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An Interactive Visual Analytics Framework for
Multi-Field Data in a Geo-Spatial Context

Zhiyuan Zhang*, Xiaonan Tong, Kevin T. McDonnell, Alla Zelenyuk, Dan Imre, and Klaus Mueller

Abstract: Climate research produces a wealth of multivariate data. These data often have a geospatial reference
and so it is of interest to show them within their geospatial context. One can consider this configuration as a multi-
field visualization problem, where the geo-space provides the expanse of the field. However, there is a limit on the
amount of multivariate information that can be fit within a certain spatial location, and the use of linked multivariate
information displays has previously been devised to bridge this gap. In this paper we focus on the interactions in the
geographical display, present an implementation that uses Google Earth, and demonstrate it within a tightly linked
parallel coordinates display. Several other visual representations, such as pie and bar charts are integrated into
the Google Earth display and can be interactively manipulated. Further, we also demonstrate new brushing and
visualization techniques for parallel coordinates, such as fixed-window brushing and correlation-enhanced display.
We conceived our system with a team of climate researchers, who already made a few important discoveries using
it. This demonstrates our system’s great potential to enable scientific discoveries, possibly also in other domains

where data have a geospatial reference.
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1 Introduction

Our paper describes a comprehensive framework and
system for interactive visual analytics with multi-field
data. Here, a multi-field is considered a multivariate
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extension of a scalar field, that is, each point in
Euclidian space offers values of multiple properties
at that location and time. The definition of field as
a physical quantity associated with each space-time
point is one that has been adopted by all branches of
physics: electricity, electro-magnetism, gravity, but also
fluid dynamics, and so on. Likewise, geography has
adopted a similar notion of field than physics, but with
the important distinction that geographic fields are not
necessarily produced by strict physical laws. Rather,
they can be due to demographic sampled assessments,
behavioral modeling, population and cultural effects,
environmental measurements, and many others.
Geographic fields are often visualized using
cartographic techniques, contour plots, and choropleth
maps. They are in many cases multivariate — just
consider a map of households with incomes, number
of children, cars, and so on. However, multiple
variables are difficult to plot with choropleth maps,
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and so a number of researchers have linked them with
multivariate visualization displays, most frequently
parallel coordinates. In such a visual geo-analytical
framework, the analyst would obtain insight about the
spatial distribution of the color-coded populations in the
geographical display, and then visualize the multivariate
signatures/composition of these populations in the
parallel coordinate display, using a color legend as a
reference. Typically these geo-graphical displays are
two-dimensional (2-D) maps.

Our system was developed in close collaboration
with two groups of climate scientists. = With the
growing intensity of local climate fluctuations, the
melting of polar ice caps, and the emergence of other
related processes, researching the cause of these trends
has gained tremendous importance in recent years.
As opposed to demographic data, phenomena that
change the earth’s atmosphere bear important three-
dimensional (3-D) relationships, and as such climate
researchers typically acquire their data using probes in
3-D space, either aided by airplanes or other sensors
situated at diverse altitudes. In their research, climate
scientists often pursue efforts in which they seek to
proof or disprove hypotheses involving different aspects
of the data. This mandates an interactive system that
not only supports both data types — spatial and the non-
spatial fields — but also uses 3-D maps for the geo-
spatial display.

An attractive platform for interactive geo-
Google Earth. It provides easy
access to 3-D geographical data and for that reason
has often been lauded as a “democratization of GIS”.
In recent years, various efforts have also used Google
Earth as a geographically-referenced canvas for the
presentation of many types of field data, both of
physics and geographic nature. However, the purpose
of these Google Earth-based data displays is typically
merely data visualization, with only some selection
capabilities available.  The opportunities for user
interaction are mostly restricted to navigating the
environment — the globe — using the standard Google
Earth spatial navigation tools and possibly a slider
for time-animation of the data. To the best of our
knowledge no application so far has utilized Google
Earth as a platform for full-fledged visual analytics in
which users can interact with the data directly in the
Google Earth display, by ways of standard information
interrogation techniques such as brushing, filtering,
and aggregating, and communicating these interactions

visualization is
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back to a linked information display. Specifically, the
major contributions of our paper are:

e We extend an interactive geo-browser — Google
Earth — to support a set of common interactive
information interrogation techniques such as brushing,
filtering, and aggregating.

e We link this extended geo-browser to a popular
multivariate information display — parallel coordinates
— and establish bi-directional interaction propagation.

e We devise a new family of design primitives,
conceived to show some multivariate data aspects
directly in Google Earth.

e We demonstrate the viability of our framework in
the context of climate research, enabling a collaborating
team of climate scientists to make important discoveries
in their research domain.

