
1 
 

The Subspace Voyager: Exploring High-Dimensional Data along 
a Continuum of Salient 3D Subspace 

 Bing Wang and Klaus Mueller, Senior Member, IEEE 

Abstractð Analyzing high-dimensional data and finding hidden patterns is a difficult problem and has attracted numerous research 

efforts. Automated methods can be useful to some extent but bringing the data analyst into the loop via interactive visual tools can 

help the discovery process tremendously. An inherent problem in this effort is that humans lack the mental capacity to truly 

understand spaces exceeding three spatial dimensions. To keep within this limitation, we describe a framework that decomposes a 

high-dimensional data space into a continuum of generalized 3D subspaces. Analysts can then explore these 3D subspaces 

individually via the familiar trackball interface while using additional facilities to smoothly transition to adjacent subspaces for 

expanded space comprehension. Since the number of such subspaces suffers from combinatorial explosion, we provide a set of 

data-driven subspace selection and navigation tools which can guide users to interesting subspaces and views. A subspace trail 

map allows users to manage the explored subspaces, keep their bearings, and return to interesting subspaces and views. Both 

trackball and trail map are each embedded into a word cloud of attribute labels which aid in navigation. We demonstrate our system 

via several use cases in a diverse set of application areas ï cluster analysis and refinement, information discovery, and supervised 

training of classifiers. We also report on a user study that evaluates the usability of the various interactions our system provides.  

Index Termsð High-dimensional data, subspace navigation, trackball, PCA, ant colony optimization

1.  INTRODUCTION 

ATA with many attributes have become commonplace in a 
wide range of domains, such as science, business, medicine, 
etc. In these data, the most interesting relations are often 

multivariate, and gaining proper tools to recognize these 
relationships reliably is still an active area of research. While 
automated analysis can be useful in finding some of the high-
dimensional patterns, adding the human into the loop can break ties 
and help discern patterns in confounding and noisy data settings that 
benefit from the intricate reasoning faculties of human domain 
experts. However, we are still far off from having effective visual 
tools for high-D data analytics that make the best use of the inborn 
capabilities of the human visual system and at the same time also 
observe its limitations.   

High-D space is generally confusing to most people since 
humans do not possess the innate neural network to recognize and 
reason with high-D objects. Spatial reasoning skills are acquired in 
early childhood where often haptic and visual experiences are 
combined to build 3D mental models of the real world. Since high-D 
objects are largely mathematical and do not occur in a tangible form, 
the associated cognitive reasoning chains are not developed in these 
critical early years. This lack of reasoning faculties represents a 
barrier for most people when dealing with high-D data later in life 
and so deprives them of the chance to find more insight in these data.  

We describe a framework and interface that eases this barrier by 
design, called the Subspace Voyager. It serializes the exploration of 
high-D space into a continuous travel along a string of generalized, 
but not necessarily dimension axis-aligned 3D subspaces, visualized 
as scatterplot projections of the data points. This serialization allows 
us to abolish the complex interactions and representations that are 
often typical to high-D space exploration tools. We replace them 
with paradigms familiar to most people, such as trackballs, maps, 
and word clouds. Our interface uses these to help users explore the 
generalized 3D subspaces, navigate the continuum of 3D subspaces, 
and assess the relevance of individual attributes for a given subspace.  

The simplicity gained through the 3D subspace decomposition 
comes at a price ï the extent of the transformations defined on such a 
restricted subspace is limited and may not reach far enough to 
generate a projection in which a pattern of current interest is well 
expressed. To enable a reach beyond these limits we have augmented 
the 3D navigation interface with extra capabilities that allow users to 
ñchaseò the discovered patterns by moving to adjacent 3D subspaces 
via simple mouse interactions. In this way, patterns can be observed 
that are truly multivariate and not restricted to a single 3D subspace.  

In some sense, our approach is akin to that taken in an upcoming 
Indie video game, Miegakure [46] (itself inspired by the classic 
novel Flatland [2]) which enables 4D space travel by swapping one 
of the three current dimensions. We go significantly further than this 
game: (1) our spaces are much greater than 4D, and (2) we allow 
transitions in all dimensions simultaneously. Yet, it is encouraging 
that the entertainment industry sees fun in this type of space travel. It 
suggests that our interface might be fun and engaging as well, which 
will immensely benefit the analytics that is performed with it. 

The 3D subspaces our system supports are general in the sense 
that they do not need to be constrained to three specific data axes but 

D 

                               ðððððððððððððððð 

¶ Bing Wang and Klaus Mueller are with the Visual Analytics and Imaging 
Lab at the Computer Science Department, Stony Brook University, Stony 
Brook, NY. Email: {wang12, mueller}@cs.sunysb.edu. 

Manuscript received December 21. 2016. 

 

               (a)                                                        (b)                                                      (c)                                                  (d) 

Panel (a) and (c) are two projective views onto a 10-dimesional sales pipeline dataset with 900 points. The labels at the circle boundary 

indicate the data attributes and their axis directions in that view. The strength of the label fonts indicates how well the attributes are 

expressed in this view. Panel (b) shows a view generated by using our systemôs trackball interface to generate new projective views between 

view (a) and (c). The motion parallax clarified that there were not two but three clusters. Panel (d) shows the three clusters in different colors.     

This paper is © IEEE and appears reformatted in IEEE Transactions on Visualization and Computer Graphics, 2017 

mailto:mueller%7d@cs.sunysb.edu


2 
 

can be spanned by a basis of three arbitrary orthogonal vectors. This 
affords a better alignment with the high-D phenomenon under study 
and effectively allows its exploration in relation to all relevant data 
dimensions. It, however, also brings about a huge number of possible 
subspaces. To manage this complexity we provide a variety of 
objective-driven search and clustering facilities that assist users in 
locating subspaces with interesting structures. 

When designing our interface we placed great emphasis on 
making the interactions direct, intuitive, and responsive [34]. Most 
exploration goals can be achieved by expressing them directly in the 
visualization, via simple mouse selections and transitions. At the 
same time, our framework is quite general and is readily applicable 
for many tasks and application areas that involve multivariate data, 
such as cluster sculpting [30] and analysis, information discovery, 
and the supervised training of classifiers, just to name a few.  

In summary, the specific contributions of our work are: 
¶ A serialization of high-D space exploration into a journey 

within and across a string of adjacent generalized 3D subspaces 
¶ An interactive trackball interface for 3D subspace exploration 

augmented with direct controls for goal-directed transitioning to 
adjacent 3D subspaces ï an activity we call cluster chasing 

¶ An illustrative, non-obtrusive labeling scheme that allows users 
to appreciate the influence of different variables on the display 

¶ Various goal-directed view optimization and view selection 
facilities that lower the subspace navigation overhead and 
expand the search for interesting high-D phenomena 

¶ A map-like interface organized by view similarity where users 
can store interesting scatterplot views and construct a tour for  
presentation within an animated scatter plot display 

Our paper is organized as follows. Section 2 reports on related 
research motivating our work. Section 3 focuses specifically on the 
TripAdvisorND system ï a precursor of the Subspace Voyager. 
Section 4 provides a system overview. Section 5 describes the 
trackball based subspace explorer. Section 6 presents the subspace 
trail map. Section 7 outlines three use scenarios. Section 8 describes 
our user study and its outcomes, and Section 9 offers conclusions. 

