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Panel (a) and (c) are two projective views onto a 10-dimesional sales pipeline dataset with 900 points. The labels at the circle boundary
indicate the data attributes and their axis directions in that view. The strength of the label fonts indicates how well the attributes are
expressed in this view. Panel (b) shows a view generatedbyus i ng our systemb6s trackbal |l veiviewsbetweemce t o g
view (a) and (c). The motion parallax clarified that there were not two but three clusters. Panel (d) shows the three clusters in different colors.
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1. INTRODUCTION We describe a framework and interface that eases this barrier by
desgn, called theSubspace Voyagelt serializes thexploration of
igh-D space into a continuous travel alongtang of generalized,
Ht not necessarily dimension asatigned 3D subspacesisualized
as scatterplot projectiortd the datgpoints This rialization allows
us to abolish the complex interactions and representations that are

en typical to higkD space exploration tools. We replace them
gg&g‘ﬁ paradigms familiar to most people, such as trackballs, maps,

word cloudsOur interface usehi¢se tohelp usersxplore the

genera'lzed 3D subspacesavigate the continuumf 3D subspaces,
and assede relevance of individual attributes for a giseribspace

The simplicity gained through the 3D subspace decomposition
comes at a price the exent of the transformations defined on such a
restricted subspace is limited and may not reach far enough to
Senerate a projection in which a pattern of current interest is well
expressed. To enable a reach beyond these liveitsave augmented

ATA with many attributeshave becomecommonplace in a
wide range of domainsuch as science, business, medi,cin(g
etc. In these data, the most interesting relations are oft
multivariate and gaining proper tools to recognize thes
relationshipsreliably is still an active area of researchVhile
automated analysis can be useful in finding some of the- hi
dimensional patterns, adding the human into the loop can break
and help discern patterns in confounding and noisy data settings
beneft from the intricate reasoning faculties of human domai
experts However, ve are still far off fromhaving effective visual
tools for highD dataanalyticsthat make the best use of timborn
capabilities of the human visual systemd at the same timalso
observe its limitations.
High-D space is generally confusing to most people sin

humans do not possess the innate neural network to recagrize

reason with higtD objects. Spatial reasoning skills are acquired ¢ 3D navigtion interfacewith extra capabilities that allow users
early childhood where often haptiand visual experiences are'chase the discoveregatterns § moving to adjacerD subspaces
combined to build 3D mental models of thalreorld. Since higip Vi@ Simple mousénteractiors. In this way patternscan be observed
objects are largely mathematical and do not occur in a tangible fomﬁtlare truly multivariate and rr:c_)t reks_ted :10 a sll(ngIé_BD subspace.
the associated cognitive reasoning chairenot developed in these | . n s%mesenseour.applioac 4§ a.'ml; at ta edn |bran Il:pcolmlng
critical early yearsThis lack of reasoning faculties represents Jidie video gameMiegakure [46] (itself inspired by the classic
barrier for most people veim dealing with higtD data later in life novel Flatland [2]) which enables 4Dpacetravel by swappingne

and so deprives them tife chance to finchoreinsight in these data. of the three currerdimensionsWe go significantly further than this
game: (1) our spaces are much greater thana#b(2) we allow

transitionsin all dimensionssimultaneously Yet, it is encouraging
6806000000880000606088 that the entertainment industry séas in this type of space travel. It
1 Bing Wangand Kaus Mueller are with the Visual Analytics and Imagi ~ Suggestshat our interface might be fun and engaging as well, which
Lab at the Computer Science Department, Stony Brook University,  will immensely benefit the analytics that is performed with it.
Brook, NY. Email: {wang12nueller}@cs.sunysb.edu The 3D subspaces our system supports are general iretise s
Manuscript received Decemb2t. 2016 that they do noheed to be constrained ttree specific cataaxesbut
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can be spanned bybasisof threearbitrary orthogonal vector§his resolve depth and relatiwdtistance Several gstems have followed
affordsa better alignment with the high phenomenonnder study this paradigm One of these isScatterDice[11]. It restricts the
and effectively allows its exploration in relation to all relevalatta transitions to motions between two bivariate projections at a time,
dimensionslt, howeveralsobrings about a huge numberpafssible giving rise to a dynamic 3D poutioud projection displayMore
subspaces. To manadhis mmplexity we provide a varietypf general is theGGobi system39], itself derived fromthe seminal
objectivedriven search and clusterirfgcilities that assist users in concept of thedGrand Toud [5], as well as theTripAdvisor'®
locatingsubspaces ith interestingstructures. framework devised byne of the ceauthors[31]. Both allow users
When designing our interfaceve placed great emphasis ornto transition between arbitrary multivarigbeojections.Our current
making the interactions direcintuitive, andresponsive34]. Most framework alsdollows this generaparadigmbut offers interactive
exploration goals can techieved byexpressing therdirectly in the exploration capabilities that greatéxceed those provided by #ee
visualization via simple mouse selections and transitioAs the earlier systems. Fagxample, while GGobalso uses a trackball, it
same time, or frameworkis quite general and i®adily applicable does not offer the advancezlibspace exploration facilitiegur
for many tasksnd application areabat involve multivariate data trackball interface provides.
such ascluster sculpting [30] and analysis, information discovery,
andthe supervisedrainingof classifiers, just to name a few.

In summary, thepecificcontributionsof ourwork are Our layout is a generalized projection dispielyerethe 2D location

I A serialization of higiD space exploration i0 a journey pof a projectedN-D data pointx with coordinatesq, 0 Oi ON-1, is
within andacross a string of adjacent generalized 3D subspacgﬁ,en Dy mm B 0:00. Here,the v; area set of 2D basis vectors

I An interactivetrackball interface for 3D subspaadexploration with common originO. We can use this formulation to compare our
augmented with direct controls for getditected transitioning to display with several others that are in common use.Star
adjacent 3D subspacesin activity we caltluste chasing Coordnates[21] all basis vectors havenit length and by ways of

1 Anillustrative, norobtrusive labeling scheme that allows Useréhanging their orientationsusers can interactivelyncrease the
to appreciate thinfluence of different variablesn the display  spread of the projected data poinRadViz [20] is similar but

i Various goaidirected view optimization andiew selection includes a normalization By . Conversely, in Iplots [14] the
facilities that lower the subspace navigation overhead ayector basis is a projection of the axis vectors into the 2D frame
expand thesearch ér interesting higtD phenomena spanned by thevo major principatomponen{PC)axesAs a result,

A maplike interface organized by view similarity where userghe vector are typically not(all) unit lergth and their orientation is
can storeinterestingscatterplotviews and construct a tour for clearly definedProjectirg the data points into the Fi2sis naturally
presentatiomwithin an animatedcatterplot display maximizes teir spread in the 2D display which removes need for

Our paper is organigeas follows. Section 2 reports on relatedtteraction Howe_ve_r, _theprOJe(_:tlon amblgu[t)pro_blerrsstlll remain.
research motivating our work. Section 3 focuses specifically on the OUr display is Bnilar to biplotsbut distinct in two ways. First,
TripAdviso™® systemi a precursor of the Subspace Voyage e_allow users to change the _blplot projection bastsractlvely
Section 4provides a system overview. Section Bescribes the which help_s overcome the amplg/ prpblems viamotion p_arallax.
trackball basedsubspae explorer Section6 presents thesubspace | € transitions can affect manymnsions at onceand not just one
trail map Section 7outlines threaisescenaris. Section 8describes at atime like in Star Coordinates and RadvEecond, we plot the

our user studyand its outcomesandSection9 offers conclusions. dlme_n_5|on labels _at the_ display perlphe_ry. We use the sizes and
opacities of the dimension labels to indicate the influences of the

attributes on the projectiol€onversely, iplots projectthe dataaxes
as arrowheaded lines directly into the display leading to clutter.