We consider the majority of our contributions an
engineering effort, but one that is fairly sophisticated.
A valuable element of our system is that its design
is well-informed by the research workflow of climate
scientists. This is confirmed by the fact that a team of
such scientists was able to make a number of significant
discoveries using our system. While they might have
made these discoveries with conventional tools as well,
our system enabled them much quicker and easier,
and so accelerating progress in this important research
domain.

2 Related Work

This paper addresses the visualization of multi-field
data from a geographic perspective, and one in which
the data originate from non-regular sampling of real
physical phenomena in a 3-D domain. Conversely,
the multi-field work targeted towards data visualization
from a physics perspective has focused more on
simulations on regular grids. Recent work in that
area includes that of Nagaraj and Natarajan!!! who
visualized the data by assessing the relationship among
multiple scalar fields in terms of covariate critical
points and topology. Gosink et al.l*! devised a query-
driven framework that can reveal statistically important
interactions between any three field variables. Most
similar to our efforts, although in a different domain,
is the system by Blaas et al.’¥) who explored multi-field
medical data by linking object views with information
displays.

The association of multivariate information displays
with geographical maps has a fairly long history.
The first development in that direction appears to
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be the system by MacEachren et al.”¥! who joined a
geographical display with scatterplots and parallel
coordinates’™. Andrienko and Andrienko!®! added to
that work by linking the parallel coordinate display
to dominant attribute classification maps. Jern, in
collaboration with various colleagues, devised the
GeoAnalytics Visualization (GAV)!”! framework and
class library that adds to the standard choropleth maps
a collection of standard information visualization
representations including scatterplots, a parallel
coordinate plot with percentile handles, table lens,
and treemap. Finally, Guo et al.!¥ added to this mix
of tools a Self-Organizing Map (SOM) to perform
multivariate clustering, sorting, and coloring. These
tools are available in a geo-visual analytic software
package, VIS-STAMP.

Google Earth, widely available since 2005, has
attracted a great deal of attention as a platform for the
visualization of scientific and geographic data. In a
paper published relatively early, Wood et al.l! described
the use of Google Earth for visualizing a large mobile
directory service log file with spatial, temporal, and
attribute components as tags on top of the geography.
Users can mouse-click on tags which triggers the
system to zoom into the affiliated geographical area.
The OpenEarth toolbox!'%! has enabled an impressive
set of scientific visualizations!'!! on Google Earth, but
so far mainly in the domain of marine and coastal
science.

The system most similar to ours is GEO-SPADE,
recently described by Kisilevich et al.l'?! It also
integrates Google Earth as a plug-in into a larger
system, but it does not provide linked information
displays. The authors demonstrate the use of their
system by ways of the analysis of tourist travel
sequences in an arbitrary region of the world. Users
are able to specify geographic boundaries via a

(b)
Fig. 1 Capturing the ISDAC dataset. (a) The single particle mass spectrometer (SPLAT II) operated by the collaborating
scientist in-flight in the Arctic aboard a Convair-580 research aircraft. (b) Various sensor probes mounted on the aircraft wing.
The aircraft flew various missions over Alaska to measure concentrations, size distributions, shape, density, and compositions
of millions of particles in clear atmosphere to establish a large and highly resolved data set of Arctic aerosol particles. Other
environmental variables, such as cloud density, pressure, and density were also sampled. (c) Overview of the flight path. (d)
Profile as seen from the side, both captured with Google Earth.
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text interface which triggers the clustering of photo-
collections in the selected region and a subsequent
display of the cluster boundaries on Google Earth.
Again using a text interface, users may then modify
the clusters. Our framework differs from GEO-SPADE
in that it allows all interactions to occur directly in the
Google Earth interface using the mouse. This provides
for a much more direct and intuitive user experience and
also allows for more free-form shape specifications.

3 Domain Applications and Requirements

Our efforts were motivated by two specific applications
in climate science. In the following we describe their
data as well as the research workflow for one of them.

3.1 Domain data

3.1.1 ISDAC dataset

The ISDAC dataset was acquired by a single particle
mass spectrometer (SPLAT IDU>!'4 on Flight 26
(F26) which took place on April 19-20, 2008 as part
of the Indirect and Semi-Direct Aerosol Campaign
(ISDAC)™!, a month-long field campaign at the North
Slope of Alaska (see Figs. la and 1b). F26 began in
Barrow, Alaska and ended in Fairbanks, Alaska (see
Figs. 1c and 1d). The flight began with a short transit
over a Department of Environment (DOE) ground site,
followed by about 90 minutes of sampling a cloud
at low-altitude. The aircraft then performed a spiral,
climbing to an altitude of about 7000 m proceeding for
a landing in Fairbanks. The main scientific objective
of ISDAC was to improve the understanding of how
changes in the size, composition, and concentration
of aerosols particles influence cloud properties and
their associated radiative forcing. During the month-
long campaign, SPLAT II measured the number

(d
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concentrations, size distributions, shapes, densities,
and compositions of millions of particles in clear
atmosphere to establish a large and highly resolved data
set of Arctic aerosol particles. In the cloud, SPLAT
IT characterized the properties of Cloud Condensation
Nuclei (CCN) particles, on which cloud droplets form,
and those of interstitial particles to develop a highly
detailed dataset.