2. RELATED WORK  

Our principal visualization modality is the scatterplot ï a projection 
of the data into an orthogonal 2D basis. In scatterplots, clusters and 
their shapes are relatively easy to recognize, but points distant in 
high-D space may project into similar locations and this can lead to 
ambiguities. Helping users deal with these ambiguities is one of the 
major aims of our work. Another aim is to aid users in producing 
informative projective views into interesting subspaces of the data. 
In the following, we divide work related to ours into four aspects.      

Dealing with projection ambiguities  

One way to resolve projection ambiguities is to decompose the space 
into a matrix of axis-aligned bivariate scatterplots, called SPLOM 
[17]. While SPLOMs can help with disambiguation, users might find 
it difficult to integrate information from such a mosaic of plots, 
especially when the number of dimensions is even moderately large.  

Another approach is to use layout optimization schemes, such as 
Multidimensional Scaling (MDS) [24], Linear Discriminant Analysis 
(LDA) [28], and Stochastic Neighbor Embedding (t-SNE) [42]. 
MDS, for example, seeks to generate a layout where the pairwise 
distances of points in 2D are relatively similar to those in high-D 
space. But even with layout optimization, trying to warp high-D 
space onto a 2D plane is inherently ill-posed since it cannot fully 
capture multivariate data variations. Distortions are the consequence, 
making it difficult to correctly recognize the true shape and 
appearance of clusters, and also hampering the assessment of point-
wise distances, both far and near. Hence, while ambiguities might be 
resolved, the risk of distortions has taken their place.   

A third alternative is to enable users to change the projection 
basis in a continuous fashion, effectively using motion parallax to 

resolve depth and relative distance. Several systems have followed 
this paradigm. One of these is ScatterDice [11]. It restricts the 
transitions to motions between two bivariate projections at a time, 
giving rise to a dynamic 3D point-cloud projection display. More 
general is the GGobi system [39], itself derived from the seminal 
concept of the óGrand Tourô [5], as well as the TripAdvisorND 
framework devised by one of the co-authors [31]. Both allow users 
to transition between arbitrary multivariate projections. Our current 
framework also follows this general paradigm but offers interactive 
exploration capabilities that greatly exceed those provided by these 
earlier systems. For example, while GGobi also uses a trackball, it 
does not offer the advanced subspace exploration facilities our 
trackball interface provides.  

Defining a multivariate projection basis  

Our layout is a generalized projection display where the 2D location 
p of a projected N-D data point x with coordinates xi, 0 Ò i Ò N-1, is 
given by ▬ В ○░ὼ. Here, the vi are a set of 2D basis vectors 
with common origin O. We can use this formulation to compare our 
display with several others that are in common use. In Star 
Coordinates [21] all basis vectors have unit length and by ways of 
changing their orientations, users can interactively increase the 
spread of the projected data points. RadViz [20] is similar but 
includes a normalization by В ὼ. Conversely, in biplots [14] the 
vector basis is a projection of the axis vectors into the 2D frame 
spanned by the two major principal component (PC) axes. As a result, 
the vector v are typically not (all) unit length and their orientation is 
clearly defined. Projecting the data points into the PC-basis naturally 
maximizes their spread in the 2D display which removes the need for 
interaction. However, the projection ambiguity problems still remain.  

Our display is similar to biplots but distinct in two ways. First, 
we allow users to change the biplot projection basis interactively 
which helps overcome the ambiguity problems via motion parallax. 
The transitions can affect many dimensions at once, and not just one 
at a time like in Star Coordinates and RadViz. Second, we plot the 
dimension labels at the display periphery. We use the sizes and 
opacities of the dimension labels to indicate the influences of the 
attributes on the projection. Conversely, biplots project the data axes 
as arrow-headed lines directly into the display leading to clutter.   

Selecting informative views 

The problem of projective view overload is not unique to SPLOMs. 
In many cases, it can be helpful to include proper quality criteria by 
which the most informative views can be selected. Research in this 
area has mainly addressed the selection of axis-aligned views in the 
presence of clustered or classified data. Sips et al. [37] define a class 
consistency measure which favors views based on the distance to the 
class center of gravity or on the entropies of the spatial distributions. 
Tatu et al. [40] assess quality by measures on density, histogram, and 
class separation. The rank-by-feature system [36] allows users to 
specify certain statistical criteria, such as correlation, scatterplot 
uniformity, etc. Schäfer et al. [35] describe a quality metric that 
focuses on structural preservation and visual clutter avoidance. 
GGobi uses projection pursuit [9][13] to generate interesting 
multivariate projections. We use a popular evolutionary algorithm ï 
ant colony optimization (ACO) [10] ï in conjunction with view 
quality metrics such as stress, class density, class separation, holes, 
and central mass.  

Finally, a problem with having many projections is also how to 
manage and organize them. Several map-based diagrams have been 
proposed [31][45]. We provide a novel map that is dedicated to the 
management of generalized subspaces. In addition, our map also 
allows users to construct animated tours for presentation purposes. 

Managing interesting subspaces 

Subspace clustering has been an active research area in the data 
mining community [23] but the focus was mostly on automated 
algorithms. In the field of visualization, one may distinguish the 



3 
 

contributions by how much they rely on automated subspace analysis 
methods. On one end are the works of Yuan et al. [44] and Kim et al. 
[22] where users are in full control. The former proposes a visual 
subspace exploration approach that focuses mainly on interactive 
dimension set selection and refinement. The latter suggests a system 
where users can drop data points into two different groups and the 
projection basis vectors are updated automatically. Lehmann et al. 
[26] find minimal sets of projections, allowing users to draw a path 
to traverse between them. In our system, users can also modify the 
projection basis to favor certain dimensions, namely by emphasizing 
the influence of these dimensions directly in the interface.   

Other approaches first perform an automated subspace clustering 
step and then visualize the results as small multiples of scatterplot 
projections [4], as MDS layouts [41], or use animated transitioning 
between them [27] akin to our map. We also first perform clustering 
but then use the results to provide guidance in the subsequent visual 
exploration of the actual subspaces, focusing on cluster appearance 
and relations. This can be helpful in the visual reasoning process.  

Related in some respect is also the LineUp system by Gratzl et 
al. [16]. LineUp requires users to manually set a weight for each 
attribute to determine its influence on the rankings of the data items. 
However, setting weights explicitly might not be intuitive to 
mainstream users with limited quantitative reasoning abilities. They 
may simply not know their preferences at this level of detail but 
rather discover them implicitly during data exploration. Our system 
supports this type of exploratory discovery process.  

3. RECAP :  THE TRIPADVISOR
ND

 FRAMEWORK  

The approach we have taken is largely motivated by our earlier 
TripAdvisorND framework [31] and the shortcomings we have 
observed in its use. One major improvement is the new trackball  
interface, which is much more direct than the spatially disjoint 
navigation pad of TripAdvisorND (see Fig. 1). This navigation pad 
consists of a polygon with S vertices, where S is the cardinality of the 
subspaces. Each vertex corresponds to a native dimension ï hence 
the subspaces are axis-aligned (and not generalized). It should also 
be noted that for S>3 different orderings of the vertices are required 
to allow users to access the full projection coverage of the subspace. 

