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Abstract—Color mapping and semitransparent layering play an important role in many visualization scenarios, such as information
visualization and volume rendering. The combination of color and transparency is still dominated by standard alpha-compositing
using the Porter-Duff over operator which can result in false colors with deceiving impact on the visualization. Other more advanced
methods have also been proposed, but the problem is still far from being solved. Here we present an alternative to these existing
methods specifically devised to avoid false colors and preserve visual depth ordering. Our approach is data driven and follows
the recently formulated knowledge-assisted visualization (KAV) paradigm. Preference data, that have been gathered in web-based
user surveys, are used to train a support-vector machine model for automatically predicting an optimized hue-preserving blending.
We have applied the resulting model to both volume rendering and a specific information visualization technique, illustrative parallel
coordinate plots. Comparative renderings show a significant improvement over previous approaches in the sense that false colors
are completely removed and important properties such as depth ordering and blending vividness are better preserved. Due to the
generality of the defined data-driven blending operator, it can be easily integrated also into other visualization frameworks.

Index Terms—Color blending, hue preservation, knowledge-assisted visualization, volume rendering, parallel coordinates.

1 INTRODUCTION

Color mapping and transparency are both frequently used in visual-
ization. A color can be described by the values for luminance, hue
and saturation. While luminance is mainly responsible for detection
of shape and state of movement [1], the sensitivity to the chromatic
part of a color stimulus, i.e., hue and saturation, allows humans to vi-
sually distinguish objects that are otherwise identical. Hence, color
mapping, i.e. assigning a hue value to scalar data, is most often used
for visual grouping and labeling of nominal data. In applications like
illustrative parallel coordinates [2] and volume rendering, color map-
ping is combined with transparency in order to avoid occlusions. The
most popular method for simulating transparency is the source-over
operator from the collection of the Porter-Duff operators [3], which
creates a new color C as a weighted sum of two input colors A and B,

C = A ·α +B · (1−α), α ∈ [0,1].

The over-operator is also referred to as alpha-compositing and illus-
trated in Figure 1.

A drawback of alpha-compositing is the creation of false colors, i.e.,
the hue of C is usually not one of A or B. This is problematic when
hue is used to encode nominal data. For example, blending between
a vivid red and green results in a slightly less saturated yellow. A
hue-preserving color blending scheme would choose C having either
the hue of A or B, but not necessarily the luminance and saturation
values of A and B. In Figure 1 the hues are indicated by red line-
segments. False colors can diminish the value of a visualization by
creating artifacts when C has a hue that exists already in the given
color palette, but also when the hue is not present in the given palette.
False colors with a valid interpretation in the defined color palette can
lead to misinterpretations, e.g., as a material property of a certain type
rather than the overlapping of two different materials. False colors
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whose hues are not present in the given color palette may introduce
visual clutter.

The goal of this work is to build a hue-preserving color blending
operator, that, while eliminating false colors, perceptually preserves
important information present in layered data, in particular depth in-
formation. Also, the blending result should be perceptually close to
the result from alpha-compositing in terms of vividness. However,
the goals of hue-preservation and perceptual closeness to the result of
the Porter-Duff source-over operator are conflicting. Hue-preservation
can by definition be achieved by using colors close to, or exactly on the
gray axis as the blending result, i.e., by desaturation. But as colors get
more and more desaturated, the perception of hue information is also
diminished, and vanishes entirely on the neutral gray axis. The hue-
preserving color blending problem deals with the trade-off between
the two goals. Recent approaches [4, 5] tackle the problem with an
a-priori solution, but have not yet found the optimal balance between
the two objectives. Therefore, we propose a data driven approach, that
strives for capturing important color aspects worth pertaining, while
preserving the hue of the input colors. The proposed solution is a
generic adaption of the standard Porter-Duff source-over operator, and
therefore easy to integrate into any visualization application that uses
alpha-blending, but requires hue preservation.