Defining a multivariate projection basis

2. RELATED WORK

Our principal visualization modality ithe scatterplofi a projection
of the data into an orthogah2D basisIn scatterplots¢lusters and

their dhapes are relatively easy tecognize but points distant in  The problem of projective view overload is not urdgo SPLOMs.
high-D spacemay project into similadocations ad this can lead to |n manycasesit can be helpful to include proper quality criteria by
ambiguities Helping users deal witthese ambiguitiess oneof the  which the nost informative views can be select&®esearch in this
major aims of our workAnotheraim is to aid users in producing area has mainly addressed the selection ofaligaed views in the
informative _projectiv_e_views into interesting_ subspaces of the dagResence of clustered or classified data. Sips 2l define aclass
In the following, wedivide work related to osiinto four aspects consistency measure whiévors views based on the distance to the
class center of gravity or on the entropies of the spatial distributions.
Tatu et al[40] assess quality by measures on density, histogram, and
One way to resolvprojectionambiguities igo0 decompose the spaceclass separation. The rabl-feature systm [36] allows users to
into a matrix of axisaligned bivariate scatterplots, call&PLOM specify certain statistical criteria, such as correlation, scatterplot
[17]. While SPLOMscan helpwith disambiguabn, users might find uniformity, etc Schéferet al. [35] describe a quality metric that
it difficult to integrate informabn from such a mosaic of plots focuses onstructural preservatiorand visual clutter avoidance
especially when the number of dinstons is even moderately large GGobi uses projection pursuit9][13] to generate interesting
Anotherapproach is to usayoutoptimization schemesuch as multivariate projectionsWe use gopular evolutionanalgorithmi
Multidimensional Scaling (MDS[R4], Linear Discriminant Analysis ant colony optimization (ACO)[10] 7 in conjunction with view
(LDA) [28], and Stochastic Neighbor Embedding-SNE) [42]. quality metrics such as stress, class density, class separation, holes,
MDS, for example,seeks to generate a layout where the pairwisand central mass.
distances ofpointsin 2D are relativelysimilar to those in higiD Finally, aproblem with having many projections is also how to
space But even with layout optimizatigntrying to warp highD manage and organize them. Several #baped diagtms have been
space onto a 2D plane is inherentlypiised since it cannot fully proposed[31][45]. We provide a novahap that is dedicated to the
capture multivariate data variatiorBistortions are the consequencemanagement of generalized subspadesaddition, ar map also
making it difficult to comectly recogniz the true shape and allows userso construct animated tours fpresentabn purposes.
appearance of clusterand also hampering thessessient of point
wise distancedothfar and nearHence while ambiguities might be
resolved, the risk of distortions has taken their place. =~ Subspace clustering has been an active research area in the data
A third alternativeis to enable userso changethe projection mining community[23] but the focus was mostly on automated
basis in a continuous fashioeffectively using motion parallax to ajgorithms. In the field of visualization, one may digtiish the

Selecting informative views

Dealing with projection ambiguities

Managinginteresting subspaces
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Fig. 1. Pad-based navigation interface of TripAdvisorND. In the
setting shown, the PPA-x vector is dominantly a combination of
dimension axis DA 4 and DA 5, while PPA-y is a combination of
DA 6, DA 1, and DA 2.

Cst/wonlLd

i

. Plan’ L

Subspace Eixrblorer Subspace Trail Map

contributions by how much they rely on automated subspace anat
methals. On one end are the worksYafan et al[44] and Kim et al.
[22] where users are in full controThe formerproposes a visual
subspace exploration approach that focuses mainly on interac
dimension set selection anefinement. The latter suggestsystem
where users can drop data points into two different groups and
projection basis vectors are updatedoadtically Lehmann et al.
[26] find minimal sets of projections, allowingsersto draw a path
to traverse between thernm our syste, users caralso modify the
projection basiso favor certain dimensions, namddy emphasing
theinfluenceof these dimensiordirectlyin the interface.

Other approachef#st perform an automated subspace clusteril
step and tén visualize the resultas small multiples of scattdgp
projections[4], as MDS &youts[41], or use animated transitioning
between thenfi27] akin to our mapWe also first perform clustering

Fig. 2. Subspace Voyager interface. It has three main
components: the Subspace Explorer (SE), the Subspace Trail
Map (STM) and the control panel. The SE is coupled with the
trackball interface. It not only displays the data as a scatterplot,
but it also allows users to visualize the current directions of the
projected dimension axis vectors as labels placed outside its
circular boundary. The labels are properly sized in terms of the
corresponding attributeds infl
various interactions for users to examine the data. The STM holds
a set of views (and their parameters) that users may have found
interesting during the exploration, embedding them into a word
cloud of attributes. Finally, the control panel allows users to set
the various parameters and modes in the system.

but then use thresults to provide guidancetime subsequent visual Shortcomings of TripAdvisorND motivating our work

exploration of te actual subspaces, focusing duster appearance
and relationsThis can bdelpful in the visual reasoning process.
Related in some respect is also the LineUp syster@rayzl| et
al. [16]. LineUp requires users tmanually seta weightfor each
attribute to determine itsmfluenceon therankings ofthe data items.

uence

While thepadinterfaceallows unprecedented control in the dynamic
manipulation of the view onto the-N point cloud the need to
separately manipulate two pointers in sequence suffers from a certain
lack of ergonomics. Aurther shortcoming ishat uses arerequired

However, setting weigh explicitly might not be intuitive to © keep track of two interfaces at the same time: (1) the visualization
mainstream users with limited quantitative reasoning abilities. Th@§ndow that shows the moving jpo cloud along witha projected

may simply not know their prefences at this levebdf detail but

coordinate systenand (2) the pad that controls the orientation of the

rather discover them infipitly during data explorationOur system Projection plane. In pmiice, a user may observe one or more

supports this type of exploratory discovery process.