The interior of the polygon shows two disk-shaped pointers. 
They represent the two (N-D) basis vectors into which the N-D point 
cloud is projected for display using the vector dot product. In [31] 
these two vectors are called Projection Plane Axis (PPA) vectors ï 
the x-axis is PPA-x and the y-axis is PPA-y. The vectors are 
computed from their positions in the pad polygon via generalized 
barycentric coordinate interpolation [29]. 

In the pad-based interface, users can control the influence a 
dimension has on the display by moving either the PPA-x or PPA-y 
pointer toward that dimension. This essentially spreads out the 
projected point cloud along that dimension and so reveals the 
dimensionôs ability to separate the data points into different 
populations/clusters. Then, by moving the other pointer toward 
another dimension, bivariate relationships can be visualized. Finally, 
when moving either or both pointers midway between a set of 
dimensions users can appreciate the combined effects stemming 
from the multivariate relationships of these dimensions. 

Shortcomings of TripAdvisorND  motivating our work  

While the pad interface allows unprecedented control in the dynamic 
manipulation of the view onto the N-D point cloud, the need to 
separately manipulate two pointers in sequence suffers from a certain 
lack of ergonomics. A further shortcoming is that users are required 
to keep track of two interfaces at the same time: (1) the visualization 
window that shows the moving point cloud along with a projected 
coordinate system, and (2) the pad that controls the orientation of the 
projection plane. In practice, a user may observe one or more 
dimensions that should be emphasized in the display as they might 
offer the potential to break up a cluster into two or more components. 
To do this, the user would need to looks at the pad to identify which 
pointer should be moved and in what direction, and then observe the 
effect in the display. In the present work, we aimed for an interface 
that makes this operation more straightforward by embedding the 
navigation controls directly into the display. Enhancing the well-
known trackball interface with N-D navigation capabilities seemed 
to be good choice toward this goal. We also added view optimization 
and other navigation aids to support the manual exploration, 
allowing users to arrive at meaningful projections faster.  

4. SYSTEM OVERVIEW 

Fig. 2 shows the Subspace Voyager interface. It has three main 
components: the Subspace Explorer (SE), the Subspace Trail Map 
(STM), and the control panel. The latter allows users to set the 
various parameters and modes in the system.  

The exploration pipeline of the Subspace Voyager is illustrated 
in Fig. 3. After loading the data, our system performs either Random 
Projection or Subspace Clustering and Principal Component 
Analysis (PCA) to identify an initial promising 3D subspace. More 
3D subspaces can be generated via the control panel at any time. 

The data is then projected into this generated subspace and is 
displayed in the SE-embedded trackball. There are different 
interaction modes users can perform on the trackball. The first mode 
is to rotate the trackball while pressing down the left mouse button. 
This enables an exploration of the current 3D subspace. The second 
mode allows users to transition to adjacent subspaces where certain 
attributes of interest have a higher emphasis than in the current 3D 
subspace. It yields data projections that better capture the cluster 

Fig. 1. Pad-based navigation interface of TripAdvisorND. In the 

setting shown, the PPA-x vector is dominantly a combination of 

dimension axis DA 4 and DA 5, while PPA-y is a combination of 

DA 6, DA 1, and DA 2. 

 

Fig. 2. Subspace Voyager interface. It has three main 

components: the Subspace Explorer (SE), the Subspace Trail 

Map (STM) and the control panel. The SE is coupled with the 

trackball interface. It not only displays the data as a scatterplot, 

but it also allows users to visualize the current directions of the 

projected dimension axis vectors as labels placed outside its 

circular boundary. The labels are properly sized in terms of the 

corresponding attributeôs influence on the display. The SE offers 

various interactions for users to examine the data. The STM holds 

a set of views (and their parameters) that users may have found 

interesting during the exploration, embedding them into a word 

cloud of attributes. Finally, the control panel allows users to set 

the various parameters and modes in the system. 

Subspace Trail Map Subspace Explorer 



4 
 

distributions in these attributes. In this cluster chasing, users move 
the mouse ï now with the right mouse button depressed ï toward the 
respective attribute labels displayed on the trackball periphery. This 
increases the weight of these dimensions in the PPA vectors.  

As mentioned, in our system there is no need for manually 
optimizing views which can be tedious. Our system provides Ant 
Colony Optimization (ACO) [10] to generate the best trackball 
configuration automatically according to a set of user-selected view 
quality criteria. Users can also tag points by brushing them into 
different colors. This is helpful for cluster analysis or for editing out 
unwanted structures. Finally, at any time users can save the current 
trackball view to the STM to keep track of interesting findings. Any 
of these STM views can then be dragged back into the trackball for 
further exploration. Multiple small views can also be linked and 
traversed in order, providing a smooth transition between views.    

4.1 Generating a Set of Subspaces   

Choosing meaningful subspaces for exploration is a key challenge in 
multivariate data analysis and much work has been dedicated toward 
this goal (see Section 2). We have implemented two such strategies: 
(1) random view generation and (2) subspace clustering. Users can 
generate new subspaces at any time via the control panel.   

For the former (1), we use the technique proposed by Anand et al. 
[1] and then further optimize the subspace using ACO powered 
projection pursuit (see Section 5.4). For the latter (2) we assume ï 
similar to Liu et al. [27] and our own work [43] ï that each cluster 
forms a subspace on its own. We characterize each such subspace by 
the three principal components obtained with PCA. Finally, for both 
of these methods, we use ACO view optimization to generate a high 
quality (given the chosen metric) scatterplot projection in the 
trackball display. 

We should also note that in a view that has the PC vectors as its 
basis if two (or more) dimension vectors are very close, it means 
they are to some extent correlated. This is especially true when these 
dimensions have large weightings in one significant PC (i.e. these 
dimensions are strongly correlated [47]). We will make use of this 
relationship in the use case described in Section 7.1. 

4.2 The Subspace Explorer (SE)  

The SE is coupled with the trackball interface. It not only displays 
the data as a scatterplot, but it also allows users to visualize the 
current directions of the projected dimension axis vectors as labels 
placed outside its circular boundary. The size and opacity of a label 
indicate to what extent its associated attribute is expressed in the 
projection. A larger and bolder font means that the scatterplot 
exhibits more of the attributeôs variability. The label placement, on 
the other hand, reveals the radial direction along which the 
variability is mostly exposed. 

 

The simplest form of trackball interaction generates scatterplot 
projections confined to the current generalized 3D subspace 
projected into the SE. This projected 3D subspace can be modified 
by:  
¶ Mouse-initiated trackball interaction: users can transition to 

adjacent 3D subspaces by augmented trackball interaction   
¶ Randomized projections: this discovers new 3D subspaces ready 

for trackball-based exploration    
¶ 3D Subspace interpolation: moving a slider in the control panel 

generates a continuous set of 3D subspaces, intermediate to two 
subspaces in the STM, which can be explored via the trackball 

¶ View optimization: the 3D subspace (as well as the current 
projection view within the current 3D subspace) can be optimized 
via projection pursuit driven by a user-defined set of criteria  

     The control panel provides several options for trackball use. The 
checkbox óTurnOffô specifies if all data points are to be shown or 
only those that are well described in the current subspace, i.e., belong 
to that subspace. The color bar on the bottom right is the brushing 
tool. It allows users to tag individual points or groups of points in a 
dedicated color to cluster them or mark them as inactive in gray.  

