to simulate
other effects, such as body force or temperature. In Section 3.2, we
describe how we use body force to accommodate sensor input.

To model thermal effects on flows in the HTLBM the equilibrium
energy is modified to account for temperature as follows:

meq
4 =

39
2

(c2
s0−

8
13

)ρ +
39
4

(
5
3
− γ)j · j+ 39

2
q1T, (6)

where T is the temperature, γ is the specific heat, q1 is a constant
coupling coefficient, and cs0 is the isothermal speed of sound. The
temperature evolution may be modeled with a diffusion-advection
equation,

∂tT +u ·∇T = κ∆T +q2(γ−1)c2
s0∇ ·u, (7)

where κ is the thermal diffusivity of the fluid, q2 is a constant cou-
pling coefficient, and u is the velocity. Equation 7 can be solved by
a finite-difference scheme. The resulting temperature field is used
in Equation 6.

The values of relaxation rates si are determined by a linear anal-
ysis. They are related to the viscosity of the fluids as:

ν =
1
2
(

1
s6
− 1

2
), (8)

ξ = (
2
3
− γc2

s0)(
1
s5
− 1

2
), (9)

where ν is the shear kinetic viscosity, and ξ is the bulk kinetic
viscosity. Their values may be chosen to define the characteristics
of the fluid. The remaining relaxation rates are then determined.

The boundary condition of MRTLBM does not differ from the
SRTLBM, as it is also applied in phase space. We can apply
bounce-back, outflow, inflow, curved, and moving boundary con-
ditions.

3.2 Sensor Feedback

To study the behavior of smoke particles, gases, aerosols, and other
plumes in an urban environment, such as New York City (NYC), the

Department of Energy’s Urban Atmospheric Observatory (UAO)
plans an extensive sensing test bed of a dense coverage of sensors
(chem. bio, lasers, radars) in an 1.6km x 1.6km area of midtown
NYC, which includes Madison Square Garden. To refine and val-
idate our LBM models, we will use the results of “pilot exercises”
of a set of outdoor Perfluorocarbon tracer (FFT) studies to be con-
ducted over the span of several days in the midtown area later in
2004 and 2005. Currently, we use a 10-block area around the En-
vironmental Measurements Laboratory (EML) building in the West
Village of NYC at the corner of Houston Street and Varick Avenue.
Those sensors record the wind velocity, temperature, etc. in real-
time. Currently, there are 3 sensors installed on the EML building.

The accuracy of the simulation is limited and different errors
(rounding error, discretization error, etc.) may accumulate, and
consequently the LBM results are different from the data read from
sensors. Therefore, sensor readings are used to correct and guide
the simulation. Once the live-sensor input is communicated over
network links, how to incorporate the sensor data with existing sim-
ulation remains a challenge. Currently we use two approaches to
adapt the simulation’s numerical models to accommodate sensor
data. In the first method, the effect of the sensor data is incorpo-
rated as a body force on the corresponding grid node. In the second
method, we trace those boundary nodes that will affect the sensor
points and modify those boundary nodes directly to match the sen-
sor data.

Consider a simple LBM for a wind field in a complex urban en-
vironment with anemometers at various locations. To bring the
simulation into sensor agreement, we read the sensor velocity at
every time step and use it to modify the distributions at the nearby
grid nodes either through the equilibrium distributions or via a body
force. Better, we use a weighted sum of the sensor and LBM ve-
locities such that its contribution decreases smoothly away from the
sensor. A loss of momentum conservation may result – the nodes
near the sensor behave as local sources or sinks in the flow depend-
ing on the difference between the sensor data and the simulation
data. Also, when viewed globally, this approach would only “fix”
the downstream flow. We set up a test bed with our current ther-
mal LBM simulation to examine the effect of body force. Starting
from an initial simulation with predefined boundary conditions, we
recorded the velocity data at each sensor nodes for each time step
(self defined). Later, by slightly changing the boundary conditions,
we run another simulation. The velocity difference between the
recorded data and the current velocity at the sensor points is calcu-
lated as the body force on the corresponding grid node. To smooth
away any sudden change of the body force at each time step, we av-
erage over two time steps. We observe that as long as the difference
between the predefined boundary condition and the new boundary
condition doesn’t exceed 10 percent, the method works well. For
the MRTLBM used in our system, we simply add the external body
force F to the momentum, by j′ = j + Fδ t (δ t = 1), as we in-
troduced in Section 3.1. It is understood that in order to conserve
mass up to second order in the Chapman-Enskog analysis, the net
effect of the force term is that the resultant momentum is equal to
j+Fδ t/2 [27]. The algorithm is as follows:

1. Advection of fi,

2. Compute moments mi of fi,

3. j′ = j+ 1
2 F,

4. Relaxations of the moments (collision),

5. j′′ = j′+ 1
2 F,

6. Compute fi from the moments mi.

where j′ is used as the measured field for output.
Since a flow field is largely a result of the definition of its bound-

ary conditions, in the second approach we use the velocity error to
modify the boundary conditions used on the simulation volume. In
the simplest case where the flow volume contains no obstructions,
we simply modify the boundary upstream of the nodes near the
sensor. For complicated geometries where flows swirl around ob-
jects and create vortices, identifying what is upstream is much more
challenging. In our current work, we follow the streamlines from
the nodes near the sensor back to identify the regions of boundary
that are most responsible for the flow. The advantage of this ap-
proach is that the flow invariants within the simulation volume are
not disturbed and the entire flow is “fixed”. However, to observe at
the sensor points the effect of the change in the boundary condition,
we need to wait for several LBM time steps. The further away the
sensor from the corresponding boundary node, the longer the wait.

3.3 Hardware Acceleration

Because of the locality, and hence parallelizability, of the LBM op-
erations, accelerating LBM computation on today’s programmable
GPU is straightforward and efficient. In our previous work [29],
we have accelerated SRTLBM on the GPU and we have extended
our previous work here to improve the performance of MRTLBM
which has a more complicated collision operation that requires
matrix-vector multiplication (see Equation 1). In what follows we
briefly review the approach taken for accelerating LBM on the GPU
and then detail our implementation of the MRT collision operations.

Mapping non-graphics computation onto the GPU involves two
main issues: (1) laying-out the data in texture memory; and (2)
using graphics operations to compute the results.

• To layout the LBM data, we divide the lattice sites into several
volumes. Each volume contains data associated with a given
state variable and has the same resolution as the LBM lattice.
For example, each of the 13 particle distributions f0− f12 in
the D3Q13 MRTLBM, is represented in a volume as is each
of the 13 moments m0−m12. To use the GPU vector oper-
ations and save storage space, we pack four volumes into a
series of 2D textures (note that a fragment or a texel has 4
color components). Therefore, both the 13 particle and mo-
ment distributions are packed into 4 series of textures, respec-
tively. The boundary link information (e.g., the flags to indi-
cate whether the lattice links intersect with boundary surfaces)
is also stored in textures, but since most links do not intersect
the boundary surface, we do not store boundary information
for the whole lattice. Instead, during rendering we cover the
boundary region of each Z slice using multiple small rectan-
gles. Hence, we need to store the boundary information only
inside those rectangles in one 2D texture.

• The LBM operations (e.g., streaming, collision, and boundary
conditions) are translated into fragment programs that can be
executed in one rendering pass. For each fragment in a given
pass, the fragment program fetches any required current state
information from the appropriate textures, evaluates a result,
and renders it to a pixel buffer. When the pass is completed,
the results are copied back into another texture.

To implement matrix-vector multiplication in MRTLBM, we
take advantage of the GPU vector operations which have been op-
timized. Note that because the GPU only supports a 4 dimensional
vector space, we need to decompose our 13 dimensional matrix and
vector operations as illustrated in Figure 2. With this decompo-
sition, the multiplication of y← M× x can be rewritten into four
equations:

y0 ← M00×x0 +M01×x1 +M02×x2 +M03×x3, (10)

y1 ← M10×x0 +M11×x1 +M12×x2 +M13×x3, (11)
y2 ← M20×x0 +M21×x1 +M22×x2 +M23×x3, (12)
y3 ← M30×x0 +M31×x1 +M32×x2 +M33×x3 (13)

Each equation 10 - 13 is implemented as a single fragment pro-
gram. Fragment program i takes sub-matrices Mi j as input, fetches
the elements of vector x from the appropriate texels, evaluates the
equation, and outputs the result yi.