This paper is organized as follows. In the next section we discuss
the state-of-the-art in hue-preserving color blending and work related
to our data driven approach, especially the knowledge-assisted visual-
ization paradigm. In Section 3 we briefly review the basics of color
theory and also support vector machines, a machine learning tool that
we have used for data analysis. In Section 4 we state the problem of
hue-preserving color blending formally and describe the data driven
approach and the visual interface that we have used to collect data
from users. In Section 5 we provide some information on how we
have collected data for generating an actual blending operator. The
analysis of the data is then described in Section 6, i.e., it is described
how to compute a blending operator from the data. We have applied
the resulting blending operator in two applications, illustrative parallel
coordinates and volume rendering. Both applications are described in
Section 7. We conclude the paper with a discussion of our results in
Section 8 and some concluding remarks in Section 9.

2 RELATED WORK

Wang et al. [4] explain the problem of false colors in the context of
constructing a color palette for illustrative visualization. They point
out that the problem of false colors can be circumvented by blending
opposing colors on a color wheel. If it is not possible to choose the

2122

        1077-2626/12/$31.00 © 2012 IEEE       Published by the IEEE Computer Society

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 12, DECEMBER 2012





stands for the representation of the CIELab space in the cylindrical
coordinates lightness, chroma and hue. Subsequent improvements on
color distance measures include the ∆E94

and ∆E00
color distance met-

rics, that introduce more complex distance formulas to compensate for
errors in the ∆E metric.

3.2 Support Vector machines

Support Vector Machines (SVMs) are a popular family of machine
learning techniques for supervised classification (and regression) prob-
lems. Given a data matrix X ∈ R

m×n, i.e., m data points xi in dimen-
sion n, together with a vector of labels Y ∈ L

m, where the i’th entry in
Y corresponds to the sample in the i’th row in X , the task is to learn
a predictor that associates to every point in R

n a label from the label
space L. If L is a finite set, then the learning problem is called a classi-
fication problem, and if L= R, then it is called a regression problem.
The special case when L contains only two elements is called a binary
classification problem.

Support vector machines are based on sound principles (see the
book by Steinwart and Christmann [15]) and are phrased as optimiza-
tion problems. A binary classifier, i.e., the case where L = {−1,1},
can be computed from the solution of the convex quadratic program

min
w,b

1

2
‖w‖2 +C ·

m

∑
i=1

ξi

s.t. yi(w
T xi +b)≥ 1−ξi, ξ ≥ 0

as the following function

R
n ∋ x 7→ sign(wT x+b). (1)

Extensions from binary classification to multi-class classification and
regression are well known [16]. Support vector machines and simi-
larly also support vector regression basically compute optimized hy-
perplanes as predictors or regressors, respectively. But they can be
turned non-linear by applying the so called kernel trick (see for exam-
ple the book by Schölkopf and Smola [16]). The kernel trick replaces
the standard Euclidean scalar product by a positive kernel. Important
positive kernels are the Gaussian kernel

k(xi,x j) = exp
(

− γ
∥

∥xi − x j

∥

∥

2 )
with γ > 0,

and inhomogenous polynomial kernels k(xi,x j) = (xT
i x j + c)d , c > 0.

4 THE DATA DRIVEN APPROACH

State of the art techniques for hue-preserving color blending, as dis-
cussed in Section 2, take a hypothesis based approach. In contrast
to that we follow a data-driven approach inspired by the principles of
knowledge-assisted visualization (KAV) [9]. One can think of a data-
driven approach as a KAV-based solution, where knowledge (about
optimal parameter values for a particular visualization technique) is
gathered implicitly rather than explicitly. That is, we do not aim for
explicit (externalized) domain expert knowledge, but elicit data from
users on examples of blending problems. That also means that we
pursue an active data collection strategy, i.e., we do not collect data
by passively observing users while working with visualizations that
involve color blending, but ask them actively about their preferences
by using specifically designed interfaces to collect the data.

4.1 Problem specification

Before describing how we have collected data implicitly compris-
ing the domain knowledge and preferences for hue-preserving color
blending, we first want to specify the question that has to be answered
from the data.