4.3 The Subspace Trail Map (STM)  

The STM holds a set of views (and their parameters) that users may 
have found interesting during the trackball exploration. The view 
images are embedded into a word cloud of attributes. Their 
placement with respect to each word indicates the influence of the 
corresponding attribute to the view. We treat each view as a point 
and use PCA on all of them to spread them out. The circular shape of 
the images mimics the shape of the trackballs. A smaller diameter 
reduces overlap of similar views in the STM while a larger diameter 
provides magnification. Users can drag any view back into the 
trackball for further exploration, or they can connect interesting 
views by lines to produce animated transitions for presentations.  

5. THE SUBSPACE EXPLORER AND TRACKBALL INTERFACE  

Users can tilt the trackball and watch the resulting scatterplot react to 
the motion. Fig. 4 sketches how a trackball works. Imagine a virtual 
sphere that encapsulates the current generalized 3D subspace. When 
clicked, the screen coordinate of the mouse is mapped to this sphere. 
Given the current and previous mouse clicks, we can compute the 
axis of rotation n and the rotation angle q. From those two quantities, 
a 3×3 rotation matrix is derived, as described in [3].  

5.1 Creating the Trackball Space Projection Matrix  

The trackball system only works in 3D but our data points are N-D 
and so we need to project the ND points into 3D before rotating. We 
achieve this by post-multiplying the trackball rotation matrix T with 
the 3³N projection matrix P. We have two options for the first two of 
the vectors in P: (1) the orthogonal PPA x-axis and y-axis pair we 
obtained from the randomized projection procedure, or (2) the two 
most significant PCs we obtained when performing PCA for the 
selected cluster. In both cases we require a third orthogonal axis, call 
it the PPA z-axis. Since this is N-D space we have a number of 
choices. We can either (1) randomly generate an N-D vector, or (2) if  

Fig. 4. 3D trackball. Given the current and previous mouse clicks, 

both the axis of rotation and the rotation angle can be computed. 

Fig. 3.  Subspace Voyager workflow. See Section 4 for a 
narration. 



5 
 

 

the PPA x-and PPA y-axes are generated via PCA, use the third most 
significant axis for the PPA z-axis.  

Note that the resulting vector is not necessarily orthogonal to the 
PPA x-axis and the PPA y-axis. To make it orthogonal we use the 
Gram-Schmidt orthonormalization process [7] to find orthogonal 
basis vectors. The Gram-Schmidt process takes N linearly 
independent vectors and produces N orthonormal vectors spanning 
the same N-D space. In practice, we keep the PPA x-axis and PPA y-
axis which are already orthonormal and run Gram-Schmidt to 
orthonormalize the PPA z-axis from the initially chosen vector. Once 
P is configured in this way, T is reset to the identity matrix, ready to 
be manipulated in the 3D trackball interaction.  

5.2 Processing the Points within the Trackball Space  

With P in place, the following sequence of operations is executed for 
every trackball move: (1) compute the 3³N compound projection 
matrix M=SĀTĀP, where S is an optional scaling matrix that allows 
zooming into the display, and (2) multiply each N-D point vector 
VND by M to obtain the 3D points V3D=MĀVND. But ultimately we 
are only interested in the projection of the points into the coordinate 
system spanned by the PPA-x and PPA-y vectors manipulated with 
the trackball. This yields a set of 2D points, V2D, which are the first 
two components of V3D since the projection is orthogonal.  

We have not observed a significant delay in the direct projection 
of N-D points in the operation of the trackball. But first pre-
computing a 3D point cloud right after construction of the 3D 
coordinate system and rotating them directly for the lifetime of P can 
reduce the number of computations to roughly N/3 of the original 
computations. We have not chosen this intermediate step because it 
requires extra storage which can be significant for large point clouds.  

5.3 Mouse Interactions within the Trackball Interface  

We provide three modes of mouse interactions within the trackball. 
All are controlled with different mouse buttons depressed. The first 
is the basic mouse interaction when the trackball is rotated within the 
current 3D subspace. It is performed when the left mouse button is 
depressed (see Section 5.2). The other two operations are described 
in more detail in the following.  

5.3.1 Chase clusters in adjacent 3D subspaces  

When using the basic 3D subspace exploration mode (Section 5.2) 
we frequently observed that interesting patterns were starting to 
evolve but their full exposure was out of reach since it occurred in a 
different, albeit nearby, subspace (i.e. a subspace that could not be 
reached simply by 3D rotation). In these situations, we often felt the 
need to ñbreak outò of the current 3D subspace in the direction of the 
trackball movement such that these patterns could be reached. To 
solve this shortcoming we added the capability to smoothly 
transition from one subspace to an adjacent one. It allows users to 
interactively change the influence of the data dimensions whose 
projections align with the current trackball motion, progressively 
increasing their bias in the projection matrix P. This gives the 
exploring user access to the adjacent 3D subspace where the patterns 

of interest are better expressed. It lets him/her explore the data with a 
higher emphasis on one or more attributes of interest.  

To engage into this mode of exploration users would release the 
left mouse button and instead press the right button while moving the 
mouse in the direction of the desired dimensionôs projection, as 
indicated by the corresponding attributeôs label on the trackballôs 
periphery. The further the mouse is moved the more the projection 
plane is tilted into the dimensionôs axis vector. Conversely, moving 
backward along that direction, towards the center of the trackball, 
decreases the influence of this dimension.   

As Fig. 5 illustrates, ideally we would accomplish this task by 
adding (or subtracting) increments Dx=kaĀDdĀsin(q) and Dy= 
kaĀDdĀcos(q) to the PPA-x and PPA-y vectors, respectively, where q 
is the angle between the mouse movement vector and the trackball x-
axis (the PPA-x vector). Here Dd is the distance the mouse moved in 
the direction of the projected dimension axis vector (positive when 
moving towards the periphery, negative otherwise), and ka is a user-
adjustable speed constant (we use the dot products instead of the 
trigonometric functions). Subsequently, Gram-Schmidt is used to re-
orthonormalize P (see Section 5.1), using the original PPA z-axis 
vector. One problem here is that, after Gram-Schmidt, the direction 
of this data dimension would change and thus there might be other 
dimensions taking the selected oneôs direction. We overcome this by 
fixing the selected dimension until the user releases the mouse.  

This basic approach generalizes to more than one dimension. Fig. 
5 illustrates the practical case in which there are two or more 
projected dimension axis vectors in close range of the exploration 
direction. This might be an indication of multivariate relationships. 
To properly scale the axes vector influences geometrically, we apply 
a Gaussian weighting in terms of their direction misalignment. This 
is done via the following equation: wd=exp(-kdĀdot(vm, vd)) where wd 
is the weight applied to this axis vector, vm and vd are the direction 
vectors of the mouse and the axis vector, respectively, and kd 
determines the reach of the Gaussian. The remaining steps are 
similar to the single-vector case described in the previous paragraphs. 

Our system also supports the case in which a user would first 
select an attribute via a mouse click on the trackball boundary but 
then move the mouse in a direction not necessarily aligned with the 
attributeôs dimension vector. This will gradually align the dimension 
vector with the mouse motion and move the attribute label 
accordingly. Again, the selected dimensionôs weighting changes 
according to the direction and length of the mouse movement. 