The ISDAC dataset consists of more than 2 million
data points, each a 33-dimensional vector: latitude,
longitude, altitude, time stamp, temperature, and
pressure. It also contains measurements on the cloud
particles (cloud droplets presence, cloud particle
concentration, etc.) and on the aerosol particles (size
and composition: soot, sulfate levels, organics, dust,
sea salt, etc.). The dataset was obtained by fusing
measurement files of different instruments using the
time stamp for alignment/binning.

3.1.2 Global seawater oxygen-18 database

This global seawater oxygen-18 database!'®! is a
collection of about 26 000 seawater measurements from
all around the world, each an 8-dimensional vector:
longitude, latitude, month, year, depth, temperature,
salinity, and oxygen composition ratio §!30. The
8180 value is a very good tracer of water origin and
highly correlated with salinity, but it varies regionally
and seasonally under some specific conditions. For
example, when salinity is nearly O psu, then the §'80
typically has a wide range of values. Possible reasons
can be precipitation!”!, river inflow!"®!, or glacier
calving"”!. These various geographic and multivariate
dependencies make this dataset an excellent test case for
our system.

3.2 Domain requirements for the ISDAC dataset

The goal of the team of domain scientists we
primarily collaborated with — they are also co-authors
of this paper — was to gain a better understanding
of particle composition and size at various geo-
spatial locations, as well as the relations to other
particle properties, atmospheric conditions, and particle
activation probabilities. Since the domain data share
the calamities of most such datasets — many outliers,
unspecified values for some attributes, etc. — these
relationships are difficult to discern via automatic
analytical algorithms, and this has motivated the
use of visual analytics techniques to overcome these
shortcomings!?!.

In the following we list the set of basic requirements

Tsinghua Science and Technology, April 2013, 18(2): 111-124

our collaborators expressed in the onset of the project:

R1. Ability to visually interact with the multi-field
data.

R2. Ability to summarize the data in terms of
different variables.

R3. Ability to visualize the relations among variables
as a multi-variate display.

R4. Support of geo-spatial references, whereby the
geo-spatial display should fully support interactions
such as selection, filtering, and brushing.

RS. Support of coordinated displays — all displays
should be linked such that operations on one display are
reflected on the other.

Although our collaborators had access to a variety of
visualization frameworks, such as parallel coordinates,
our ClusterSculptor framework!?!!, Microsoft Excel,
Google Maps and Earth, etc., these systems were
disjoint and could not provide the holistic dual-domain
interaction that was needed to produce the desired
insights. For quite some time, the scientists would
create pie charts of particle distributions with MS Excel
and then overlay them on a static Google Earth map
to visualize the data — clearly a rather cumbersome
workflow which greatly slowed the pace of research.

4 System Design

Our primary aim was to devise an integrated framework
that would allow climate scientists to interactively
visualize and analyze their multi-field data. Here we
had a number of choices. In the following we address
each in the context of the five domain requirements
(marked as Rx below) listed in Section 3.2.

4.1 Visualizing multivariate data (R1)

To visualize multivariate data, among the most popular
techniques are parallel coordinates!® and scatterplot
matrices'?2l. However, due to the distributed 2-D tiled
layout of the scatterplot matrix, it can be difficult
to discern relationships that involve more than two
variables. We chose parallel coordinates since they
visualize high-dimensional data as flows across vertical
axes and so yield a more connected representation.
They also conveniently support brushing, selection, and
filtering by simple axis interactions.

4.2 Summarizing different variables (R2)

Pie charts (for proportions) and histograms or bar
charts (for distributions) are fairly low-tech but well
understood visualizations, and have also been widely
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used by our collaborators. Therefore, to reduce the
learning curve we made use of these paradigms in our
system, but merged them into a combined design for
added expressiveness. We call this design the Pie Chart-
histogram Design (PHD). In order to avoid potential
overcrowding in the map, our primary goal was to
make the PHD space-efficient. This ruled out designs
that would place a pie chart next to a bar chart, as
such configurations would waste much empty space.
Conversely, as is well known!?l, circles — when sized
equally — achieve the tightest packing in 2-D space.
Therefore, we strived to create designs with circular
geometry. We derived two different designs mainly
distinguished by their renditions of the histogram.
Figure 2 compares the two designs side by side, along
with a pie chart with no histogram. One design leaves
the pie chart non-occluded and wraps the bar chart
around its perimeter. The other places the bar chart into
the center but allows the pie chart sector lines to shine
through. Finally, our interface also provides a dedicated
window that shows the histogram of a selected space-