Generally, rendering a scene with multiple colored semi-transparent
layers results in pixels that represent several layers and the question is
how to integrate the information from the different layers at a given
pixel. Hadwiger et al. [17] point out that when looking at a real scene,
color information is accumulated iteratively at every physical layer

before it reaches the observer’s eye. Hence, also for rendering the
case of multiple layers can be reduced to an iterative sequence of two-
layer problems. This still leaves two options: the information can be
accumulated either from the front to the back layer, or the other way
around. The two options lead to two compositing schemes:

cr = c f ·α f +(1−α f ) · cb (2)

cr = c f ·α f + cb · (1−α f ) ·αb, α f := α f +(1−α f ) ·αb (3)

, where Equation 2 states the back-to-front and Equation 3 the front-
to-back compositing scheme. Where c f , α f and cb, αb are the colors
and alpha-values of the front- and the back layer, respectively. Both
compositing schemes are technically equivalent and in general not hue
preserving. Hue-preserving color blending seeks to find ĉr close to
cr whose hue (H value) is among or close to one of the hues of the
different layers. Hence, the problem becomes to find a hue-preserving
mapping

[c f ,cb,α f ] or [c f ,cb,α f ,αb] 7→ ĉr.

Since any additional dimension of the problem space increases the
data-gathering effort in a data driven approach, we specify every prob-
lem instance by only three parameters, i.e., by a vector [c f ,cb,α f ].

4.2 Solution space exploration

In principle, there are at least two data driven strategies for solv-
ing the problem of false colors, i.e., to define or compute a mapping
[c f ,cb,α f ] 7→ ĉr, namely:

1. Transforming the input vector [c f ,cb,α f ] into some vector
[ĉ f , ĉa, α̂ f ] based on user data and applying the standard blend-
ing formula 2 to the transformed vector. This approach is similar
to the one taken Wang et al. and Chuang et al. (see Section 2).

2. Inferring the color cr directly from the user data without the ad-
ditional evaluation of a blending formula.

We have pursued both strategies and want to refer to the first strat-
egy as Problem Transformation and to the second strategy as Direct
Solution. In the following we describe how we have implemented the
two strategies and why the second strategy works better for us.

4.2.1 Problem transformation

We have designed an interface (see Figure 3) for data gathering that
gives the user full control over the solution space [ĉ f , ĉb, α̂ f ]. Here
the solution space coincides with the problem space since we want
to transform a given problem instance to another problem instance to
which the standard blending formula is then applied. The interface has
controls to manipulate the value (V ) and the saturation (H) in the HSV
space for both input colors c f and cb, and one control for modifying
the alpha value α f (since αb can be assumed to be 1 in back-to-front
compositing). Hence, the interface has five controls in total. Through

Fig. 3. A prototype interface. This version was not used for the final data
collection.
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the controls the user can transform the given problem instance, namely
two overlapping disks with colors c f and cb, respectively, that are pre-
sented on top in the middle of the interface. The color in the overlap
of the two disks in the problem instance is obtained from applying the
standard blending formula for [c f ,cb,α f ]. The second pair of over-
lapping disks at the bottom in the middle of the interface shows the
same disks, but now the color in the overlap region is computed by the
standard formula for the transformed instance [ĉ f , ĉa, α̂ f ] as specified
by the user. The task for the user is to modify the original problem
instance such that the overlap region for the lower pair of disks does
not show a false color and stays perceptually close in terms of depth
ordering and vividness to the original blending on top.

It turned out that the five-dimensional solution space is too large to
be well explored even for users that are familiar with the topic of false
colors or color science in general. Also, the impact of each parameter
on the final blending is oftentimes not clear since the impact is only
indirect through the evaluation of the blending equation. The high
cognitive workload on the user results also in a long time to acquire
just a single data point.

A possible way to reduce the search space is to reduce the num-
ber of dimensions, e.g., by fixing of the transparency channel α f , or
to subsample each dimension. Subsampling can turn the continuous
solution space finite, and the problem of the solution space becomes
a finite choice problem, i.e., picking the best solution from a finite
choice set. The interface to choose from such a choice set can be sim-
plified with techniques that we describe in Section 4.2.2, but it would
still be more complex to be used effectively than the solution that we
describe next.