5.3.2 Go ñdeeperò into high-dimensional space 

By clicking the middle mouse button, our system generates a PPA-z 
vector according to the two options described in Section 5.1 and a 
new orthogonal vector is computed using Gram-Schmidt. Then with 
a trackball up (down) motion, the emphasis of the dimensions 
projecting on the PPA z-axis is increased (decreased). The effect of 
this operation will only be visible once the trackball is rotated 
regularly and the new 3D subspace is exposed. We call this 
functionality ñdeepò since the axis that is changed is the PPA z-axis 
(i.e. the axis pointing into the depth of the display). 

5.4 Display of Attribute Labels on the SE Boundary  

As mentioned, in order to better comprehend the relationships 
between a scatterplot projection and the data dimensions (attributes), 
we display the attribute names as labels along the SE trackball 
periphery (see Fig. 6). The extent of which a dimension contributes 
to the projected point cloud is indicated by label size and opacity. 
The larger and bolder the labelôs font is, the stronger the attributeôs 
contribution to the plot. The location of each label is computed by 
the attributeôs weighting in the PPA-x and PPA-y vectors. Let wx be 
the PPA-x weighting, and wy be the PPA-y weighting. Then the 
angle between this dimension vector and the positive x-axis is 
computed as Ŭ = atan(wy/wx). 

Fig. 5. Updating the PPA x-axis and PPA y-axis vectors by moving 

the mouse towards one or more dimensions. The influence of each 

dimension is weighted by a Gaussian function. 



6 
 

5.4.1 Preventing Overlapping Attribute Labels 

In practice, attribute labels may come to print on top of one another 
(Fig. 6(a)). This occurs because several dimension vectors overlap. 
We solved this problem by forcing labels to locate at least ɓ degrees 
apart from their neighbors. Fig. 6(c) shows this for the upper left 
quadrant. Here, Ὠ is the location of label1 located ɔ degrees away 
from PPA-y and Ὠ  is the location of neighboring label2, spaced 
 degrees away. We see that  is too small causing the two labels 
to overlap. Therefore we introduce a small displacement which 
places label2 at Ὠ . Now label1 and label2 are spaced  degrees 
apart and no longer overlap. 

In experiments, we found that the best choice for ɓ is dependent 
on the orientation of the dimension vector. The more vertical it is, 
the larger ɓ should be, while for a more horizontal alignment, a 
smaller ɓ will suffice. The following equation relates ɓ to the angle ɔ 
between the vertical axis and the dimension vector (for the upper left 
quadrant only ï the other three quadrants are related by symmetry): 

        ɼ   
— — — ᶻ

Ј
            π   τυЈ

          —                                      τυЈ  ωπЈ    
 

Here, — and — are constants we determined for the maximal font 
size of the labels which occur when the corresponding dimension 
vectors are fully projected. The angle  — = 4° is the displacement 
needed when ɔ is greater than 45Á, while an angle of — ςτЈ is 
needed when ɔ=0Á. When ɔ is between 0Á and 45Á we determine ɓ 
via linear interpolation. Fig. 6(b) shows the configuration of Fig. 6(a) 
with our label displacement scheme enabled. 

We also found that while displacing the labels provided for 
better readability, it was distracting in interactive mode when users 
were rotating the trackball since it could lead to sudden jumps of the 
labels. Hence we only apply the overlap removal method when the 
projection is fixed (after releasing the mouse). Conversely, when a 
dataset has many dimensions, the label overlap can never be 
prevented. For this reason, we added a slider to the control panel by 
which users can set the maximum number of displayed attribute 
labels. These can be the most significant attributes or attributes 
manually selected by clicking on their labels with <ctrl> depressed.    

5.5 Point Brus hing, Tagging , and De-Activation  

Our interface also provides the ability to label a point (or a group of 
points) with a color chosen from a palette. This is useful when 
monitoring a certain pointôs (or point groupôs) behavior when the 
trackball rotates. It greatly helps in distinguishing different clusters 
or seeing sub-clusters emerge during motion.  

Conversely, by painting a selected group of points in gray they 
wil l become invisible and will be excluded from all further analysis. 
This helps, for example, in recognizing other structures that were 
hidden or ambiguous before this removal. 

6. THE SUBSPACE TRAIL MAP AND V IEW GENERATION  

The subspace trail map (STM) is a spatial layout of thumbnail 
representations of views. It serves three purposes. First, it enables 
users to keep track of the subspaces explored so far. These subspaces 
can be revisited for further exploration. Second, it serves as a 
presentation platform for the system to suggest new subspaces not 
yet explored. Third, it permits users to define routes along which 
they can transition between two or more of these subspaces, 
essentially using them as keyframes. In the STM, users can double 
click any view thumbnail and add it back into the SE. For clustered 
data, all subspaces can be inserted into the STM at once by clicking 
the óAllSubspaceô button in the control panel.  

6.1 Populating the Subspace Trail Map  (STM) 

Each view thumbnail in the STM holds the viewôs 2D scatterplot 
embedded into a circle to mimic its appearance in the SE. PCA 
analysis is used to ensure a well-spread layout of the view 
thumbnails with a minimum of overlap. If overlap occurs the 
óSmallViewSizeô slider can be employed to lower the circle sizes 
uniformly (see Fig. 11(i)). Alternatively, clicking on a partially 
hidden view will bring it to the foreground.  

To illustrate how the STM layout works, suppose there are ὴ 
subspace views stored in the STM and the dimensionality of the data 
set is ὔ. The three orthogonal PPA vectors (the PPA x, y, and z-axes) 
spanning a subspace j can then be formally expressed as: 

ὖὖὃ ύ Ὠ 

where Ὥ is either x, y, or z, 0 Ò j Ò ὴ ρ, ύ  is the weighting of the 
Ὧ  data dimension on ὖὖὃ and Ὠ is the Ὧ  dimension axis 
vector.  We then use the L2 norm to define the overall weighting of 
the Ὧ  data dimension for the Ὦ   subspace: 

ὡ  ύ ύ ύ    

These weights define an N-D vector for each subspace: 

Ὓ ὡ ȟὡ  ȟὡ ȣ ὡ ȟ  

This allows us to treat each subspace as an ὔ-D point. We perform 
PCA on this space of points. We keep the first two PCs and project 
all points (subspaces) into this basis. Since PCA automatically seeks 
to find the directions that maximize the variance of the data points, 
the view thumbnails will be organized in a way that reduces overlaps.  

Finally, the view thumbnails are embedded in a word cloud of 
dimension labels (see Fig. 2). These labels are likewise placed based 
on this PC-basis, using the projection strength of their dimension 
vectors to define their sizes and opacities. To prevent clutter we only 
keep the labels of the ten most significant dimensions.   

                            (a)                                                               (b)                                                              (c)                                                                  
Fig. 6. Dimension label overlap prevention. (a) Naïve implementation causing label overlap; (b) Using our angular spacing scheme to 

prevent  label overlap; (c) Illustration of our label overlap prevention scheme. 



7 
 

6.2  Subspace and View Optimization   

We perform view optimization for several tasks. One is to produce 
an optimized 3D subspace from a higher dimensional subspace 
generated via subspace clustering. Users may also use it on the fly 
when interacting with the SE: (1) during exploration of a 3D 
subspace, and (2) for chasing clusters into neighboring subspaces. In 
the latter case, the view optimization can be set to perform the search 
within a narrow range of dimension increments, or across an 
expanded range. Both of these applications aid users in the trackball-
based exploration. They help accelerate the tedious manual 
exploration needed to find a view that fits a certain view quality 
criterion, such as a cluster or a class separation.  