PE—
GE Objects Piechart
=[5 Flight_26_20080419 | Draw Piechant
—-[& Convair Flight Path
! ¥ Flighttath ].
[ Convair Flight Segments

Size None -

(save ] (Losa ]

Controls

=
Flight Path —

[SelectArea | [ Clear | = 3

Size Histogram | AvgSize
[¥] Histogram (@) Center () Smd Ve
Altitude: 6916.433 )
Save Set
numBins: 50
2 minSize: B3
maxSize: 1549

maxR 175

111

<

<] ‘AH&H&“&H&'&H\Hx“q\

...ﬂ‘ L

L
2
g

Z
¥

An Interactive Visual Analytics Framework for Multi-Field Data - - - 115

point.

The feedback from our domain collaborators was that
although the circular bar chart looked artistic, they felt
that it was too different from traditional representations,
and also difficult to read. They preferred the second
rendition.

4.3 Visualizing relationships (R3)

Here we chose an illustrative correlation rendering
technique to display the correlation information in
the parallel coordinate display. Since domain experts
are not as fluent as visualization researchers in the
visual language of parallel coordinate displays, we
bridged this gap by adding illustrative hints to help
the interpretation of trends®®! and correlations®*. In
parallel coordinates, negative correlations give rise to
lines that aggregate into bow-tie shaped line bundles,
however subtle. In Ref. [24] we proposed the following
graphical-design inspired scheme that can make these
relationships more obvious for less experienced users.
First, for each adjacent dimension pair a bounding

Fig. 2 Interface and pie chart-histogram design. Panel 1 is the GE object control panel which allows users to show/hide a GE
object. Panel 2 is the bar-chart (or histogram) panel — here configured for ISDAC particle size. Its control panel allows the
analyst to control various parameters, including the design of the PHD in the GE display. Panel 3 is the pie chart control panel.
It contains the parameters for configuring the pie chart, such as what attributes will be displayed in the chart and which attribute
is used to determine the size of the PHD. Users can also save/load the previous settings or export the current pie chart/histogram
information into text files for further research. Panel 4 is the Google Earth display showing the three different PHD styles we
provide. When the user clicks on the PHD, the pie chart detail is shown nearby, and the corresponding size histogram is shown

in the histogram panel.
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hull of the line bundles is computed based on the
dimensional means and standard deviations. If the
correlation is positive, then we can use this bounding
hull as an abstracted band shape. Conversely, if the two
dimensions are negatively correlated, the characteristic
bow-tie shape is employed. Then the bounding hull
is colored in terms of correlation strength where less
saturation maps to lower correlation. Figure 3e provides
an example for this scheme.

4.4 Supporting geo-spatial references (R4)

Map-based methods, such as Google Maps, Bing Maps,
and Google Earth, have been widely used to provide
geo-spatial or location references in many applications.
In climate research, the altitude (elevation or pressure)
plays an important role in the analytical process.
Although 2-D map-based methods can show the entire
world in one display using Mercator projection and the
like, due to the fact that the altitude information will be
inevitably lost after projecting the 3-D data onto the 2-D
maps, they are not useful for our purposes. Hence, we
chose Google Earth as the geo-spatial reference display.

4.5 Supporting coordinated displays (R5)

Our framework consists of two displays: a multivariate
visualization display and a geographic display. These
two displays are linked such that operations on either
display will be reflected on the other. Upon reading
a dataset, longitude, latitude, and altitude are used
to populate Google Earth (GE) with simple icons
(placemarks). Meanwhile, the Parallel Coordinate Plot
(PCP) is populated with the data spectrum of the data
points. Analysts can then use the mouse and brush in
either display (GE or PCP) to select a subset of points,
assign a color to these points, and see them reflected in
the same color in the other display. To make up for the
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shortcomings of GE to display multivariate information,
we have stricken a compromise and display a pie chart
and a histogram at each selected measurement site (see
Section 4.2). Both size and color of the GE site icons
can be linked to any variable using the attribute mapping
checkboxes in the pie chart control panel.

5 Methods

Koua et al.!*>! proposed 10 general exploratory goals
that geo-analytic systems should address: identify,
locate, distinguish, categorize, cluster, distribute, rank,
compare, associate, and correlate (see Section 5.4
for a more detailed description in the context of our
system). Since geo-data have two types of attributes
— geospatial and non-geospatial — only an interface
that links (at a minimum) two dedicated displays —
one geospatial and one multivariate — together can
achieve a comprehensive visualization experience that
meets these goals. This was recognized already early
on (see Section 2). However, another issue is how
users can express their goals, which they typically
do via manual selection operations — one might call
them gestures. A PCP information display typically
facilitates selection interactions by allowing users to
manipulate range handles on the individual axes. On
the other hand, a geographical display such as GE
would support selection operations by allowing users
to click on points (or placemarks) or draw bounding
contours around sets of points. To the best of our
knowledge these direct selection interactions are thus
far not supported in GE-based visual analytics systems.