Figure 2: Decomposing the matrix and vectors.

4 VISUALIZATION

In the simulation, massive amounts of results are generated. These
numbers are hard to understand by most scientists. With visual-
ization, the user can better analyze the simulation results of flow
fields through streamlines. Realistic visualization in real time can
help trainees and emergency services personnel (end users) better
understand the situation and make decisions in real events. The
visualization has two parts. The first is to render buildings with tex-
tures. Because the simulation is executed on the GPU and most of
the texture memory is used to store simulation data, there is little
room to store textures of the buildings. Instead, we use noise tex-
tures and a smart shader to help texturing the buildings. The second
part of the visualization is to render smoke with self-shadows in
real-time.

4.1 Buildings

Our city model consists of plain geometry only. To improve the
visual appearance, building facade textures are used to resemble
the look of the actual city. This leads to two problems: the textures
themselves need to be created and rendered and the geometry has
to be augmented with texture coordinates.

Facade textures are prepared by hand from pictures taken on site.
Since texture memory is a scarce resource, we are allowed only a
very small amount of actual distinct facade textures. The trade-off
is between a larger number of low resolution textures and a smaller
number of high resolution textures. Since we rate blurry artifacts
introduced in the former case more disturbing than visual repeti-
tiveness in the latter one, we use a few high resolution textures.

To reduce the repetitiveness of this approach, we make use of
the programmable fragment shading capability of modern graph-
ics hardware by implementing a texture-aging-and-variation shader.
This shader changes the overall appearance of a facade texture by
adding dirt and cracks without affecting major features such as win-
dows. To do so, it needs an appropriate opacity map stored in the

(a) Plain facade.

(b) Sample variations using Per-
lin noise.

(c) Sample variations using cor-
rosion patterns

Figure 3: Facade variation using one set of textures.

alpha channel of the facade texture. In total it uses five textures per
facade, one of which is the facade texture itself.

Since texture memory is the most important constraint, the
shader and its data are designed for versatile use. Thus, informa-
tion about color and intensity of dirt added to the facade is split into
color parameters and grey scale textures. This enables the shader
to produce very different results with the same textures, and thus
reduces the overall number of textures needed.

For each facade three grey scale “noise” textures are used to add
three differently colored layers of dirt. The term noise is quoted
since statistical or Perlin noise [32] usually does not give best re-
sults. Patterns of corrosion or erosion found in nature are more
suitable, as shown in Figure 3. Dirt is added by means of color
replacement. For each dirt layer the shader has a base color and a
dirt color. The more the local original facade color is similar to the
base color, the more the actual fragment color is dragged towards
the dirt color. The similarity is attenuated by the respective noise
texture.

Additionally, one more grey scale texture is used to attenuate the
facade texture’s intensity directly, simulating cracks. Bump maps
were tested for this purpose, but results indicated that, besides the
necessary three color channels instead of one, high resolution maps
are needed in order to make them visually effective. Again, for ver-
satile use a parameter attenuates the impact of the intensity texture.

Due to the layering, the perceived final texture resolution is
higher than the individual layer resolutions. Since the facade tex-
ture already has high resolution, the noise textures do not need to
(see Figure 3). Additionally, due to the nature of a noise texture
it can be shrunk and tiled across the whole facede without obvious
artifacts. Shrinking factors up to 2 give good results. Thus, the im-
pact of noise textures on texture memory can be kept to a minimum
without sacrificing effectiveness.

The second problem we have to address is texture coordinate
generation. This includes the following steps: separation of build-
ings into facades, choice of a facade texture, and finally the actual
texture coordinate generation for all five textures per facade.

The first step has no general solution. Its implementation de-
pends highly on the input geometry. In our model, buildings gener-
ally follow a box shape. This allows us to associate the building’s
triangles with a facade based on their normals. Therefore, we use
k-means clustering [3] to get four groups of similarly aligned trian-

(a) Plain facade closeup view. (b) Facade variation closeup view.

Figure 4: Closeup view using nearest neighbor interpolation.

gles. These four groups form two opposite wide facades and two
narrow ones.