6.2.1 View optimization via ant-colony optimization   

A popular view optimization method in the context of high-D data 
visualization is projection pursuit. Starting from any projection, 
projection pursuit returns the PPA x-axis and PPA y-axis that 
optimizes a targeted projection pursuit index (PPI). A number of 
methodologies have been proposed for this task, such as hill 
climbing [8], random search [32], or simulated annealing [9]. We 
have strived for a sophisticated yet comparably easy-to-implement 
algorithm ï Ant Colony Optimization (ACO) [10]. To the best of our 
knowledge, ACO has not been used for projection pursuit so far.  

General description of ant colony optimization (ACO) 

ACO simulates the behavior of ants in nature. When looking for 
food, ants initially travel randomly until they find food. On their way 
back they leave a pheromone trace along the route. Instinct 
prescribes that other ants most likely follow this pheromone trace 
instead of wandering randomly. But pheromone also evaporates 
gradually, and so over time, shorter (lower cost) paths will be 
traveled more frequently and become more attractive, leading to a 
convergence on the optimal path. Based on this intuition, the 
simplest ACO algorithm consists of the following three steps 
executed iteratively: (1) construct solutions, (2) evaluate solutions, 
and (3) update pheromone, increasing it on low-cost paths and 
evaporating it on others. It has been shown that the solution so 
generated is typically quite close to the optimal solution.  

The ACO algorithm requires a discrete search space. Projection 
pursuit, however, is typically performed in the continuous domain. 
General solutions that address this problem have been proposed 
[6][38] ï we opted for a grid-based approach. In addition, ACO also 
requires an objective function to judge the quality of the solutions. In 
our case, this can be any view quality metric, no matter how complex. 
This freedom of choice is enabled because ACO does not require a 
mathematical derivation of a gradient measure which would be 
needed for an analytical optimization scheme.  

Specific application of ACO for subspace and view optimization  

In our case, the search space is the set of all possible PPA x-axes and 
PPA y-axes and the objective function is a chosen view quality 
metric ï low stress [24], high class-consistency [37], or others. To 
explain how ACO works for this application, suppose (with no loss 
of generality) the simple case of a 2D data set with two data axes, d1 
and d2, where the PPA x-axis and y-axis can be represented as 
ὖὖὃ  Ὠ Ὠ , and ὖὖὃ  Ὠ ὨȢ There are four 
unknowns ï ȟȟ and  (for an N-D dataset there would be 2N 
unknowns). As an illustration, these unknown parameters are 
represented as the four vertical gridded bars in Fig. 7. 

Our ACO algorithm differs from the traditional one in the 
selection of the initial pheromone distribution. While the traditional 
ACO typically begins with an unbiased distribution, ours cannot do 
this since we begin from an initial PPA x-axis and y-axis 
configuration, e.g., a randomized view or the PC-basis of a cluster. 
To account for this, we increase the pheromone of this viewôs 
parameter levels, giving rise to the red path in Fig. 7, which sets its 
levels to the discretized ȟȟ and  values of this initial view.    

Next, a generation of ants is set free, moving across the 
parameter space (from left to right in Fig, 7) selecting levels via 
pheromone-weighted randomization. While the levels of the initial 
view are more likely, the randomization ensures a more diverse set 
of choices. After the whole set of parameters has been traversed, the 
generated views are evaluated by the chosen view quality metric. 
The pheromone of each parameter level is then updated according to 
the quality of the views it was part of. The algorithm stops after a 
fixed number of iterations and for each view parameter, ȟȟ 
and ȟ the level with the highest amount of pheromone is chosen. 

Fig. 7 resembles a parallel coordinate display. We observed that 
after the single initial polyline, ACO tends to generate many 
polylines which eventually narrow down to a single slim cluster ï 
the optimized view.  

 ACO can also be constrained to produce views in a preferred 
interval. For example, one can constrain the search range on each 
parameter to be close to the initial path. This can be done by fixing 
the two ends of the vertical bars to be close to the initial values. 
Likewise, one can also loosen this condition and do a global search. 
In this case, the resulting view would be a global optimum according 
to different criteria. Finally, we should also take into account that the 
ACO needs to return PPA vectors, which are required to be of unit 
length and orthogonal. We therefore always normalize the returned 
PPA x-axis and then use Gram-Schmidt orthonormalization to find 
the corresponding PPA y-axis. 

6.2.2 Other optimization capabilities  

Our system also allows users to select several dimensions and 
produce a view in which those dimensions are equally expressed.  
This produces plots similar to Star Coordinates or RadViz and can be 
useful in cases where one wishes to see the influence of a subset of 
attributes on the data. It is achieved by clicking on the respective 
labels along the trackball while depressing the ctrl- and space keys. 
Then, when releasing the mouse, the weightings for the selected 
dimensions are set to the maximum. A Gram-Schmidt step follows to 
orthogonalizes the transformation matrix. Fig. 8 shows an example.  

6.2.3 Illustrative use case 

Fig. 9 shows results that can be obtained with our ACO-based 
subspace and view optimization framework using the sales campaign 
dataset described in Section 7.1. We first apply simple k-means 
clustering using the Structure-Based Distance Metric of Lee et al. 
[25] and obtain three subspace clusters. A subsequent PCA analysis 
for each cluster establishes three separate 3D subspaces. Clicking the 
óAllSubspaceô button adds all three subspaces to the STM (see Fig. 
9(a)). We color the three subspace clusters blue, magenta, and green, 
and color the circumference of each thumbnail view by the subspace 
it represents. We observe that for the magenta and green subspace 
views, the points of the focus cluster (magenta or green, 
respectively) still overlap with points of other (co-) clusters ï 
especially for the magenta subspace. Next, we optimize the three 
subspace views using distribution consistent criteria [37], shown in 
Fig. 9(b-d). We observe that the blue clusterôs subspace and 
projection are almost unchanged. This is because the three clusters 
are already well separated here. Since we only run optimization in a  

                      ρ               ρ             ς                   ς 

 

 

 

 

 

 

 

Fig. 7. Illustration of the ACO algorithm in the discrete domain. 

Each vertical bar grid point stands for a level of the parameter 

represented by the bar. The red, piecewise linear polyline is a 

possible solution with the levels indicated by the bar intersections. 



8 
 

close range of the original PC projection this view might already be 
the best compared to its neighbors. (Better views could possibly be 
obtained by expanding this range.) Conversely, the subspaces of the 
magenta and green clusters have significantly improved. In each 
panel, the respective subspace clusters are now clearly separated 
from the others. 

6.3 Transitioning Between Subspaces  

Self-initiated and controlled animation can be a helpful paradigm 
for humans to understand how two or more different representations 
of the same information relate to one another [18][33]. We have 
employed animation to help users understand how two subspaces 
relate to one another, with the added aim that this might also instill a 
better understanding of the high-D data space in a larger context. 
Users can select multiple thumbnail views in the STM and connect 
them with a path. Moving the óTraverseBtwô slider then changes the 
PPA axis vectors from one subspace to another.  