Finally, once these data points have been selected in
GE and color-tagged they would be represented in the
PCP display as a group in the same color (and vice
versa). This completes the full brushing operation.

Our framework is developed in C# using Direct3D

log I moh oy deph tep sty dISO log 12w yor  deph temp  saliny dISO
1w 8 1 #WZ M 4 3 EU 8 1 19 :742 H 40 3
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Fig. 3 Dual-domain analytics. (a) The analyst first uses the PCP brushing handles to select the normal ocean data points
(salinity from 32 to 40). (b) The GE display responds by showing only these remaining data points. (c) Next the analyst uses
mouse clicks to outline some interesting regions in the GE display (Mediterranean shown in green and Gulf of St Lawrence
shown in red). (d) The points inside the selection polygon appear highlighted in the PCP display. (e) Correlation-enhanced PCP
display.
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for graphics. Our GE display uses the GE plug-in and
also a C# custom-built API for the GE plug-in — the
Winforms-Geplugin-Control-Library (WGCL)!2!. This
library defines a list of methods that can be used to
interact with the GE plug-in by dynamically injecting
JavaScript code into a browser page during run-time to
interact with the GE plug-in. WGCL works in the NET
Framework (C#) and provides a bridge between the
client-based application and the web-based GE plug-in.

5.1 Embedding the PHDs into Google Earth

All embedded pie chart histogram designs are rendered
on the fly whenever a data point is selected. Figure
4 describes this process as a flow chart. On the other
hand, if a region is selected by brushing either the GE
or PCP display, the corresponding PHD for all selected
points will be shown and placed nearby the average
geographical location.

There are in fact two approaches to render a PHD in
GE. One is to render each PHD using GE’s polygon
rendering functionalities (see G1 in Fig. 2). A
downside of this approach is that after rendering, both
location and tilt angle of the PHD are fixed in GE.
This means that if we wish to make the PHD always
face the viewer, we must delete it from GE and re-
render it every time we change the viewing direction,
which can be rather time consuming. However, this
method provides better depth and height information
than the second method in which we use an icon
(image) to represent the PHD. GE supports a feature
in which an icon/image of a placemark consistently
faces the viewer, no matter how we change the view
direction. But the challenge here is how to render
the PHD image on the fly. Fortunately, Google Chart
Tools (https://developers.google.com/chart/) provide
good support for rendering various charts into an image
which can be later retrieved via a URL. Using Google
Chart Tools, we render the image of a PHD by passing
its parameters (such as pie chart compositions and
histogram information) and then load the image into GE
by passing it the image URL. The result is shown in G2

Data-point Click in
Google Earth

om
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in Fig. 2. In our system, we allow the user to choose the
rendering method, dependent on the underlying task.

5.2 Brushing in the Google Earth display

We support two types of brushing tasks in GE:

e Single data point brushing. The user can select
any data point in GE by a single mouse click. Attributes
associated with the data point will be shown in a
popup window and at the same time the corresponding
polyline will be highlighted in the PCP display.

e Region-based brushing. This addresses the need
to visualize the behavior of an entire geographic region
in the PCP display. However, since mouse dragging is
reserved by GE for view rotation, we can not simply
drag the mouse to outline the region of interest. Instead,
we impose the moderate requirement that users can use
a series of mouse clicks to specify the vertices of the
selection polygon. The polygon can be either convex
or concave. After polygon completion, we employ a
quick points inside the polygon test to determine the
data points inside the selection polygon. These interior
points are then marked and the corresponding polylines
highlighted in the PCP display. Likewise, selecting
points in the PCP display will highlight them in GE.
Figure 3 shows an example for both brushing directions.

5.3 Brushing in the PCP display

In our PCP display users are able to manually
interchange axes, flip (invert) axis directions, and
perform statistics-guided filtering!”!
clustering in each dimension. The following is a set of
further capabilities our domain scientists found useful.
e Fixed-window brushing. We extended the range
handles typically used to bracket data intervals from the
top and bottom to fixed-window brushing — essentially
an interval slider. In this mode, the distance between

outlier and

the two handles remains fixed and as the user drags the
handles they will move up and down simultaneously.
This feature is very helpful to show how other attributes
behave as one attribute changes, and the GE display
will visualize the corresponding changes in geo-spatial
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Fig.4 Flowchart showing how to dynamically render an object into Google Earth. Here the pie chart is used as an example.
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locations.

e Adjust-window brushing. Users can also drag
the mouse up/down to make the width of the bracketed
window bigger/smaller. This operation is useful to see
the behavior of the entire dataset as the range of an
attribute spreads out/shrinks.