Subsequently, a facade texture has to be chosen. Since we have
only a limited number of original facade textures we must fit them
to multiple buildings. This is done by first registering the prepared
facade textures with their respective original buildings to get an es-
timate of the respective physical floor height h f and window width
w f . The facade texture assigned to a building is the one that can
be fitted best using only multiples of h f and w f . The four noise
textures are chosen randomly from a given set.

Finally, texture coordinates and shader parameters have to be
generated. The facade texture coordinates are computed directly
from the number of floors and windows that the chosen facade
yields. Noise textures on the other hand are less restricted. To
increase vividness of the result, starting from the facade texture co-
ordinates, the coordinates are transformed randomly using rotation,
translation, and scaling in a given range. The shader parameters are
generated randomly as well except for the base colors, which are
attributes of the facade textures. Dirt colors are varied in the red
and green channels only since blue colors are not found in natural
dirt.

4.2 Smoke

In our approach, the LBM simulation computes the position and
velocity of smoke particles with the coarse interactions of the fluid
with the scene. The particles can be rendered using OpenGL points
after reading back the positions from the GPU to the main memory
and sorting them into slices by the CPU. Each particle is projected
onto the image plane as a textured splat, which can be accomplished
on graphics hardware efficiently. Textured splats add the small-
scale interactions and visual details to the final image. However,
the original textured splats method does not take into account the
shadows among splats, although the shadows of all the splats can be
cast onto other scene objects. Kniss et al. [24, 25] have proposed a
shading model for volumetric shadows and translucency. Instead of
slicing the volume in the view direction, this method adopts the half
angle slicing technique, as shown in Figure 5. The angle between l
and h and the angle between h and v are both θ . For each slice, the
light map is computed. All slices are projected to the image plane
in a front to back or back to front order as in texture based volume
rendering, using a light map for shading. In Kniss et al.’s model,
the volume is stored in a 3D texture and the 3D texture hardware
can be exploited to reconstruct each slice efficiently. In our case,
the volume is a series of particles and the slices are reconstructed
by splatting.

Our smoke rendering algorithm works as follows. First, the view
direction v and the light direction l are determined and the half di-
rection h is computed. To reconstruct the volume, the half space
coordinate system must be established. h is the z-axis. The cross
product of h and v is the x-axis. The origin is the center of the
bounding box of the simulation. Then, the bounding box of the vol-

Figure 5: This figure shows the light direction l, view direction v and
half direction h. The slicing planes are perpendicular to h.

ume in the half space coordinate system is computed. This bound-
ing box is sliced into n slabs with slicing planes perpendicular to
the z-axis of the half space coordinate system. Thus, each slab has
a start and an end z-value. For each particle, the z coordinate in the
half space is computed and used to sort it into one slab. This bucket
sorting costs O(m logn) time, where m is the number of particles.
In each slab, the particles are rendered using the textured splats
method into the density map for the current slice. The slice is pro-
jected onto the image plane and its density map and light map are
used for shading. In the half space, the light map of the next slice
is computed by attenuating the current light map with the density
map.

Because a particle is treated as a gaussian sphere of diameter d,
the final area covered by one splat on the image plane should be a
circle. Therefore, the area of one splat projected onto the slicing
plane is an ellipse with minor axis of length d and major axis of
length d/cos(θ), where θ is the angle between slicing plane and
viewing plane. In the half space coordinate system, the major axis
is parallel to the y-axis and the minor axis is parallel to the x-axis.
cos(θ) is the dot product of the half direction and the view direc-
tion. When projected onto the light plane (plane perpendicular to
the light direction), the area covered by this ellipse is a circle of
diameter d. This is because the angle between the light plane and
the half plane is also θ . Therefore, the light transport is correctly
computed in the half space. Figure 6 shows how the gaussian re-
construction kernel for one splat is projected on the three planes.

Figure 6: The projected spherical gaussian kernel on different
planes.

5 RESULTS

Compared with our method, the QUIC system is an empirical es-
timation of wind field and the dispersion is computed in the mean
wind field. Our method is a second order space-time accurate com-
putational fluid dynamics method. The method proposed by Brown
et al. [7] called HIGRAD solves a 1.6km×1.5km area in Salt Lake
City at the grid spacing of 10 meters in few hours on supercom-
puter or cluster to resolve turbulent eddies. Our method can simu-
late the West Village area of New York City (about 0.5km×0.5km
) with grid spacing of 3.8m at interactive speed. The high speed
comes from the simplicity of our model and acceleration by graph-
ics hardware. It can solve in detail complex boundaries such as
building models.