3. RECAP: THE TRIPADVISOR"? FRAMEWORK

dimensions that should mmphasized in the display &gy might
offer the potential to break up a cluster into two or mooenponents.
To do this, theuser would need tlwoks at the pad tddentify which
pointer shald be moved and in what directioand then observe the

The approach we have taken is largely motivated by our earlgfect in the displayln the present workye aimed for an interface
TripAdvisor® framework [31] and the shortcomings we havethat maks this operation morestraightforwardby embedding the
observed in its use. One major improvement is the new trackball navigation conwls directly into the display. hancing the well
interface, which is much more direct than the spatially disjoikhown trackball interface with i) navigation capabilities seemed
navigation pad of TripAdvisdF (see Fig 1). This navigation pad to begood choice towarthis goal. We also addedew opimization
consists of a polygon witBvertices, wher&is the cardinality othe and other navigation aids to suppdite manual exploration,
subspaces. Each vertex corresponds to a ndiiwensioni hence allowing users to arrive at maiagful projections faster.

the subspaceare axisaligned énd not generalized). It shouldiso

be noted that for S>3 dferent orderings of the vertices are requiredy sysTeM OVERVIEW

to allow users to access the full projection coverage of the subspace. . )
The interior ofthe polygon shows twodisk-shaped pointers F19- 2 showsthe Subspace Voyagénterface. It hasthree main

They represent the twtN-D) basis vectors into whicthe N-D point
cloud isprojected for displaysing the vector dot produdn [31]

these two vectors are call@ojection Plane Axis (PPA) vectois Variousparameters anthodes in the system. .
The exploration pipelineof the Subspace Voyager is illustrated

computed from theipositiors in the pa polygon via generalized i Fig. 3.After loading the data, our system performs either Random

the xaxis is PPAx and the yaxis is PPAy. The vectors are .

barycentriccoordinate interpolatiof29].

Projection or Subspace Clustering and Principal

componentsthe Subspace ExplorerSE), the Subspace Trail Map
(STM) and the control panel The latterallows uses to set the

Component

In the padbasedinterface users an control the influence a Analysis (PCA) to identify an initial promising 3D subspace. More

dimension haon the display by movingither thePPAXx or PPAy
pointer towardthat dimension.This essentially spreadout the

projected point cloud ahg that dimension and so reveals thdisplayed

di mensi onés
populationgclusters. Then, bymoving the other pointer towar
another dimensigrbivariate relabnships an bevisualized.Finally,

3D subspaces can be generated via the control panel at any time

The data is then projected into this generated subspace and is

in the SEmbedded trackball There are different
a b thé idatay poiritso intos differant intgragtion modes users can perform on the trackball. The first mode
d is to rotate the trackbalivhile pressing dowihe left mouséoutton.
This enablesn exploratiorof the current 3D subspace. The second

when moving either or both pointers midwayetweena set of modeallows users to transition tadjacentsubspaces where certain

dimensionsuses can appreciate thecombined effectsstemming
from themultivariate relationshipef these dimensions
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attributes of interest have a higher emphasis thahdrcurrent 3D
subspace. It yields data projections that better capture the cluster
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Fig. 4. 3D trackball. Given the current and previous mouse clicks,
both the axis of rotation and the rotation angle can be computed.

b e Clieer Tag Points ACO Save Views . . .
The simplest form of trackball interaction generates sqédtier
W projections confied to the current generalize8D subspace
— projected into theéSE. This projected 3 subspace can be modified
riteria

by:

9 Mouseinitiated trackball interaction uses can transition to
adjacent 3D subspaces by augmented trackball interaction

1 Randomizedprojections: this discovers new 3D subspaces ready
for trackbaltbased exploration

9 3D Subspacénterpolation:moving a slider in the control panel

[

Fig. 3. Subspace Voyageworkflow. See Section 4 for
narration.

distributions in these attributes. In thikister chasingusers move
the mousé& now with the right mouse button depressetbwardthe

respective attributéabelsdisplayedon the trackball periphery This
increases the weight of these dimensions in the PPA vectors.

As mentioned, in our systenhdre is no need fomanually
optimizing viewswhich can be tedious. U system provide&nt
Colony Optimization (ACO) [10] to generate the best trackball

generates continuous set of 3D subspaces, intermediate to two
subspaces in the STM, whichrcbe explored via the trackball

1 View optimization the 3D subspace (as well as the current
projectionview within the current 3D subspace) can be optimized
via projection pursuit driven by a usdefined set of criteria

configurationautomaticallyaccording toa set ofuserselectedview The control panel provides\aral options for trackbalise The
q_uality criteria. Users can also tag points by prushin_g_ them 0y e ckboxo 69 p eifcalDdata @aints are to be shown or
different colors. This is helpful for cluster analysis or foitied out oy those that are well described in the current subspace, i.e., belong
unwanted structureginally, at any timeusers can save the current ihat subspacd&he colorbar on the bottom righis the brushing
trackball viewto the STMto keep trackof interesting findings. Any 40| |t allows users to tag individual points groups of pointsn a

of theseSTM views canthen be dragged baditto the trackball for - yegicated color to clustémemor mark themas inactive in gray

further exploration.Multiple small viewscan also be linked and

traversed in order, providing a smodthnsition between views. 43  The Subspace Trail Map (STM)

41  Generating a Set of Subspaces The STMholds aset ofviews (and their parameters) thases may
. . L have found interesting durindne trackball exploration The view
Choosing meaningful subspaces for exploration is a key challengmges are embeddeihto a word cloud of attributes Their
multivariate data analysis and much work has been dedicateditowacement with respect to each wandicates the influence of the
this goal (seeSection 3. We have implemented twodusstrategies: ¢qrresponding attribute to the viellle treat each view as a point
(1) random view generatioand (2) subspace clusteringses can  5n4 yse PCA on all of thero spread them ouThecircular shape of
generate new subspacesiay time via the control panel. the images mimics the shape of thackbals. A smaller diameter
For the forme(1), we use the technique proposed by Ananal.e (oqyces overlap of similar views in the STM while a larger diameter
[1] and thenfurther opimize the subspaceising ACO powered oyides magnification. Users can dragy view backinto the
projection pursuit (see Sectiordp.For the latter(2) we assumé  ackpall for furtrer exporation, or they canconnect interesting

similar to Liu et aI.[27_] andour own wo_rk[43] i that each cluster \aws by lines to produce animated tiitiogs for presentations
forms a subspace on its own. We chtgdze each such subspace by

the threeprincipal componentsbtained with PCAFinally, for both
of thesemethodswe use ACO view optimization to generate a hig
quality (given thechosen metric) scatterplot projection in thdJsers can tilt the trackball and watch the resulting scattengdat to
trackball display. the motion.Fig. 4 sketches how #rackball worksimaginea virtual

We should also note that in a view that has the PC vectors assfibere that encapsulates the current generalized 3D subspace. When
basisif two (or more) dimension vectors are very close, it meamgdicked, the screen coordinate of the mouse is mapped to this sphere.
they are to some extent correlated. This is especiallythem these Given the current and previous mouse clicks, we can compute the
dimensions have large weightings in one signifidagt (i.e.these axis ofrotationn and the rotation anglg From those twajuantities
dimensions are strongly correlatpt?]). We will make use of this a 3x3 rotation matrix is derived, as describeddh
relationship in the use case described in Section 7.1.