5.4 Addressing exploratory tasks

To rate how well our system supports geo-analytics, we
examine our framework via Koua’s exploratory tasks,
also in the context of our domain applications.

e Identify. The now fully bi-directionally linked
displays make it easy to identify relationships.

o Locate. GE provides an effective way to directly
see not only the longitude and latitude information,
but also the altitude information, which is a significant
factor in climate research.

e Distinguish and distribute. By using the PHDs
in GE, users can easily judge the differences among
sample points directly in the geographic domain.

e Categorize and cluster. The range-handle,
cluster, and tag operators in PCP and the point/region
selection operators in GE well support interactive
classification directly in the most suitable domain. Any
cluster can be subdivided further or re-assigned to
another cluster, all of which is maintained via a cluster
checkbox.

e Rank and compare. The PHDs in GE provide the
user with an effective means to visually assess ranking
and perform comparisons. Likewise, the brushing and
clustering operations in PCP allow users to compare
cluster behaviors in a multivariate context.

e Associate and correlate. Both PHDs and brushing
operations in PCP and GE aid users in assessing
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relationship between attribute(s) and geographical
information. In addition, the PCP correlation
visualization allows users to easily recognize data
relationships.

6 Use Cases and Results

6.1 Global seawater oxygen-18 database

First, since the data is an amalgamation from different
sources and different tasks, several attributes have
undefined values (—999 for depth and —100 for
temperature, salinity, and §'80 in Fig. 5a). These
undefined values can significantly influence the analysis
results. As shown in Fig. 5b very weak correlations
among all dimensions are observed. Following, Fig.
Sc shows the parallel coordinate display after brushing
the four dimensions, filtering out the undefined values,
and re-normalizing their bottom axis brackets. We can
now readily see in the correlation display (Fig. 5d) that
there is in fact a strong correlation between dimension
salinity and §'80.

Though salinity and §'%0 are highly correlated
with each other, they behave quite differently at
some conditions. One condition is when salinity is
nearly O psu, the §'80 might have widely differing
values. Factors that can influence the §'80 values are
precipitation!”!, river inflow!'®!, or glacier calving!'!.
To get insight on which factor influences the sample
points most, we first use the PCP brush handles to select
the regions that have nearly O salinity. We notice that
the §'80 varies greatly (see Fig. 6a). To determine
the reason, we turn to the GE display (Figs. 6b and
6¢). After zooming into all the regions that contain
the filtered data points, we can clearly see that all the
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Fig.5 Interactions in the PCP display. (a) PCP and (b) correlation-enhanced PCP display of the original dataset with undefined
values in dimensions depth, temp, salinity, and §'80. (c) and (d) The same set of displays after filtering out the undefined values
and zooming into the dimensions. We now have a clear view of the remaining data. For example, we can see a strong positive
correlation between salinity and 8180 (green square in (c) and (d)) after the dimension zoom-in, while in the original dataset
with undefined values, §'30 is falsely negative correlated with salinity (red square in (b)). (e) Correlation display after axis
depth inversion. Sea depth and temperature now have a positive relationship (blue square in (e)), which is consistent with our

knowledge.
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salinif d180
2 R4 2

Fig. 6 Salinity is nearly 0 psu while the §'®0 has widely
differing values due to river inflow. (a) Brushing in PCP to
select data that have near-zero salinity. These areas are: (b)
Obskaya Gulf (estuary of Ob River), Yenisey (estuary of Mal.
Taz River), and White Sea in Russia. (c) St. Lawrence River
area in Canada.

remaining points are at the mouths of rivers, where
rivers meet the sea. Thus for this dataset, the most
influencing factor appear to be junctures where fresh
water meets salty water.

Our framework can also be used to confirm (or
reject) hypotheses. For instance one hypothesis for sea
water oxygen is that sensitivity of §'80 can be greater
than that of salinity in the deep ocean'®’!. To test this
hypothesis, we first use the brush handles to select
the deep ocean dataset, here we choose depth>2000 m
(Fig. 7a). From the poly lines, we observe that the
8180 varies more than salinity does, but we can not see
the difference clearly. To get a better view, we set the
PCP rendering mode to correlation-enhanced (Fig. 7b).
We observe that the width of the branches for §'80
is larger than that for salinity. Since each dimension
is normalized in the PCP display, the hypothesis is
confirmed.