Figure 7: Snapshots of smoke dispersion simulation in West Village
area of New York City at time steps 247, 288 and 319.

Figure 7 shows several snapshots of the dispersion simulation
procedure. Figure 8 shows closeup views of the buildings and
smoke during the simulation. Figure 10 shows the simulation re-
sults of a 10-block area rendered by our visualization program. The
LBM model consists of 90×30×60 lattice sites with lattice spac-
ing of less than 5m. The building GIS models are at 1m resolution
in the West Village. The smoke particles with initial temperature
and velocity are generated at the upper left corner of the bounding

box. The air flows from left to right. The 6 images are snapshots
of the scene at 6 different time steps. For a 640×640 image, each
time step, the simulation costs 81 ms, rendering the buildings costs
16 ms, and rendering smoke costs 31 ms.

We compare the performance of the software (CPU) version and
the hardware (GPU accelerated) version of our MRTLBM sim-
ulation of the NYC model. The performance is measured on a
computer with a 2.53 GHz Intel Pentium 4 CPU and an NVIDIA
GeForce FX 5950 Ultra GPU. With a lattice size of 90× 30× 60,
our GPU implementation can run at 81ms per step, which is 8.02
times faster than the CPU implementation (650ms per step).

For texturing our program uses 4 different facade textures of size
up to 512× 512 consuming 2.25MB in total. Additionally 10 dif-
ferent noise textures of size 256× 256 are used, adding 640KB.
Thus, less than 3MB of texture memory are used for visualizing the
buildings.

Figure 8: Closeup views of buildings and smoke.

6 CONCLUSIONS

In this paper, we describe a method of simulating airborne disper-
sion in urban environments. This paper demonstrates the first step
in our effort to provide simulation and visualization tools of flow
dispersion for urban security. The flow field is modeled and sim-
ulated using Hybrid Thermal Lattice-Boltzmann Model. The sim-
ulation takes a temperature field into account, which is an impor-
tant factor in real urban environments. We implement the simu-
lation process on graphics hardware with floating-point precision
and achieve interactive speed. We use smoke particles as an exam-
ple to demonstrate dispersion in urban environments, although the
method can be applied to other materials or particles without much
difficulty. Our visualization program renders buildings with a few
textures, yet still making the appearance of buildings different from
others using a fragment shader and noise functions. The smoke is
rendered with self-shadows, which increases the realism. Together
the simulation and visualization run at interactive speed.

In the future, we will simulate and visualize flows in much larger
urban environments. The model used in this paper consists of only
10 blocks. Future models may include the entire Manhattan or New
York City. With such a large model, we will exploit the capability of
GPU clusters for real-time simulation and visualization. We have
built a GPU cluster, the Stony Brook Visual Computing Cluster.
Currently, using 30 GPU nodes we have run LBM simulations on a
large lattice of size 480×480×80 achiving interactive speeds (Fig.
9).

ACKNOWLEDGEMENT

This work has been partially supported by grants from NSF CCR-
0306438 and from Department of Homeland Security, Environment
Measurement Laboratory.

Figure 9: Streamlines in the Time Square area.

REFERENCES

[1] GPGPU. http://www.gpgpu.org.
[2] K. J. Allwine, J. H. Shinn, G. E. Streit, K. L. Clawson, and M. Brown.

Overview of URBAN 2000: A multiscale field study of dispersion
through an urban environment. Bulletin of the American Meteorolog-
ical Society, 83(4):512–536, 2002.

[3] M. R. Anderberg. Cluster analysis for applications. Number 19 in
Probability and Mathematical Statistics. Academic Press, New York,
1973. xiii+359 pages.

[4] P. Bhatnagar, E.P. Gross, and M.K. Krook. A model of collision pro-
cesses in gases. Physical Review Letters, 94(511), 1954.