ﬁ. THE SUBSPACE EXPLORER AND TRACKBALL INTERFACE

5.1 Creating the Trackball Space Projection Matrix

4.2 The Subspace Explorer (SE) The trackball system only works in 3D but our data pointsNaD
The SE is coupled with the trackball interface. It not only displagsid so we need to project the ND points into 3D before rotatteg.
the data as a scatterplot, but it alEfows users tovisualizethe achieve this by poshultiplying the trackball rotation matrix T with
current diretions of the projecteddimensionaxis vectorsas labels the 3 N projection matrix P. We have two options for the first two of
placed outsidéts circular boundaryThe size ad opacity of a label the vectors in P: (13he orthogonalPPA x-axis and yaxis pair we
indicate to what extent itassociated attribute is expressed in thebtained fromthe randomized projection procedyrer (2) the two
projection. A larger and bolder font means that the scatterpfopst significant PCsve obtained when performing PCA fdine
exhibits more of tThelabel placeniett wn selécted clustatn bath dades wesguire athird orthogonal axis, call
the other hand, reveals the mdidirection along which the it the PPA zaxis. Since thisis N-D space we have a number of
variability is mostly exposed. choices. We can either (1) randomly generate @h\Wctor, or (2) if
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of interest are better express#dets him/herexplore thedata with a
higher emphasisroone ormore attributes of interest.

To engage ito this mode of explorationses would releasethe
left mousebutton and instead press the right button wimidving the
mousein the direction of tt de s i r e ds pojectom,ass i
indicated bythe ®r r espondi ng oathé rackbailst e
periphery The further the mouse is moved the méne projection
planeis tilted into the dimensidi axis vector. Conversely, moving
backwardalong that direction, towards the center of treckball
deaeassthe influence of this dimension.

As Fig. 5 illustrates ideally we would accomplish thigask by
adding (or subtracting) increment®x=k/AdA&in(@) and Dy=
kAd&os() to the PPAXx and PPAy vectors, respectively, whetg
is theangle between theouse movemeniector andhetrackballx-
axis (the PPAx vector) HereDd is the distancéhe mouse movedh
the PPA xand PPA yaxes are generated via PCA, use the third masife direction ofthe projected dimension axis vector (positive when
significant axis for the PPA-axis moving towardshe periphery, negativetherwis, and k is a user

Note that the resulting vector is not necessarily orthogonal to thgustabe speed constant (we utiee dot products instead of the
PPA xaxis andthe PPA yaxis. To make ibrthogonalwe use the trigonometricfunctions) Subsequently, GrafBchmidt is used to e
GramSchmidt orthonormalization proces$g] to find orthogonal orthonormalize F(see Section5.1), usingthe original PPA zaxis
basis vectors The GramSchmidt process takes N linearly vector.One problem here ithat after GramSchmidt, the directio
independent vectors and produdésorthonormal vectors spanning of this data dimension would change ahdsthere might be other
the same PD spaceln practice we keep the PPA-axis and PPAY dimensiost aki ng t he selected oneéds di
axis which are already orthonormal and run Gechmidt to fixing the selected dimension untiile userrelease the mouse.
orthonormalize the PPA-axis from the initially chosen vector. Once  This basicapproach generalizes to more than one dgiwenFig.

P is configured in this way, T is reset to the identity matrix, ready #oillustrates the practical case in which therare two or more

onod
0s

Fig. 5. Updating the PPA x-axis and PPA y-axis vectors by moving
the mouse towards one or more dimensions. The influence of each
dimension is weighted by a Gaussian function.

be manipulated in the 3fackball interaction. projecteddimensionaxis vectors in close range of the exploration
] ] o direction. This might be an indication of muliivate relationship
5.2 Processing the Points within the Trackball Space To properly scal¢he axes vectomfluences geometrically we apply

With P in place, the following sequence of operations is executed fofsaussian weighting in terms of their direction misalignniEnits
every trackball move: (1) compute thé N8 compound projection is done via thdollowing equation: w=exp¢kyAot(m, Va)) where
matrix M=SAA, where S is an optional scaling nratihat allows is the weight applied to this axis vector, andvy arethe direction
zooming into the display, and (2) muItipI% eachDNpoint vector vectors ofthe mouse ad the axis vector, respectively, arg
VNP by M to obtainthe 3D points ¥Y’=MA/N®. But ultimately we determines the reach of th@aussian The remaining steps are
are only interested in the projection of the points into the coordinaigilar tothe singlevector case described in the previous paragraph

system spannely the PPAx and PPAy vecbrs manipulateavith Our system also supports the case in which a user would first
the trackball. This yields a set of 2D poift&€®, which are the first select an attributeia a mouseclick on the trackball boundary but
two components of ¥ since the projection is orthogonal. then move the mouse in a direction not necessarily aligned with the

We have not observed a significant delay in the direct projectiant t r i but e6s di mensi on vectom. Thi
of N-D points in the operation of th&ackball. But first pre vector with the mouse motioand move the attribute label
computing a 3D point cloud right after construction of the 3Bccordingly. Agai n, the selected di mensi
coordinate system and rotating them directly for the lifetime of P cancording to the direction and length of the mouse movement.
reduce the number of computations to roughlg of the original - , . . .
computations. We have not choséis intermediate step because >-3-2 G0 fi d € e ;e high-dimensional space
requires extra storagehich can be sigificant for large point clouds By clicking the middle mouse button, our system generates azPPA

vector according to thewo options decribed in Sectiorb.1 and a
5.3  Mouse Interactions within the Trackball Interface new orthogonal vector is computed using Gi&eommidt. Then wh
We provide three modesf mouse interactianwithin the trackball @ trackball up (down)motion the emphasis of the dimensions
All are controlled with differeh mouse buttomdepressedThe first ~Projecting on the PPA-axis is increased (decreased). The effect of
is the basic mouse interactiomen the trackball is rotatewdthin the ~this operation will only be visik once the trackball is rotated
current 3D subspace. It iegormed when the left mouse button igegularly and the new 3D subspace is exposéfte. call this

depressed (see Sectibr®). The other two operations are describef Unctional ity fideepo since-adshe ax
in more deti in the following. (i.e. the axis pointing into the depth of the display)
5.3.1  Chase clusters in adjacent 3D subspaces 5.4  Display of Attribute Labels on the SE  Boundary