h year depth temp salinity d180 long lat
39 2 177

month  year temp  salinity d180
1 742 14 39 2

depth
88 12 1999 9742 14

<
1,964 2,000 -2 35 -1 179 1 1964 2,000 -2 35 -1

(a) (b)
Fig. 7 Deep seawater (depth>2000m) analysis. Both
displays show that at deep sea the variation of 6'30 is larger
than salinity. (a) Parallel coordinate plot for data with depth
greater than 2000 m. (b) Correlation enhanced rendering of
parallel coordinate plot.
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The dual-domain analytics facilitated by the two
linked displays also helps to make some interesting
discoveries. For example in Fig. 3, the analyst first
used the brush handles to select the normal ocean data
points (salinity from 32 to 40), shown in Fig. 3a. The
GE display then only displayed the data points that
were sampled in normal ocean waters. The analyst then
outlines some interesting regions in the GE display —
the Mediterranean area (green cluster in Fig. 3c) and
Gulf of St. Lawrence (red cluster). Following these
interactions, the points inside these selection polygons
appear highlighted in the PCP display (Fig. 3d). By
comparing these two clusters in the PCP display we can
make the following observations:

(1) The samples observed in the Gulf of St. Lawrence
appear much earlier (year) than those in the
Mediterranean.

(2) The depths of the sample points in the
Mediterranean have higher variation than in
the Gulf of St. Lawrence.

(3) But the temperature, salinity, and §!30 in
the Mediterranean have much lower-variant
distributions than those in the Gulf of St.
Lawrence, which means the water conditions in
Mediterranean are more stable. The observations
can be confirmed in the correlation display
(Fig. 3e) and are actually easier to see.

6.2 ISDAC dataset

Much of the visualization work conceived for this paper
was developed in tight collaboration with a team of
climate researchers studying the effects of aerosols on
global warming. One might consider the following
section a result of a formative, user-in-the development-
loop user study.

6.2.1 Background

Atmospheric aerosols play an important role, affecting
both global and regional climate change during
the last century. They do so by scattering and
absorbing solar radiation and by determining cloud
propertiest?® 2% in their role as CCN and Ice Nuclei
(IN). Yet the relationship between the properties of
aerosol particles and clouds, i.e., the aerosol indirect
effect, remains the most uncertain aspect in our
current understanding of climate change. Scattering
and absorption probabilities depend on particle number
concentrations, size distributions, individual particle
compositions, and Relative Humidity (RH), which
requires sophisticated instrumentation and data analysis
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tools to mine the vast amount of detailed data that needs
to be acquired.

Laboratory data suggest that cloud formation and
cloud properties are tightly connected with the
properties of the particles, on which they form. Because
particle’s hygroscopicity, which is determined by
particle composition, is related to their CCN activity,
we expect particle compositions to play an important
role in determining cloud formation and properties.
The fraction of aerosol particles that activate to
form cloud droplets depends on particle composition,
size distribution, and number concentration, presenting
a complex dependence. Most importantly, because
CCN activation is not linear, it is essential to know
the spatial distributions of the aerosol fields with high
resolution.

The Arctic region represents an important and
interesting location to study the forces that affect
the global climate. Arctic aerosols are advected into
the region from Asia, Europe, and North America,
their loadings, compositions, and other properties
vary significantly with meteorology. Biomass Burning
aerosol (BB) transported from Asia and North America
is presently one of the most significant aerosol sources
in the Arctic Spring. During Arctic spring, high BB
concentrations produce the “Arctic haze”. One of the
interesting aspects of Arctic haze is that it is often
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found to be in distinct stratified layers!
measurements of aerosol chemical composition point
to sulfates as dominant constituents of arctic aerosol,
with smaller contributions of soot, Sea Salt (SS),

organics, and dust!3!-341,

However, these composition
measurements provide information on the bulk aerosol
composition only with poor spatial and temporal
resolution.

The effects of aerosol in climate models strongly
relate to size and composition of individual aerosol
particles!®!, requiring high sensitivity and temporal
resolution aircraft measurements. Because these
types of measurements generate massive amounts of
complex, multidimensional data there is a defined need
for a specialized data analysis tool. In the following,
we illustrate how our collaborating climate researchers,
who are co-authors of this paper, used our framework
to analyze their ISDAC dataset (see Section 3.2). Prior
to this analysis, we first combined classes with particles

of similar compositions to 17 distinct classes.
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6.2.2 Visual analytics outcome

As the first step, to get an overview of the particle
compositions, sizes, and compression information, we
use the region brushing feature in GE display to outline
some interesting regions during the flight, such as the
low elevation sea area, cloud area, spiral area, and
high elevation land area (see Fig. 8). Then for each
region, the system computed the PHDs based on the
summation of the particle compositions and particle
sizes and plotted it nearby. The PHDs are sized by the
NSplat variable to visualize compression information.
The overview shows significant spatial variability in
particle composition and size, which is consistent with
previous reports showing a highly stratified atmosphere.
Most are BB particles that were transported over
long distances during which they adsorbed sulfates
and additional organics. As the aircraft approached
Fairbanks, at high altitude, the number of organic, dust,
and sea salt particles increased.