[5] J. Bolz, I. Farmer, E. Grinspun, and P. Schröder. Sparse matrix solvers
on the GPU: conjugate gradients and multigrid. ACM Trans. Graph.
(SIGGRAPH), 22(3):917–924, 2003.

[6] D. Boswell and M. Brown. The QUIC quick start guide. 2003.
[7] M. Brown, M. Leach, R. Calhoun, W.S. Smith, D. Stevens, J. Reis-

ner, R. Lee, N.-H. Chin, and D. DeCroix. Multiscale modeling of air
flow in salt lake city and the surrounding region. ASCE Structures
Congress, 2001. LA-UR-01-509.

[8] M. Brown, M. Leach, J. Reisner, D. Stevens, S. Smith, H.-N. Chin,
S. Chan, and B. Lee. Numerical modeling from mesoscale to urban
scale to building scale. AMS 3rd Urb. Env. Symp., 2000.

[9] S. T. Chan and D. E. Stevens. Evaluation of two advanced turbulence
models for simulating the flow and dispersion around buildings. The
Millennium NATO/CCMS Int. Tech. Meeting on Air Pollution Model-
ing and its Application, pages 355–362, May 2000.

[10] S. Chen, J.A. Cummings, J.D. Doyle, T.R. Holt, R.M. Hodur, C.S.
Liou, M. Liu, A. Mirin, J. A. Ridout, J.M. Schmidt, G. Sugiyama,
and W.T. Thompson. COAMPS version 3 model description, 2002.
Available from the Naval Research Laboratory.

[11] R. Crawfis and N. Max. Texture splats for 3D scalar and vector field
visualization. Proceedings of Visualization, pages 261–266, 1993.

[12] D. d’Humieres, I. Ginzburg, M. Krafczyk, P. Lallemand, and
L. Luo. Multiple-relaxation-time lattice boltzmann models in three-
dimensions. Philosophical Transactions of Royal Society of London,
360(1792):437–451, 2002.

[13] J. C. Doran, J. D. Fast, and J. Horel. The VTMX 2000 campaign. Bul-
letin of the American Meteorological Society, 83(4):537–551, 2002.

[14] D. S. Ebert and Richard E. Parent. Rendering and animation of
gaseous phenomena by combining fast volume and scanline a-buffer
techniques. Proceedings of the 17th annual conference on Computer
graphics and interactive techniques, pages 357–366, 1990.

[15] R. Fedkiw, J. Stam, and H. W. Jensen. Visual simulation of smoke.
pages 15–22, 2001.

[16] N. Foster and D. Metaxas. Modeling the motion of a hot, turbulent
gas. pages 181–188, 1997.

Figure 10: Smoke and streamlines representing dispersion simulation results in the West Village area of New York City. Red (blue) streamlines
indicate upward (downward) streaming

[17] C. Früh and A. Zakhor. Constructing 3D city models by merging
aerial and ground views. IEEE Computer Graphics and Applications,
23(6):52–61, November/December 2003.

[18] N. Goodnight, C. Woolley, G. Lewin, D. Luebke, and G. Humphreys.
A multigrid solver for boundary value problems using programmable
graphics hardware. SIGGRAPH / Eurographics Workshop on Graph-
ics Hardware, pages 102–111, July 2003.

[19] M. Harris, W. V. Baxter, T. Scheuermann, and A. Lastra. Simulation
of cloud dynamics on graphics hardware. SIGGRAPH / Eurographics
Workshop on Graphics Hardware, pages 92–101, July 2003.

[20] M. Harris, G. Coombe, T. Scheuermann, and A. Lastra. Physically-
based visual simulation on graphics hardware. SIGGRAPH / Euro-
graphics Workshop on Graphics Hardware, pages 109–118, Septem-
ber 2002.

[21] R. M. Hodur. The Naval Research Laboratory’s coupled
ocean/atmosphere mesoscale prediction system (COAMPS). Mon.
Wea. Rev., (125), 1997. 1414-1430.

[22] H. W. Jensen and P. H. Christensen. Efficient simulation of light trans-
port in scences with participating media using photon maps. pages
311–320, 1998.

[23] S. A. King, R. A. Crawfis, and W. Reid. Fast volume rendering and
animation of amorphous phenomena. pages 229–242, 2000.