When using the basic 3D subspace exploration mode (Section 2) mentioned, in order to better comprehend the relationships
we frequently observed that interesting patterns were startingbgtween a scatterplot projection and the data dimensions (attributes),
evolve but their full exposure was out of reach since it oeduim a we display the attribute names as labels altmg SE trackball
different, albeit nearby, subspace (i.e. a subssjthat could not be periphery (seéig. 6). The extent of whicta dimexsion contributes
reached isnply by 3D rotation) In thesesituatons we often feltthe to the projected point clouid indicated by label size and opacity.
need t o dfthe euaent 3D subspaaethe directionofthe The | arger and bol der the | abel 0s
trackball movement such thahese patterns couldbe reachedTo contributionto the plot The location of each label is computed by
solve this shortcoming we added the capability to smoothiyh e at t r i b u tthe BRAX ame& PPgyhvectons.d et be
transition from one subspace to an adjacent one. It allows userghto PPAx weighting, and ywbe the PR-y weighting. Then the
interactively changethe influence of the data dimensions whosangle betweerthis dimension vector and the positiveaxis is
projections align withthe curent tackball motion progressively computed as)= atar(wy/w;).

increasingtheir biasin the projetion matrix P. Thisgives the

exploring user access to the adjacent 3D subspace where the patterns
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Fig. 6. Dimension label overlap prevention. (a) Naive implementation causing label overlap; (b) Using our angular spacing scheme to
prevent label overlap; (c) lllustration of our label overlap prevention scheme.

54.1 Preventing Overlapping Attribute Labels 6. THE SuBSPACE TRAIL MAP AND VIEW GENERATION

In prectice, attribute labels magome to print on top of one another. . . .
(Fig. 6(a)). This occurs because several dimension vectors overlag)1e subspace trail map (STMp a spaal layout of thumbnail
We sdved this problem by forcing labels focate afeastb degres representations of viesv It servesthree purposesFirst, it enables
apart fromtheir neighbos. Fig. 6(c) shows this for the upper left users to keep track of the subspaces explored so far. These subspaces

quadrant Here,Q is the location oflabell locateda degreesaway can be r_evisited for further exploratiolsecond, itserves as a
from PPAy and’Q is the location ofneighboringlabel, spaced presentation platform fothe system to suggeaew subspaces not
[ degreesaway.We see thdt is too small causinghe two labels Y&t explored.Third, it permitsusers to define routes along which

to overlap Therefore we introduce a smalisplacement which they can transition between two or mocé these subspaces,
places label2 8@ . Now labell and label2 are spadedlegrees 6‘%59”“3"3’_“5'”9 them q:keyframesln ‘h¢ STM, sers can double
apart and no longer overlap click any view thumbnailand addt back intothe SE.For clustered

In experiments, we found that the best choicebfiar dependent data,all subspacesan be inserted into tH&TM at once byclicking

on the orientation of the dimension vector. The more vertical it is, e OAl I8Subbwstptaccre i n the control pan
the largerb should be, while for a more horizontal alignment, . .
smallerb will suffice. The following equation relatdsto the angle 8.1 Populaltlng the Subspace Tral Map (STM)

between the vertical axis and the dirsiem vector (for the upper left Each vi ew t humbnai |l i n2D schteplotSTM ho

quadrant only the other three quadrants are related by symmetry)€émtedded into a circle to mimic itappearance in the SE.CA

analysis is used to ensure a welspread layoutof the view
r - = — I mr Ttul thumbnails with a minimum of overlap.If overlap occursthe
— Tl wmld 6SmawsiVied sl ider tclawverthe eirclesizesl oy e d

Here,— and — are constants we determined for the maximal foﬁnlformly (see Fig. 11()). Alternatively, dicking on a partially

size of the labels which occur when the corresponding dimensu;irqden view will bring it to the foreground.
. ; ] To illustrate how the STM layout worksupposethere are)
vectors are fully projected. The angle- = 4° is the displacement 4 .

needed when 5 e great et ctdiea rigtbis&asc_?&(zvtvhsrset@rﬁdjn the STM and the dlmgnsmnall of the data

: hogdnal PPA v %ﬂs& PA x, % Tand-axes
needed when 92=0A. When 9 is b ; ’?erm?ne b
via linear interpolationFig. 6(b) shows the configuration of Fig. G(a)sﬁahn%ﬁ £uﬂsm&1’§ant"ﬁé?1 for‘}ngl exﬂ\’e%seodag
with our label displacement scheme enabled.

We also found that while @placing the labels provided for
better readbility, it was distracting in interactive modehenuses ) L o o
wererotating thetrackballsince it ould lead to sudden jumpsf the Where'Gs eitherx, y, or z, 00j On  p, U is the weighting othe
labels Hence we only applthe overlap removahettod when the Q data dimensionron 0 U 0 andQ is the Q dimension axis
projection is fixed (after releasirtpe mousd. Converselywhena Vvector We then use theznorm to define the overall weighting of
datasethas many dimensions the label overlp can never be theQ datadimensiorfor the’'Q subspace
preventedFor thisreasonwe addeda sliderto the control pandby
which users can set the maximum numberdisiplayed attribute @ 0 0 0
labels Thesecan be themost significantattributesor atributes

manually selected by clicking on théabels with<ctrl> depressed. These weights define aiD vector for each subspace:

000 0 Q

5.5  Point Brus hing, Tagging , and De-Activation Y oo o 8w j

Ourinterface also provides the ability to label a pgorta groupof  This allows us tdreat each subspace a0 -D point. We perbrm
pointg with a color chosen from a palette. This is useflilew pCa on this space of pointsVe keep the first twd®Cs and project
monitoring a certain poidtgor poirt g r)dehpvidiswhen the gl points (subspaces) into this basiince PCA automatically seeks
trackball rotateslt greatly helps in distinguishing different clusterso find the directions that maximize the vadarof the data points,
or seeing sultlusters emerge during motion. o theview thumbnailawill be or@nized in a way thatduceoverlaps.
Conversely, by painting a selected group of points in gray they Finally, the view thumbnails arembedded ira word cloud of
will become invisible and will be excluded from all further analysigjimension labelésee Fig. 2)Theselabels ardikewise placedbased
This helps for example,in recognizing other struates that were on this PGbasis, using the projection strength of their dimension
hidden or ambigous before this removal. vectos to define their sizeandopadties. To prevent clutter we only
keep thdabels of the temost signficant dimensions



6.2 Subspace and View Optimization

We perform view optimizatiofior several tasks. One is foduce

an optimized 3D subspacfrom a higher dimnsional subspace
geneatedvia subspace clusteringJsers may also use it on the fly
when interacting with the SE: (1) during exploration of a 3D
subspace, and (2) for chasing clusters into neighboring subspaces
the lattercase theview optimizationcan be seto performthe search
within a narrow range of dimension increments across an | I |

expanded rang&oth of these applications aitsers in therackbalt Fig. 7. lllustration of the ACO algérithm in the discrete domain.
based exploration. They help accelerafee tedious manual  Egach vertical bar grid point stands for a level of the parameter
explorationneeded to finda view that fits acertainview quality represented by the bar. The red, piecewise linear polyline is a

criterion, such ag clusteror a classseparation. possible solution with the levels indicated by the bar intersections.