Next they used the framework to perform a visual
analysis for the cloud particles (Fig. 9). A simple
comparison between the two pie charts indicates that the
compositions of activated and un-activated interstitial
particles are virtually the same. According to our
collaborators, this is a significant discovery and changes
much what has been assumed in the field so far.

The
tremendously inspiring. They first checked that the
analysis of clouds probed on all other flights yielded

feedback from our collaborators was

the same results. This provides, for the first time,
direct experimental evidence that particle compositions
play only a minor role in determining cloud activation
probability. The finding is in contradiction with
laboratory experiments that have shown a simple
relationship between activation probability and particle
hygroscopicity, which is directly related to particle
composition. It suggests that laboratory-based cloud
activation instruments operate on a different principle
than that controlling cloud activation in the ambient
atmosphere. Moreover, climate models use laboratory
derived composition dependent activation probabilities
to simulate cloud formation. The data presented here,
if reproducible in other parts of the globe, indicate that
cloud activation needs to be reformulated.

As noted above, stratification is one of the more
interesting features of the Arctic atmosphere. To be
properly characterized it requires instrumentation with
high temporal resolution and data analysis tools that
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Fig. 8 An overview of particle compositions and size changes along the flight. The flight track is marked as a red line and
each of the one-minute-spaced data points is superimposed as a grey ellipse. The polygon selection tool is used to outline several
interesting areas (indicated by yellow polygons and labeled in red) and the corresponding PHDs are drawn nearby. PHDs are
sized by the variable NSplat to allow an assessment of compression. The colors for the pie charts are assigned by the scientists
via a color map popup widget, applying their domain standards. This overview visualization shows significant spatial variability
in particle composition and size, which is consistent with previous reports that show a highly stratified atmosphere.
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Fig. 9 Cloud data analysis. Here the scientists first used the
PCP display to filter data points with clouds (Nd>20). They
then applied a second filter to select only data points in which
cloud droplets are sampled (CVI =1, green points on the
flight track) to make the upper PHD. They then changed the
filter to select data points where only the particles between
the cloud droplets are sampled (CVI=0, blue track points)
and obtain the lower PHD. The fact that these two PHDs
are virtually identical is a significant discovery in climate
research. This has never been done before and changes much
of what has been assumed in the field.

make possible to mine the large and complex data these
instruments produce, with the appropriate resolution.
In Fig. 10 we present an example in which we
analyze changes in particle composition as a function
of altitude. We zoom in on the spiral ascent, where
the aircraft climbed from a few hundred meters to an
altitude of 7000 m. Our program makes it possible
to view the particle composition and particle size
distributions at each data point by simply clicking on its
icon. The figure shows 13 pie charts, clearly illustrating
that particle compositions change significantly with
altitude and that the changes are not monotonic. Similar
filamentous structures are observed on horizontal legs
as well (not shown here) and exhibit large changes
include large changes in particle number concentrations
and size distributions as well. Our collaborators state
that these complex structures have very important
implications for climate modeling as well.

7 Conclusions and Future Work

We presented an interactive framework that allows users
to visualize and analyze multi-field geospatial data in
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Fig. 10 Changes in particle composition as a function of
altitude. We zoom into the flight’s spiral ascent, where the
aircraft climbed from a few hundred meters to an altitude of
about 7000 m. The pie charts clearly illustrate that particle
compositions change significantly with altitude and that the
changes are not monotonic. Here we use the first PHD
rendering method (G1) in Section 5.3 because it better shows
the alleviation.

a dual-domain framework consisting of a geographic
and a multivariate visualization interface. We used
parallel coordinates for the latter and proposed a few
enhancements both for interaction and for visualization.
But our main focus was put on the interactions in and
with the geo-display. Here we have taken advantage
of Google Earth as a versatile 3-D geo-browser. We
showed how this platform can be programmed to enable
in-window selection and brushing operations and how
these can be coupled with the parallel coordinate
display. We also showed how some multivariate
information can be directly embedded into Google
Earth, in form of pie and bar chart design primitives.
Future work will focus on refining our system also
with other domain scientists. Further, we also plan
to make some advances on the topic of dimension
reduction.
scientists we found that one way to accomplish this
might be to employ mathematical relationships and
physics laws, which are often non-linear. These types of
dimension reductions and aggregations will be difficult
to detect with traditional dimension reduction which
are purely algorithmic. However, we believe that our
greatest contribution is the fact that our system was
conceived in tight collaboration with a team of domain

In conversations with these and other
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scientists and already enabled them to make a number
of groundbreaking discoveries in their research field —
the effect of aerosols on global warming. Our system
is able to manage large heterogeneous data collections
without problem and makes it easy to associate spatial
effects in multi-field geo-referenced data.
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