[24] J. Kniss, S. Premože, C. Hansen, and D. Ebert. Interactive translucent
volume rendering and procedural modeling. October 2002.

[25] J. Kniss, S. Premože, C. Hansen, P. Shirley, and A. MacPherson. A
model for volume lighting and modeling. IEEE Transactions on Visu-
alization and Computer Graphics, 9(2):150–162, 2003.

[26] J. Krüger and R. Westermann. Linear algebra operators for GPU
implementation of numerical algorithms. ACM Trans. Graph. (SIG-
GRAPH), 22(3):908–916, 2003.

[27] P. Lallemand and L. Luo. Theory of the lattice Boltzmann method:
Acoustic and thermal properties in two and three dimensions. Physical
Review E, 68:036706, 2003.

[28] J. Legakis, J. Dorsey, and S. J. Gortler. Feature-based cellular textur-
ing for architectural models. In SIGGRAPH 2001, Computer Graphics
Proceedings, Annual Conference Series, pages 309–316. ACM Press
/ ACM SIGGRAPH, 2001.

[29] W. Li, X. Wei, and A. Kaufman. Implementing lattice boltzmann
computation on graphics hardware. Visual Computer, To appear, 2003.

[30] E. Pardyjak and M. Brown. Evaluation of a fastresponse urban wind
model - comparison to single building wind-tunnel data. Int. Soc.
Environ., 2001. LA-UR-01-4028.

[31] E. Pardyjak and M. Brown. Fast response modeling of a two building
urban street canyon. 4th AMS Symp. Urban Env., 2002. LA-UR-02-

1217.
[32] K. Perlin. An image synthesizer. pages 287–296, 1985.
[33] N. Rasmussen, D. Q. Nguyen, W. Geiger, and R. Fedkiw. Smoke sim-

ulation for large scale phenomena. ACM Trans. Graph.(SIGGRAPH),
22(3):703–707, 2003.

[34] J. Reisner, W. Smith, J. Bossert, and J. Winterkamp. Tracer modeling
in an urban environment. 2nd AMS Urb. Env. Symp., 1998.

[35] J. Stam. Stable fluids. Proceedings of SIGGRAPH, Computer Graph-
ics Proc., Annual Conference Series:121–128, 1999.

[36] S. Succi. The lattice Boltzmann equation for fluid dynamics and be-
yond. Numerical Mathematics and Scientific Computation. Oxford
University Press, 2001.

[37] X. Wang, S. Totaro, F. Taillandier, A. Hanson, and S. Teller. Re-
covering facade texture and microstructure from real-world images.
Proc. 2nd International Workshop on Texture Analysis and Synthesis
at ECC, pages 145–149, 2002.

[38] X. Wei, W. Li, K. Mueller, and A. Kaufman. Simulating fire with
textured splats. IEEE Visualization, pages 227–234, October 2002.

[39] X. Wei, W. Li, K. Mueller, and A. E. Kaufman. The lattice-boltzmann
method for simulating gaseous phenomena. IEEE Trans. on Visual-
ization and Computer Graphics, 10(3):164–176, March/April 2004.

[40] X. Wei, Y. Zhao, Z. Fan, W. Li, F. Qiu, S. Yoakum-Stover, and A. E.
Kaufman. Lattice-based flow field modeling. IEEE Trans. on Visual-
ization and Computer Graphics, 10(6), November/December 2004.

[41] X. Wei, Y. Zhao, Z. Fan, W. Li, S. Yoakum-Stover, and A. Kaufman.
Blowing in the wind. ACM SIGGRAPH / Eurographics Symposium
on Computer Animation, pages 75–85, July 2003.

[42] M. Williams, M. Brown, and E. Pardyjak. Development of a disper-
sion model for flow around buildings. 4th AMS Symp. Urban Env.,
2002. LA-UR-02-0839.

[43] M. D. Williams. QUIC-PLUME user’s guide, 2002. LAUR-02-375.
[44] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky. Instant architec-

ture. ACM Transactions on Graphics, 22(3):669–677, July 2003.
[45] Y. Zhao, X. Wei, Z. Fan, A. Kaufman, and H. Qin. Voxels on fire. Pro-

ceedings of IEEE Visualization 2003, pages 271–278, October 2003.