6.2.1  View optimization via ant-colony optimization . . .

i o ) . Next, a generation ofants is set freemoving across the
A popular view optimization method ithe contextof high-D data parameterspace (from left to right in Fig, 7) selecting levels via
visualization is projection pursuit. Starting from any projectionpheromoneneighted randomization. While the levels of the initial
projection pusuit returrs the PPA xaxis and PPA y-axis that yijew are more likely, the randomization ensures a more diverse set
optimizes a targetedprojection pursuit index (PRIA number of of chojces After the whole set oparameters haseen traversed, the
methodologieshave beenproposedfor this task, such asill  generated viewsre evaluated by thehosenview quality metric
climbing [8], random searclf32], or simulated annealingd]. We  The pheromone of each parameter lésghenupdated according to
have strived fora sophisticated yecomparably easjo-implement the quality of the views it was part dfhe algorithm stopsifter a
algorithmi Ant Colony Optimization(ACO) [10]. To the best of our fixed rumber ofiterationsand for each view parameter, i h
knowledge ACO has nobeen usedor projection pursuiso far. andf hthe levelwith the highesamount ofpherononeis chosen.
General description of ant colony optimization (ACO) Fig. 7 re_sembles a parallel coordinate display. We observed that

after the single initial polyline, ACO tends to generate many
ACO simulates the behavior of ants in nature. When looking fpolylines which eventually narrow dowto a single slim cluster
food, ants initially travel randomly until they find food. On their wayhe optimized view
back they leave a pheromoe trace along the routenstinct ACO can also be constrained to produce views in a preferred
prescribes that otheants most likely follow this pheromone traceinterval. For example, onean constrain the searchnge on each
instead of wandering randomlBut pheromone also evaporateparameteto be close to the initighath. This can be dorwy fixing
gradually, and so over time, shorter (lower cost) paths will liee two @ds of the vertical bars to be close to the initial values
traveled more frequently andetome more attraige, leading to a Likewise, onecanalsoloosen this condition and do a global search.
convergence on the optimal patBased on this intuition, the In this case, the resulting view would be a global optimum according
simplest ACO algorithm consists of the followinthree $eps to different criteriaFinally, we shouldalsotake into &countthatthe
executed iteratively: (1)amstruct solutios, (2) evaluate solutions, ACO needs to return PPA vectorshich are required to be afnit
and (3) update pheromone increasing it on lowcost paths and length and orthgonal We therefore always normalize the returned
evaporating it on otherdt has been shown that the solution s®PA xaxis and theruse GramSdcmidt orthonormalizatiorio find
generated is typically quite close to the optimal solution the correspondingPA y-axis.
The ACO algorithm requires discrete search space. Projection o o

pursuit, howeverjs typically performedin the continuous domain 6-2.2  Other optimization capabilities
General solutionghat addresghis problem have been propose®ur system also allows users to select several dimensions and
[6][38] T we opted for a gridasedapproachln addition, ACO also produce a view in which those dimensions are equally expressed.
requires an objective functido judge the quality of the solutions. InThis produces plots similar td&8 Coordinates or RadViz amdnbe
our case, this can be any view quality metric, no matter how complgeful in cases whem@ne wishes to sede influenceof a subset of
This freedom of choice is enabled because Afd®s not require a attributes on the data. It is achieved by clicking on the respective
mathematical drivation of a gradient measumghich would be labels along ta trackball while depressirthe ctrk andspacekeys
needed for an angical optimization scheme Then, when releasing the mouse, the weightings for the selected
dimensions are set to theaximum. A GramSchmidt stefollows to
orthogonalizs thetransformation matrixig. 8 showsan example.

i

Specific applicationof ACO for subspace and view optimization

In our case, theearctspace igheset of all possibl®PAXx-axes and 623  llustrative use case
PPA y-axes and theobjective function is a chosen view quality™ "

metrici low stress[24], high classconsistency[37], or othersTo Fig. 9 shows results that can be obtained with our A@eed
explain how ACO works for this application, suppose (with no losgibspace and view optimization framework using the sales campaig
of generality) the simple case o2B data sewith two data axes,;d dataset described in Section .7We first apply simple fneans
and @, where thePPA x-axis andy-axis can be represented asclustering using the Structuitased Dstance Metric of Lee teal.

000 | Q 1 'Q,and0 0O | 'Q T Q8Therearefour [25]and obtairthree subspace clusters. A subsequent PCA analysis
unknownsi | B R andf (for anN-D dataset there would béi2 for each cluster establish¢hree separate 3D subspaces. Clicking the
unknowns). As an illustration, hese unknown parameterare O Al | Subspaced button adds all thr
represented as thieur vertical gridded baris Fig. 7. 9(a)). We color the three subspace clusters blue, magenta, and green,

Our ACO algorithm differs fromthe traditional one in the and color the circumference of each thumbnwiglv by the subspace
selection ofthe initial pheromone distributioWhile the taditional it represents. We observe that for the magenta and green subspace
ACO typically begins with an unbiased digtution, ours camotdo  views, the points of the focus cluster (magenta or green,
this since we begin from aninitial PPA xaxis and y-axis respectively) still overlap with points of other {Foclustersi
configuration,e.g.,a randomized viever the PGbask of a cluster. especially for the magenta subspace. Next, we optimize the three
To account for this, wencreasethe pheromone of thiv i e w 8u§spaceviews using distribtion consistent criteria [37], shown in
parameter levelggiving rise tothe red gth in Fig.7, which sets its Fig. 9(d). We observe that the blue
levels to the discretized i R and values of this initial view.  projection arealmost unchanged. This is because the three clusters

are already well separated here. Since we only run optimizaten in
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Fig. 8. Equally expressing several dimensions. (a) The original
projection. (b) The optimized projection where %Complete, Plan'dRoi
#Opportunity, and #Leads are equally expressed.

(d)

close rang of the original PC projectiaiis view might already be Fig. 9. Using the ACO-powered subspace and view optimizer to
the best compared to its neighbors. (Better views could possibly bgtimize the visual separation of three subspace clusters, colored
obtainedby expanding this range.) Conversely, the subspaces of theie, magenta, and green. (a) The STM with the thumbnail views of
magenta and green clusters have significaimtiproved. In each each subspace. The color of each thumbnail circle indicates the
pane] the respective subspace clusters are now clearly separatedspace cluster it shares its basis with. We observe that the

from the others. subspace PCs alone cannot isolate the subspaces well i there is still
o a significant amount of cluster overlap. (b-d) Optimized subspaces for
6.3  Transitioning Between Subspaces the blue, magenta and green cluster, respectively, using the

Self-initiated and controlled animation can be a helpful paradigrﬁistribution consistent view quality criteria. All subspace clusters are
for humans to understand how two or more different representatiof@w well separated from the others in their respective subspaces.