Simply linearly interpolating between bases of PPA axes, 
however, would lead to nonlinear intermediate projections. We, 
therefore, adopted the algorithm by Cook et al. [9] to transition 
between the two subspaces using singular value decomposition. Fig. 
10 shows three snapshots of a sequence of frames from such an 
animation, along with the path connecting the two corresponding 
nodes in the STM. All keyframes and the path connecting them are 
shown in panel (d). Panels (a) to (c) show intermediate views along 
the path, and the yellow dot in panel (d) indicates the viewôs location 
in panel (b). Since these still frames can only provide a limited 
illustration, the reader is encouraged to view the provided video to 
appreciate the insightful visual effect of this animation. 

Alternatively, we also include a ópresentation modeô where a 
narrator would click the óNextô button to go to the next keyframe 
instead of using the slider. The animation provides a smooth 

transition between findings when presenting the results, as opposed 
to abruptly changing the views or simply cross dissolving them 

7. APPLICATION  EXAMPLE S 

In the following, we demonstrate the versatility of our framework by 
ways of applying it to a diverse set of use scenarios involving high-D 
data. We show our frameworkôs application in (1) visual cluster 
analysis, (2) visual item discovery and selection, helping users to 
recognize and negotiate tradeoffs among items, and (3) visual cluster 
refinement, allowing users to partition feature-driven clusters based 
on the visual expression of the aggregation of these features. A 
fourth use case ï the visual setup of a classifier in the presence of 
intermixing outliers ï is presented in the paperôs supplement.    

7.1 Use Scenario #1:  Visual Cluster Analysis  

To illustrate the trackball interactions, we chose a multivariate 
cluster analysis task involving an interactive study of a sales force 
working for a large company. The dataset consists of 900 points (one 
per salesperson) and 10 attributes parameterizing the basic corporate 
sales pipeline. Briefly, a sales campaign begins with a lead generator 

                             (a)                                            (b) 

Fig. 8. Equally expressing several dimensions. (a) The original 

projection. (b) The optimized projection where %Complete, 

#Opportunity, and #Leads are equally expressed.  

Fig. 9. Using the ACO-powered subspace and view optimizer to 

optimize the visual separation of three subspace clusters, colored 

blue, magenta, and green. (a) The STM with the thumbnail views of 

each subspace. The color of each thumbnail circle indicates the 

subspace cluster it shares its basis with. We observe that the 

subspace PCs alone cannot isolate the subspaces well ï there is still 

a significant amount of cluster overlap. (b-d) Optimized subspaces for 

the blue, magenta and green cluster, respectively, using the 

distribution consistent view quality criteria. All subspace clusters are 

now well separated from the others in their respective subspaces. 

(a) 

(b) 

 (c) 

(d) 

                (a)                                                     (b)                                                     (c)                                                             (d) 
Fig. 10. Transitioning between two subspaces marked in the STM using the animation slider. (a)(b) and (c) are three intermediate views. (d) 

is the animation path in the STM. The yellow dot indicates the location of the view in (b). The provided video has a complete animation.     



9 
 

who produces prospective customers that a salesperson might be able 
to close a deal with. If these leads receive positive responses, they 
become won leads and receive a sales pitch at a cost per won lead. 
Upon further positive response, they become opportunities or 
potential customers. Cost is involved in every step and high pipeline 
revenue is the ultimate goal. Three are three sales teams in our 
dataset.  

7.1.1 Step 1: explore the PCA view 

Let us assume a sales team analyst, Pat, is about to analyze the data. 
He begins with treating the entire dataset as one cluster and performs 
PCA ï shown in Fig. 11(a). He immediately notices that there are 
three visually separable clusters representing the three sales teams. 
These distinct clusters suggest that the three sales teams indeed seem 
to apply different strategies for possibly different outcomes. Pat 
clicks the óApplyô button to load the cluster information from the 
original data. The result (the thumbnail view on the bottom right side 
of panel (a)) confirms that the three clusters are indeed real clusters.  

Next, Pat examines the SE boundary in Fig. 11(a). He notices 
that there are two groups of closely mapped attributes with strongly 
printed labels: (1) Expected ROI and Pipeline Revenue, and (2) 
LeadsWon and #Leads. As explained in Section 4.1, this means that 
the attributes in each of these groups are strongly correlated. Pat 
finds this view informative and saves it to the STM. 

7.1.2 Step 2: explore the salient subspaces 

Next, Pat wishes to examine the subspaces of each cluster. He 
performs PCA on all of them and adds them to the STM. Pat then 
optimizes each subspace such that its focus cluster is best separated 
from the others. In Fig. 11(b), the view thumbnails outlined in blue, 
magenta, and green are the subspaces for the correspondingly 
colored clusters. The neutral view is the subspace for the entire data. 

Pat first brings the blue clusterôs subspace back to the SE for 
closer examination (Fig. 11(c)). He notices that Cost has the most 
prominent label and that the blue cluster varies significantly in this 
direction ï more than the two others. This suggests that there is a 
wide diversity in the cost incurred by members of the blue sales team.  

Fig. 11. Analyzing the sales force dataset. (a) The dataset projected onto the first two PCs. There are three visually separable clusters -- the three 

sales teams under study. (b) STM with view thumbnails of the overall space and the extracted subspaces for each of the three teams -- each 

optimized such that its focus cluster is maximally separated from the others. (c) Subspace of the blue team (d) green team subspace, and (e) 

magenta team subspace. (f) Increasing the weighting of PipelineRevenue and ExpectedROI by moving the mouse towards the respective labels 

(with right mouse button depressed). Both the green and magenta team generates more revenue than the blue team. (g) Increasing the weighting 

of #Opportunity along the PPA-y axis. The green team generates the fewest opportunities. (h) Increasing the weighting of Cost/WonLead. The 

green team is the most frugal, but has the most revenue, while the blue team is the most wasteful with not much revenue. (h) STM setup for the 

animated presentation of these findings.    

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 



10 
 

Next, Pat brings the subspace of the green cluster into the SE 
(Fig. 11(d)). He notices that in this subspace #Leads and Cost are 
most widely expressed (i.e. these attributes best distinguish the green 
sales team from the others). From the plot, Pat learns that the green 
team, with its cluster being most closely located to the #Leads 
attribute, seems to generate the most leads, while the blue team 
generates the fewest. He also confirms the finding from the last view 
that the blue team seems to incur the highest cost.  

Lastly, Pat brings the magenta subspace into the SE (Fig. 11(e)). 
He confirms some of the findings of the previous plots and also 
learns that PlannedRev, Cost and ExpectedROI are the attributes that 
have the highest variance for this group of data. Finally, he also 
learns that the magenta sales team is separated from the other two by 
a combination of PlannedRev, #Opportunity and ExpectedROI. 

7.1.3 Step 3: look for differences in sales strategy 

Pat knows that high Pipeline Revenue and Expected ROI are 
important targets for any business. He decides that it would be a 
beneficial undertaking to explore how the companyôs sales force 
relates to these two revenue parameters.  

He uses the STM to bring the initial PCA view (small panel in 
Fig. 11(a)) back to the SE. He presses the right mouse button and 
moves the mouse in the direction of the two revenue parameters. Fig. 
11(f) shows the outcome. Note that the font of the two revenue labels 
gets stronger which means that the corresponding two attributes 
receive more weight in the viewed 3D subspace. The plot shows that 
both the green and magenta sales teams generate more revenue than 
the blue one and that the green team is slighter better than the 
magenta one. Pat also notices the #Opportunity attribute near the top 
of the plot and that it seems to separate the clusters well. He figures 
that revenue probably has a lot to do with the generated opportunities 
and he decides to give this attribute more emphasis.  