4.2.2 Direct solution

For the direct solution we also use a finite choice approach, but now
without evaluating the blending equation. Thus the choice set, i.e., a
finite set of colors ĉr for each problem instance [c f ,cb,α f ], has been
constructed differently than in Section 4.2.1. To construct the choice
set we exploit the fact that only a “small” subspace of the color space
qualifies as possible answer, namely the set of colors with either one
of the hues of c f or cb. In color spaces with cylindrical coordinates,
like CIELCh, all colors with the same hue lie on a plane spanned by
the lightness and chromaticity axes.

Fig. 4. Final user-interface. This version was used to collect the prefer-
ence data.

We have designed an interface (see Figure 4) that allows to explore
the choice set with lower cognitive effort than required for the problem
transformation approach. As before, the overlapping disc pair at the
top provides a reference to the standard alpha-compositing blending
result. The lower disc pair renders the blending color in the overlap
region computed directly from the user’s selection. Therefore, the in-
terface has now only one control that allows to browse along the choice

set in a linear fashion, in order to keep the cognitive workload of the
2D exploration as low as possible. For that, the colors in the choice set
have been ordered linearly, such that colors that are close with respect
to the linear order are also perceptually close (using the ∆E metric).
We have determined that this allows the user to narrow the potential
best choices from the choice set down quickly, by ruling out candi-
dates that lie far from potential candidates. Hereby, the challenge is
to order a sampling of a two-dimensional subspace of the color space
linearly. We have addressed this by sampling the two-dimensional
subspace along a continuous space filling curve, more specifically a
Hilbert curve [18] (see Figure 5).

L

C

Fig. 5. Locality preserving linear ordering of samples from a hue plane
(here green). Shown at the top are the samples and their ordering along
a space filling curve from the lower-left to the upper-right corner. Shown
on bottom is the resulting order of the colors laid out in rows from top to
bottom.

Besides locality preserving exploration of the two-dimensional
sample space along a path, the interface allows for directly jumping
to distant colors. This specifically includes user marked colors, that
were considered as potential best choices during the exploration, in
order to get back to them quickly at any time, if necessary.

5 DATA COLLECTION

We have collected data points of the form
(

[c f ,cb,α f ], ĉr

)

over the
Web using the interface shown in Figure 4. The data points will be
used later to learn a good mapping [c f ,cb,α f ] 7→ ĉr.

L

a

b

C

Copp

ε

Fig. 6. A cross-section of CIELab space orthogonal to the lightness axis.
The disk at the center with radius ε defines a color region that appears
achromatic to the human visual system.

In the following we first describe a strategy that we have employed
to reduce the number of necessary data points, before we discuss their
collection. As has been discussed already by Wang et al. [4], colors
that lie on opposite sides of the color circle do not result in false col-
ors when they are blended together, because the two hue axes coincide
on a common line that intersects with the gray axis. Although exact
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opposition is rarely the case because of rounding errors or a random
sampling, the idea of Wang et al. can still be used to reduce the num-
ber of sample points, i.e., problem instances. The idea is, that if the
line segment that connects two colors in a color circle that need to
be blended intersects a small disk centered at the center of the color
circle (which lies on the gray axis), then the hue of the result of alpha-
blending the two colors cannot be distinguished perceptually from one
of the two original hues (see Figure 6).

Of course the radius ε of the disk needs to be small enough to guar-
antee this property, that represents a continuous extension to the dis-
crete evaluation of the opposite color predicate. We chose the radius
ε such that the colors in the disk seem achromatic to the human visual
system. The intuition behind this approach is that all colors in the trun-
cated cone whose apex is C and whose opening angle is determined by
the disk with radius ε (see again Figure 6) can be considered percep-
tually opposite to C. The cone is truncated at the line that is passing
through the center of the color circle and is orthogonal to the line seg-
ment from C to Copp, where Copp is an actual opposing color of C. The
truncated cone is shown in orange in Figure 6, and the analogous trun-
cated cone for Copp is shown in yellow. The tolerance disk with radius
ε allows to define predicates that given two colors, determines their re-
lationship in terms of perceptual opposition and equivalent hue-angle.
With these predicates it can be decided if the blending result ĉr of a
problem instance [c f ,cb,α f ] can be computed by alpha-compositing
(without creating precptually false colors), or has to be inferred from
the collected data. The decision rules are as follows:

- If α f is either 0 or 1, then the blending result is either cb or c f ,
respectively, and thus can be set directly

- If c f and cb are opposing colors; this can be decided by check-
ing if the line-segment connecting the two colors intersects the
tolerance disk with radius ε .

- If the colors c f and cb have the same hue; this can be decided by
creating Copp for c f (see once more Figure 6), and performing
the color opposition test for Copp and cb.

Note, that if one of the colors c f or cb is perceptually achromatic,
then the opposite-color-check will always evaluate positive, and thus
the blending can be computed directly. Blending with an achromatic
color does not create any false colors, thus adding achromatic colors
to the survey samples does not increase the complexity of the sur-
vey, however, this stabilizes the learned model along the lightness
axis. Also, we did not exploit the symmetry between [c f ,cb,α f ] and
[cb,c f ,1−α f ] in the standard alpha-compositing setting, because it
is not obvious, why such a symmetry should hold for hue-preserving
color blending.

It remains to describe how we have determined the radius ε of the
tolerance disk. For that we have conducted another web based survey.
We have sampled CIELCh space close to the gray axis at six equidis-
tant hue angles, and along each hue angle in steps of 4 chromaticity
units from 4 to 20, and at six equidistant lightness levels from 0 to
100 units on the CIELCh lightness scale. Each of these 180 sample
points was presented to participants in our survey together with sam-
ple points with similar lightness values that have been sampled exactly
from the gray axis. The participants had to identify the unique chro-
matic sample point among 16 sample points that were presented in a
grid of 4× 4 colored patches. The radius ε of the tolerance disk has
then been chosen such that the disk does not contain any sample point
that has been identified correctly as the chromatic one in at least 80%
of the answers for that sample point.

The data for this survey have been collected over the course of two
weeks from more than 120 participants who contributed a total of 2457
answers, i.e., about 20 decisions per participant and 14 answers per
sample point.

We observed that the chromaticity-sensitivity that has been probed
in this survey is hue-angle independent but depends on lightness value.
Resulting values for the radius ε are listed in Table 1.

Finally, we are ready to describe how we have sampled data points
from the function [c f ,cb,α f ] 7→ ĉr. The problem instances [c f ,cb,α f ]

Table 1. ε-Radius for the Tolerance Disk, depending on the lightness
value in CIELCh space.

lightness level chroma tolerance ε
< 20 15.0

20 to 80 10.0
> 80 20.0

have to be represented in a specific color space. Since the data have
been collected over the Web we cannot assume that the monitors of
the participants of our survey support a color gamut that is larger than
the sRGB color space. Hence, the sample points have been sampled
randomly from sRGB space such that any point in sRGB has a sample
point at distance at most 60 ∆E . This results in 16 sRGB samples
(including five equidistant achromatic colors added afterwards). To-
gether with a sampling of the alpha-channel α f in increments of 0.25,
this resulted in a total of 1280 sampled problem instances. Out of these
129 had to be evaluated by participants of our Web based survey using
the interface from Figure 4. The remaining instances can be blended
automatically. For each of the 11 chromatic sRGB samples, we sam-
pled the corresponding hue-plane in CIELCh space such that any point
has a sample point at distance at most 15 ∆E , leading to an average of
50 alternative colors ĉr on the interface slider.

Over the course of 4 weeks, we have collected 1851 choices from
133 participants, most of them students and people with an academic
background, however not necessarily color science experts. Initially,
every participant had to answer to at least 20 choices, however later we
reduced this to 10 choices, in order to reduce the cognitive workload
on the participants and to obtain answers of high quality in at most
20 minutes. The participants did not evaluate any problem instance
twice. On average, each of the 129 problem instances was presented
to 14 participants.