of the same infqnalion relate to one anothgi8][33]. We have transition between findings wheresenting the results, as opposed
employedanimation to help users understand how two subspa

relate to one another, withétadded aim that this might alswtill a (fg%bruptly changingheviewsor simplycross dissolving them

better undestandig of the highD data spacen a larger context
Users can select multipthumbnail viewsin the STMand connect
them with a path. Moving h e v@T s & Bt thénhchangsathk e in the following, wedemonstrate the versatility of our framework by
PPA axis vectorfom one subspace amother ways of applying ito a diverse set aisescenariosnvolving high-D

Simply linearly interpolatig between bases of PPAxes daa. Weshowo ur framewor ¥ visag) plisterc at i or
however, would lead to nonlinear intermediate projectiohe, analysis (2) visual item discovery and selectjohelping users to
therefore,adopted the algorithm by Cook et §8] to transition recognize and negotiate tradeoffs among itemd,(gnvisual cluster
between the two subspaaegsing singular value decompositidfig.  refinement allowing uses to partition featureriven clusters based
10 shows three snapshots of a sequence of frames from suctlomrnthe visual expression of the aggregation of these featéres.
animation along with the path connecting the tworresponding fourth use casé the visual seto of a classifier in the psence of
nodes in the STM. Alkeyframesand the path connecting theame intermixing outliers is presented in the a p esupgdement.
shown in pane(d). Panek (a) to (c) showintermediate view along
the path, andhie yellow dot in panel (d) indites theviewd s | o c7alt i dsa Scenario #1. Visual Cluster Analysis

in panel (b) Since these still frames can only provide a limitedo jllustrate thetrackball interactionswe chose a multivariate

illustration, the reader is encouraged to vitae provided video to cluster analysis taskvolving an interactie study ofa salesforce

appreciate the insightful visual effect of thisimation. working for a large companihe dataset consists of 900 points (one
Alternatively, wea | so i ncl ude a whee & H& Halespérdo) Bnd 10QiBufes parameterizing the basic corporate

narrator would click théd Ne x t 6 b utd theonextkdyfeamey @ales pipeline. Briefly, a sales campaign begins aié¢adgenerator
instead of using the slidefThe animationprovides a smooth

7. APPLICATION EXAMPLES

Plan'dRo1

@) (b) (© (d)
Fig. 10. Transitioning between two subspaces marked in the STM using the animation slider. (a)(b) and (c) are three intermediate views. (d)
is the animation path in the STM. The yellow dot indicates the location of the view in (b). The provided video has a complete animation.
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Fig. 11. Analyzing the sales force dataset. (a) The dataset projected onto the first two PCs. There are three visually separable clusters -- the three
sales teams under study. (b) STM with view thumbnails of the overall space and the extracted subspaces for each of the three teams -- each
optimized such that its focus cluster is maximally separated from the others. (c) Subspace of the blue team (d) green team subspace, and (e)
magenta team subspace. (f) Increasing the weighting of PipelineRevenue and ExpectedROI by moving the mouse towards the respective labels
(with right mouse button depressed). Both the green and magenta team generates more revenue than the blue team. (g) Increasing the weighting
of #Opportunity along the PPA-y axis. The green team generates the fewest opportunities. (h) Increasing the weighting of Cost/WonLead. The
green team is the most frugal, but has the most revenue, while the blue team is the most wasteful with not much revenue. (h) STM setup for the
animated presentation of these findings.

who produces prospective customers that a salesperson might be ablélext, Pat examinethe SE boundaryn Fig. 11a). He notices
to close a deal with. If these leads receive positive responses, ity there aregwo groups of closely mappeattributeswith strongly
becomewon leadsand receive a sales pitchatostper wonlead printed labels:(1) ExpectedROI and Pipeline Revenug and (2)
Upon further positiveresponse they become opportunities or LeadsVén and#Leads As explained irSection 41, this means that
potential customersCostis involved in every step and higlipeline the attributes in each of these groups are strongly correlBtgd.
revenueis the ultimate goalThree are three sales temim our finds this view informative andavest to the STM
dataset. 7.1.2  Step 2: explore the salient subspaces
7.1.1  Step 1: explore the PCA view Next, Patwishesto examine the subapes of each cluster. He
Let usassume a salesam analyst, Pais about to anake the data performsPCA on allof themand add them to the STMPat then
He beginswith treaing the entiredataset s.one cluster and performsoptimizes each subspasach thaits focusclusteris bestseparated
PCAi shownin Fig. 1a). He immediately noticethat there are from theothes. In Fig. 11b), the view thumbnailsoutlined in blue,
three visually separable clusterepresentinghe three saledeams magenta, and greeare the sbspaces for thecorrespondingly
These distinct clusters suggest ttiet three sales teams indeed seeplored clustersThe neutraliew is the subspace for tleatiredata.
to apply different strategies for possibly different outcomes. Pat Patf i r st brings the blue cluster
clicks the OApplyd button t o clbserexaminatorgFig.clla))sHe edtices thaCastrhasahe imosh  f r ¢
original data The resultthethumbnail view @ the bottom ght side prominent labelndthatthe blue clustewraries significantly in this
of panel(a)) corfirms that thethree clusters aiiedeedreal clusters. directioni more than the twathers.This suggests thahere isa
wide diversityin the cost incurred by members of the blue sales team.



Next, Patbrings the subspace tfie greencluster intothe SE a whim, make casual observations in the process, and just as easily
(Fig. 11(d)). He notices that in thisubspace #Leads and Cost areeturn back to a traditional bivariate scatterplot visualization. The
most widely expressed (i.e. these attributes best distinguish the glietrested reader may watch the video totseecomplete process.
sales team from the other§yrom the plotPat learns that the green
team, with its cluster being most closely locatedthe #Leads 7.2  Use Scenario #2: Visual Item Discovery & Selection