He uses cluster chasing to emphasize #Opportunity, clicking on 
its label and moving the mouse upwards with the right button 
depressed. He similarly emphasizes pipeline revenue and arrives at a 
traditional bivariate scatterplot that has pipeline revenue along PPA-
x and #opportunity along PPA-y (see Fig. 11(g)). He observes that 
while the green and magenta teams vary in the number of 
opportunities ï magenta creates more ï both groups have somewhat 
similar revenue but green has a slight advantage. On the other hand, 
the blue team also has high #Opportunity but its revenue is low. 

So why does the blue team lack revenue despite its similar 
amount of opportunities? Pat knows that sales teams typically spend 
money to turn won leads into opportunities. He decides to make Cost 
per won lead the new PPA-x axis by selecting it from the attribute 
list in the control panel (since it is not visible currently). Fig. 11(h) 
shows the outcome. He quickly notices that the blue team incurs 
much higher cost than the other teams and that the green team has 
the highest pipeline revenue. In fact, the green team is the most 
frugal having the narrowest cluster. 

Based on these discoveries, Pat concludes that while generating 
many opportunities sounds like a winning strategy, it is associated 
with high cost and therefore the generated revenue tends to be low. 
This is the lesson taught by the blue team. It thus seems better to 
replicate the green teamôs strategy ï spend little cost on each won 
lead and, despite gaining fewer opportunities, obtain higher revenue.       

7.1.4 Step 3: use the STM for sharing the findings 

Pat is excited about his findings and plans a presentation to his group. 
He notices that the STM is too cluttered and so he uses the 
ñSmallViewSizeò slider to reduce the size of the view thumbnails. 
Then he connects them by simple mouse clicks and builds a path 
(bottom panel in Fig. 11(i)). Clicking the óNextô button, all his 
findings can now be displayed sequentially, in an animated fashion. 

7.1.5 Conclusions from this use case 

We believe that this example convincingly demonstrates how our SE 
interface enables users to playfully arrive at different multivariate 
scatterplot projections, quickly respond to new explorations ideas on 

a whim, make casual observations in the process, and just as easily 
return back to a traditional bivariate scatterplot visualization. The 
interested reader may watch the video to see the complete process. 

7.2 Use Scenario #2: Visual Item Discovery & Selection    

Selecting the best college, given the many personal constraints and 
preferences one might have, is arguably one of the most difficult 
choices a person will make in life. It involves the task of discovering 
the set of schools that best meet oneôs personal requirements, 
comparing them by weighing their trade-offs, and then selecting the 
college that fits best. Here we use the mixed dataset initially created 
by Nam and Mueller [31]. It has multi-faceted data on 50 of the top 
US colleges, enabling the college-seeking student to look at schools 
not only through the lens of academics but also through the lens of 
social life and the general environment the school resides in. 
Academic ranking and tuition information were extracted from a 
leading source of such information ï the US News & World Report 
[49]. The College Prowler website [48], on the other hand, ranks 
colleges on a multitude of social and environmental factors. We 
picked 8 of the 20 the site offers: athletics, campus housing, local 
atmosphere, nightlife, safety, transportation, academic environment, 
and weather. Each score is available letter-graded ranging from A+ 
to D-. We mapped these equidistantly to values in the range 0 to 1.  

The College Prowler website allows users to navigate the space 
of college attributes by filtering, using slider bars and menu 
selections for each parameter to narrow down the search. This can be 
rather tedious and it also makes it difficult to recognize tradeoffs. We 
believe that our SE provides a more playful and targeted experience, 
while the STM is a better platform to save any intermediate findings.  

In the following, we shall follow 17-year old Tina who is just 
about to finish high school and see how she uses our subspace 
voyager to find the university she feels best about. 

7.2.1 Checking out the relationships of attributes 

Tina starts out with a view onto the dataset as a single cluster using 
the primary PC axes as a basis (Fig. 12(a)). As mentioned in Section 
4.1, in such a view the dimension vectors of strongly positively 
correlated attributes tend to coincide and as a result, their labels map 
to similar locations along the trackball boundary. Conversely, 
negatively correlated attributes will map to opposite sides of the 
trackball boundary. The only condition for both is that their 
projection into the PC-axes basis is sufficiently significant, which is 
visually expressed in our system by a large and heavy label font. In 
the initial view of Fig. 12(a) Tina observes two sets of positively 
correlated attributes: (1) Academics and Tuition, and (2) 
LocalAtmosphere, NightLife, and Transportation. She also observes 
a few negatively correlated attributes, among them: (1) Academic 
with Weather and Athletics, and (2) LocalAtomosphere and 
NightLife, with Safety. From these constellations, Tina quickly 
recognizes that top academic universities tend to charge higher 
tuition, but at the same time, their athletic teams are not necessarily 
among the best. She also learns that universities built in nice town or 
city areas usually have better nightlife and transportation systems, 
but they also tend to be less safe. All this is good to know before 
engaging in the actual selection process described next.    

7.2.2 Finding the set of schools that fit the best 

Tina does not come from a wealthy family and so her immediate 
focus is tuition cost. Her first step is, therefore, to select Tuition and 
move the mouse towards that label (to the left). Next, she wants to 
see which of the schools have a good academic ranking. She selects 
USNewsScore and moves the mouse downward to maximize the 
spread. This leaves her with the axis-aligned scatterplot shown in 
Fig. 12(b). In this plot, all points on the lower right side are the 
universities with high rankings but low tuition ï these are the ones 
Tina is interested in the most. She colors them in magenta and asks 
the system to label them ï in this case with the university names. 

Tina likes the outdoors a lot which requires the weather to be 
generally good. So she adds Weather as another requirement to 



11 
 

Fig. 12. Finding the best college in the college dataset. 

College  Acad.  Athletics  House  Atmos.  Night Life  Safety  Trans.  Weather  US News Tuition  

UCLA 10 10 5 12 10 9 4 11 69 22428 

USC-Viterbi  10 2 8 11 12 7 8 11 77 22734 

Georgia Tech  10 11 5 10 9 7 7 8 86 22188 

UC Berkeley  10 9 8 9 8 7 10 11 89 14998 

UC San Diego  9 8 6 11 9 11 6 12 72 14694 

(a). The PCA view of the entire 

dataset. It reveals a strong positive 

correlation between Academic and 

Tuition, as well as between 

LocalAtmosphere, NightLife, and 

Transportation.  

(b). Make Tuition the 

PPA-x axis and 

USnewsScore the PPA-y 

axis. The magenta-

colored, labeled points 
are the schools with high 

US News Score and low 

Tuition.  

(d). Increase Athletic along the 

PPA-x axis.  UCSantaBabara has a 

very low athletic score. 

(e). Increase Nightlife along the 

PPA-y axis. USCViterbi has the 

best overall score, followed by 

UCLA, Georgia Tech, UCSanDiego 

and UC Berkeley.  

(f). The final setup. The dimension 

projection reveals four dimension 

groups.  

(c) 

(c). Increase Weather along the 

PPA-y axis.  Purdue moves up 

revealing its bad weather, 

TexaxA&M and UMaryland do not 

move much but are low in both 

scores. 

(a) 

(d) 

(e) 

(f) 

(b) 

                       Table 1 

Rankings of the final five candidates 

 

(c) 