6 DATA ANALYSIS

The goal of the data analysis is to learn a function

R
7 ∋ [c f ,cb,α f ] 7→ ĉr ∈ R

3

from the user feedback that has been gathered via the Web using the
interface shown in Figure 4. The perceptual non-uniformity of sRGB
can cause non-linear dependencies between the input vector and the
gathered label. To circumvent this problem the color coordinates of the
input colors c f and cb have been transformed from sRGB to CIELab
coordinates, i.e any problem instance can be represented as

[L f ,a f ,b f ,Lb,ab,bb,α f ]

using the CIELab coordinates L,a and b. At a first glance the learn-
ing problem at hand looks like three regression problems, namely one
regression problem for each coordinate of ĉr (lightness, chroma and
hue). However, the hue of ĉr is by definition either the hue of c f or cb,
and thus can be determined by a binary classification. Predicting the
hue angle of the blending color by regression can produce false colors,
even if the prediction is only a little bit off. Thus, binary classification
is both more efficient to evaluate and more reliable in the sense of hue
preservation.

As mentioned before, we had 1280 problem instances in total where
a problem instance now is given as point in seven dimensional Eu-
clidean space R

7. The number of data points that we enter into the
support machine or regression machinery is higher though, because
the same problem instance has been evaluated by several participants
in the survey. We handle this as follows: we add one constraint to the
support vector/regression optimization problem (see Section 3.2) for
every problem instance and chosen alternative ĉr and weigh the slack
variables xi for the i’th constraint by the number of times wi that par-
ticipants have chosen the particular alternative ĉr, i.e., the objective
function of the support vector machine is modified as follows,

min
w,b

1

2
‖w‖2 +C ·

m

∑
i=1

wi ·ξi
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Luckily, the modified support vector machine/regression instances
can still be solved using the popular, publicly available LIBSVM
solver [19]. We used this solver together with polynomial and Gaus-
sian kernels. Parameters like the regularization parameter C in the
objective function of the support vector machine and kernel hyper-
parameters have been set using cross-validation which is supported
by LIBSVM. It turned out by using cross-validation that in our case
the solutions of the kernelized optimization problems outperform their
linear counterparts, and the polynomial kernel slightly outperforms the
Gaussian kernel.

Finally, the solutions to the two regression and one classifica-
tion problems provide us with the mapping from problem instances

[c f ,cb,α f ] to a blending color ĉr = [L̂r,Ĉr, ĥr]. Pixel-wise evaluation
of the three functions is computationally expensive. The SVM based
blending operator on our dataset is about 20 times as expensive as
alpha-compositing. Therefore, we used solution pools to avoid evalu-
ating any problem instance twice. This has been sufficient for our ap-
plications where the images have been rendered off-line. Note though,
that by construction the evaluation of the three functions is easily par-
allelizable. Hence, we recommend a GPU based function evaluation
for achieving real-time, interactive frame rates, especially in volume
rendering.

7 APPLICATIONS

We have integrated our data driven blending operator in an illustra-
tive parallel coordinates framework, and have also used it for volume
rendering. In both applications we have blended two layers at a time
in back-to-front order, where blending results are always fed into the
next blending iteration as the back layer. But before we discuss both
applications in more detail, we will first discuss the performance of
our blending operator in a synthetic test case.

7.1 Synthetic test case

Figure 7 compares the blending operators defined by Wang et al.,
Chuang et al. and our approach on a synthetic test case with three
semi-transparent squares on a black background. A rendering using
alpha-compositing is also shown for reference. The test case is prob-
ably the most difficult color setup in sRGB color space since the hues
of the three layers are the three primaries of sRGB and thus cover all
hues (angles) when blended using alpha-compositing.

Fig. 7. Synthetic test case: (On top) default sRGB blending of three
colored squares against a black background creating false colors; (At
the bottom from left to right) same physical layout rendered using the
blending operators defined by Chuang et al., by Wang et al., and our
data driven blending operator.