attribute, seems to generate the most leads, while the blue t&adfecting the best college, given the many personal constraints and
generates the fewes$de also confirmshe f|nd|ng from the last view preferences one m|ght have‘ is arguab|y one of the most difficult
that he blue team seems to incur the highest cost choices a person will make in life. It invels the task of discovering
Lastly, Pat brings the magenta subspace into th@~8E 11(e)). the set of schools that best meetn e @essonal requirements,
He confirms some of the findings of the previous plots and algemparing thenby weighing thé tradeoffs, and then selecting the
leansthatPlannedRev, Cosind ExpectedROére the attributes that college that fits bestiere we use thmixed dataset initidly created
have the highestariance forthis group of data. Finally, he alsopy Nam and Muellef31]. It has multifaceted data 0B0 of the top
learns that the magenta sales tesusepaatedfrom the othetwo by  Us collgges,enaliing the collegeseeking student to look at schools
acombination ofPlannedRewOpportunityandExpectedROI not only through th lensof academicsut also through #lens of
713 st ) . . social life andthe general environment the sdfloresides in.
1. ep 3: look for differences in sales strategy A . . L .
o cademic ranking and tuition information were extracted from a
Pat knows that highPipeline Fevenueand Expected ROlare |eading source of such informatiénthe US News & World Report
important targets for any business. He decides that it woel@d [49]. The College Prowler websit§48], on the other hah ranks
beneficial undertakingo exploreh ow t he c o mfpreen ¥dligges r# d Mufititude of social and environmental factors. We
relates to these two revenue parameters picked 8 of the20 the siteoffers: athletics, campus housing, local
~ He uses the STM to bring the initiRICA view (small panel in atmosphere, nightlife, safety, transportatianademic environment
Fig. 11(a)) back to the SHHe presses the right mouse button angind weather. Each score is available legtededranging fromA+
moves the mouse indtdirectionof the two revenue parameteFsg. g D-. We mappedheseequidistantlyto values in the rang@ to 1.
11(f) shows the outcome. Notieat thefont of the two revenue labels  The College Prowler website allows users to navigate the space
gets stronger which means that the corresponding two attribug¢scalege attributes by filtering,using slider bars and menu
receive more weight in the viewed 3D subspd¢e plotshows that selections for each parametemarrowdown the search. This cée
boththe green and magenta sales tegeserate more venue than rather tedious and it also makes it difficult to recognize tradenfés.
the blue one and that the green te@mslighter better than the pelieve that our SE provides a more playful and targeted experience,
magenta one. Pat alsotices the#Opportunityattribute near the top while the STM is a better platform to save any intermediate findings
of the plot and that it seems to separate the clusters weefighires In the following, we shall follow 17year oldTina who is just
that revenue probably has a lot to do wiitbgenerated opportunities ghout to finish highschool and see how she uses our subspace

and he decides to give this attribute more emphasis. voyager to find the university she feels best about.
He uses cluster chasing to emphagi@pportunity clicking on ) _ ) _
its labd and moving the mouse upwards with thght butbn 7.2.1  Checking out the relationships of attributes

depressed. He similarly emphasipéselinerevenueand arrives a2 Tina starts out with a view onto the datase@asingle cluster using
traditional bivariate scatterpldthat hasp_ipeline revenu@longPPA the primary PC axes as a basis (Fig. 12(a)). As mentioned in Section
x and#opportunityalong PPAy (seeFig. 11(g)). He observeshat 4.1 in such a view the dimension vectors of strongly positively
while the green and magentams vary in the nmber of correlated attributes tend to coincide and assalt their labels map
opportunities’ magenta creates moreboth groups have somewhattg similar locations aleg the trackball boundary. Conversely,
similar revenue but green has a slighivantageOn the other hand, negatively correlated attributes will map to opposite sides of the
the blue teanalsohas high#Opportunitybut its revenue is low trackball boundary. The only condition for both is that their
So why does the blue team lack revenue despitesiihilar projection into the P@xes basis is sufficiently significant, which is
amount of opportunities? Pat knowt sales teantypically spend  visually expresad in our system by a large and heavy label font. In
money to turnvon leads intcopportunitiesHe decides to mak€ost  the initial view of Fig. 12(a) Tina observes two sets of positively
per won lead the new PPAX axis by selecting it from the attribute correlated attributes: (1)Academics and Tuition, and (2)
list in the control panel (since it is neisible currently).Fig. 11(h) | ocalAtmosphereNightLife, and Transportation She also observes
shows the outcomeHe quickly notices thattte blue team incurs 3 few negately correlated attributes, among them: @jyademic
much higher cost than the other teams and that the green teamyfi#s Weather and Athletics, and (2) LocalAtomosphereand
the highestpipeline revenueln fact, the green team is the mosNightLife, with Safety From theseconstellations Tina quickly
frugal having the narrowesluster recognizes that top academic universities tend to charge higher
Based orthese discoveries, Pat concludes that while generatifigtion, but at he sameime, their athletic teams are not necessarily
many opportunitiessounds like avinning strategyjt is associated among the best. She also learns that universities built in nice town or
with high costand therefoe the generated revenue tedselow. city areas usually have bettaightlife and transportation systems,
This is thelesson taught by the blue teaih thus seems better to pyt they also tend to be less safe. All this is good to khefure

replicate theg r e e n t e a inépsnd Bttle casttor gaghion  engagingn the actual selection process described next.
leadand despite gaining fewer opportunitjesbtainhigher revenue
7.2.2 Finding the set of schools that fit the best

7'1'4 step 3:use the _ST_M for sharing the flndl_ngs ] Tina does not come from a wealthy family and so her immediate

Pat is excited about his findingsd plans afesentation to his group.focus is tuition cost. Her first stag, thereforeto selecfTuition and

He notices that the BV is too cluttered and so hases the move he mouse towards that label (to the left). Next, she wants to _
ASmal | ViewSizeo slider to 1 edde€hichtohtle schdoid RameddacddBnfic ranking. Bhe kelettgnb n a i
Then he connects them by simple mouse clicks and builds a pgtdNewsScorend moves the mouse downwa@ maximize the

(bottom panel in Fig. 11(i)). Clicking éh 6 Ne xt 6 b u §pte®dn This Iddvds heh With the aaligned scatterplot shown in

findings can now be displayegquentiallyin an animated fashion. Fig. 12(b). In this plot, all points on the lower right side are the

. . universities with high rankings but low tuitidnthese are the ones

715 ) Concluspns from this usg calse Tina is interested in the most. She colors them in magenta and asks

We believe that this example convincingly demonstrates how our ffe system to label theimin this case with the unérsity names.

interface enables users to playfully arrive at different muléteri  Tina likes the outdoors a lot which requires the weather to be
scatterplot projections, quickly respond to new explorations |deasg:§hera||y good. So she addeatheras another requiremetut
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(b). Make Tuition the
PPA-x axis and
USnewsScore the PPA-y
axis. The magenta-
colored, labeled points
are the schools with high
US News Score and low
Tuition.

(a). The PCA view of the entire
dataset. It reveals a strong positive
correlation between Academic and
Tuition, as well as between
LocalAtmosphere,  NightLife, and
Transportation.

(c). Increase Weather along the
PPA-y axis. Purdue moves up
revealing its bad weather,
TexaxA&M and UMaryland do not
move much but are low in both
scores.

(d)

(e). Increase Nightlife along the
PPA-y axis. USCViterbi has the

L best overall score, followed by
. feglyaT . : . UCLA, Georgia Tech, UCSanDiego
* L v and UC Berkeley.

5C-Vite

(). The final setup. The dimension
projection reveals four dimension

groups. (d). Increase Athletic along the

e e PPA-x axis. UCSantaBabara has a
Jen e very low athletic score.

JsChvite

Nightlif

Fig. 12. Finding the best college in the college dataset.

Table 1
Rankings of the final five candidates

UCLA 10 10 ) 12 10 9 4 11 69 22428
USC-Viterbi 10 2 8 11 12 7 8 11 77 22734
Georgia Tech 10 11 5 10 7 7 8 86 22188
UC Berkeley 10 9 8 9 8 7 10 11 89 14998
UC San Diego 9 8 6 11 9 11 6 12 72 14694
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