The rendering produced by the method of Chuang et al. creates
hardly distinguishable shades of gray in the overlap regions, making
it difficult to determine any depth order. The method by Wang et al.
performs much better in this respect, however, there not all false colors
have been eliminated entirely.

Our blending result is hue-preserving by construction. However,
in order to produce a consistent rendering, the classifier needs to be
reliable on all the overlap regions. For example, it would be of little
value if the blue hue would be predicted to lay over the red hue on

the right, but below it in the central overlap region. But as can be ob-
served this consistency property is satisfied in this test case. Also,the
goal of preserving the depth-ordering has been achieved. Note that we
have enforced this goal as a constraint during the Web based data col-
lection, and this constraint carries over to the support vector models.
Another notable difference to the other methods is that the lightness of
the lower layers is higher. This has not been enforced as a constraint
in the data collection phase, but surprisingly for us it supports the per-
ception of the shape of the underlying layers nicely, without sacrificing
the perception of the correct depth ordering.

7.2 Illustrative parallel coordinates

Figure 8 to 10 show results that have been obtained after integrating
the data driven blending operator into the rendering software for illus-
trative parallel coordinates (IPC) by McDonnell et al. [2].

Fig. 8. A two-layer IPC with a blue layer on top and red layer in the
background: (top) blending using alpha-compositing; (bottom) blending
using the data-driven blending operator.

Fig. 9. A two-layer IPC with a green layer on top and red layer in the
background: (top) blending using alpha-compositing; (bottom) blending
using the data-driven blending operator.

Depth order preservation is crucial for the performance of IPCs,
but avoiding false colors is also very important. IPCs can suffer from
optical illusions when false colors are created, i.e., areas of overlap
with false colors can appear as new categories that are not present
in the data (geometric artefacts). Hue-preserving blending helps to
reduce the perception of geometric artefacts. This is probably most
notable in the three layer rendering in Figure 10.
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Fig. 10. A three-layer IPC with a blue layer on top, a red layer in the
middle, and a green layer in the background: (top) blending using alpha-
compositing; (bottom) blending using the data-driven blending operator.

7.3 Volume visualization

Fig. 11. Simulated dataset, that shows three ellipsoids partially includ-
ing each other: (On the left) blending using alpha-compositing; (On the
right) blending using the data-driven blending operator.

Fig. 12. Neghip dataset: (On the left) blending using alpha-compositing;
(On the right) blending using the data-driven blending operator.

Finally, we have also integrated our blending operator into a volume
rendering framework, and applied it to a simulated geometry, and the
well known fuel and neghip data sets (see Figures 11 to 13). Also in
volume rendering hue-preservation turns out to be beneficial in terms
of depth perception and color vividness. But the most important obser-
vation here is that the data-driven model is able to pertain continuity
along all the CIELCh axes on a large number of layers, in addition to
the large variation in lightness between adjacent pixels which results
from the lighting model that is employed by the volume renderer.

Fig. 13. Fuel dataset: (On the left) blending using alpha-compositing;
(On the right) blending using the data-driven blending operator.

8 DISCUSSION

8.1 Towards the goal

The main goal that we have stated in the introduction is a hue- and
depth order preserving blending operator that is perceptually close to
the standard Porter-Duff over-operator, e.g., in terms of vividness. The
renderings produced by our blending operator in all the evaluated ap-
plications show that we have come closer to our goal by enforcing the
preservation of the chosen color palette as a constraint in our Web-
survey. These renderings allow a better understanding of the data, be-
cause they avoid the artefacts that can be introduced by default alpha-
compositing. Although the constraints (hue and depth-order preserva-
tion) can be conflicting (see Section 2), our results show, especially
in the case of illustrative parallel coordinate plots, that a data driven
model can find a good balance between them. Also, the restriction to
only a small number of layers as for the weaving approach (see the
evaluation in [7]) does not apply to the data-driven operator as can be
seen in the volume rendering examples.

8.2 Data collection

8.2.1 Study design

To design the web survey as a choice task proved to be an effective
method to collect the required amount of data for developing a reliable
blending operator. Although a single paired comparison test comes
with the least cognitive burden for the user, see [20], it would not
have been practical for us to capture a single sample of the blending
function

R
7 ∋ [c f ,cb,α f ] 7→ ĉr ∈ R

3

in this way. In a paired comparison study, before any ranking infor-
mation for the ĉr can be retrieved (e.g. by Thurstone’s Law of Com-
parative Judgement [21]), a frequency matrix Fi j , where each entry
represents the number of times element i has been preferred over ele-
ment j, would have to be filled, and therefore n(n−1)/2 comparisons
would have to be made by every single participant in order to retrieve
his preferred ĉr among n alternatives. To reach statistical significance,
a rule of thumb suggests at least 15 data points per free parameter, i.e.,
in this case 15n binary choices for a problem instance which in turn
only provides a single function sample. Hence, the required number of
comparisons would either be infeasibly large or the number of choice
alternatives ĉr would have to be very small. Our choice-based evalua-
tion supported by a linear alignment of the possible choices allows for
a more effective test procedure.

8.2.2 Study participants

Another important factor are the participants that take part in the sur-
vey. Usually, digital user studies/surveys are conducted in one of two
ways: in a completely controlled lab environment, or over the Inter-
net. Because of relatively high time and monetary costs of lab-based
user studies, Web-based user studies have become increasingly popu-
lar. The main advantage of a Web-based user study is the large number
of participants that can be recruited in relatively short time. Garg et
al. [22] conducted two different online studies, where they collected
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responses from 96 users in just one day, a number that is difficult to
achieve in a lab-based study. However, without some sort of media-
tor, an online-study has several drawbacks. A small number of people
can contribute a larger number of votes, and thus skew the results,
without a definite way to detect this. Incentives to motivate the par-
ticipants to deliver high quality results, are also more complicated to
be distributed. Amazon provides a service to fill the gap of a media-
tor between test requesters and workers, namely Amazon Mechanical
Turk (AMT). An insightful discussion about AMT for perceptual stud-
ies is given by Kosara and Ziemkiewicz [23]. Another efficient data
collection method for color blending using gamification was presented
by Ahmed et al. [24]. Our study for data-driven color blending aims
at sampling an unknown function hidden in the human visual system.
Therefore, the ground truth is not known, which would be necessary
to evaluate the quality of a user’s response in order to use the incen-
tive and penalty system of AMT. That is why we decided to conduct a
manually developed online-survey.

9 CONCLUSION

We have shown how to construct a data-driven blending operator that
captures the human domain knowledge by means of support vector
machine models and a back-to-front compositing scheme. Hereby, the
Web-survey design was the most critical part, as it directly dictates the
quality of the collected data. Main challenges when designing the sur-
vey was keeping the cognitive burden on the participants low, as well
as optimizing participation in the survey. A careful selection of search-
space reduction criteria and an intuitive survey-interface allowed the
collection of enough data of sufficient quality. Still, the final blending
operator would profit from an even larger amount of data on which
the support vector machines can be trained. Equipped with a ground
truth provided by our data, online-survey mediator services, like Ama-
zon Mechanical Turk, could leverage this strategy and provide a larger
data base. But already the blending operator that has been learned
from the data that we have collected so far performs well in applica-
tions. We have applied the data-driven blending operator successfully
to 2D data sets with few semi-transparent layers (illustrative parallel
coordinates), as well as to 3D data sets (volume rendering). In both
applications we have been able to improve significantly over default
alpha-compositing and also over state-of-the-art techniques for hue-
preserving color blending. Avoiding desaturated blending results and
enforcing the preservation of the perceived depth-order already in the
data collection phase, resulted in a blending operator that keeps these
qualities next to being hue-preserving.

Finally, we have developed a software library that can be integrated
into any visualization application that requires a hue-preserving blend-
ing operator. So far our solution is limited to offline-rendering applica-
tions, because of the computationally expensive per pixel evaluation.
However, with GPU-based classifiers and regressors, interactive frame
rates should be possible.
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