
Journal of Structural Biology xxx (2010) xxx–xxx

ARTICLE IN PRESS
Contents lists available at ScienceDirect

Journal of Structural Biology

journal homepage: www.elsevier .com/locate /y jsbi
High-performance iterative electron tomography reconstruction with
long-object compensation using graphics processing units (GPUs)

Wei Xu a, Fang Xu a, Mel Jones b,c, Bettina Keszthelyi b,c, John Sedat c, David Agard b,c, Klaus Mueller a,*

a Center for Visual Computing, Computer Science Department, Stony Brook University, Stony Brook, NY 11794-4400, United States
b Howard Hughes Medical Institute, Department of Biochemistry & Biophysics, University of California at San Francisco, United States
c Keck Advanced Microscopy Laboratory, Department of Biochemistry & Biophysics, University of California at San Francisco, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Received 4 December 2009
Received in revised form 27 March 2010
Accepted 30 March 2010
Available online xxxx

Keywords:
Tomography
Reconstruction
Image processing
Parallel processing
1047-8477/$ - see front matter � 2010 Elsevier Inc. A
doi:10.1016/j.jsb.2010.03.018

* Corresponding author.
E-mail address: mueller@cs.sunysb.edu (K. Muelle

Please cite this article in press as: Xu, W., et a
graphics processing units (GPUs). J. Struct. Biol.
Iterative reconstruction algorithms pose tremendous computational challenges for 3D Electron Tomogra-
phy (ET). Similar to X-ray Computed Tomography (CT), graphics processing units (GPUs) offer an afford-
able platform to meet these demands. In this paper, we outline a CT reconstruction approach for ET that is
optimized for the special demands and application setting of ET. It exploits the fact that ET is typically
cast as a parallel-beam configuration, which allows the design of an efficient data management scheme,
using a holistic sinogram-based representation. Our method produces speedups of about an order of
magnitude over a previously proposed GPU-based ET implementation, on similar hardware, and com-
pletes an iterative 3D reconstruction of practical problem size within minutes. We also describe a novel
GPU-amenable approach that effectively compensates for reconstruction errors resulting from the TEM
data acquisition on (long) samples which extend the width of the parallel TEM beam. We show that
the vignetting artifacts typically arising at the periphery of non-compensated ET reconstructions are
completely eliminated when our method is employed.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Electron Tomography (ET) (see for example Frank, 2006, or
Lucic et al., 2005) uniquely enables the 3D study of complex cellu-
lar structures, such as the cytoskeleton, organelles, viruses and
chromosomes. It recovers the specimen’s 3D structure via comput-
erized tomographic (CT) reconstruction from a set of 2D projec-
tions obtained with Transmission Electron Microscopy (TEM) at
different tilt angles. ET can be accomplished using exact analytical
methods (weighted back-projection WBP (Radermacher, 2006) and
more recently electron lambda-tomography (Quinto et al., 2009))
or via iterative schemes, such as the Simultaneous Algebraic
Reconstruction Technique (SART) (Andersen and Kak, 1984), the
Simultaneous Iterative Reconstruction Technique (SIRT) (Gilbert,
1972), and others. The dominant use of the analytical methods is
most likely due to their computational simplicity and consequently
fast reconstruction speed. Iterative methods, however, have the
advantage that additional constraints can be easily and intuitively
incorporated into the reconstruction procedure. This, for example,
can be exploited to better compensate for noise (Skoglund et al.,
1996) and to perform alignment corrections (Castano-Diez et al.,
2006; Frank and McEwen, 1992; Lawrence, 1992) during the itera-
ll rights reserved.

r).

l. High-performance iterative e
(2010), doi:10.1016/j.jsb.2010
tive updates. Additional challenges are imposed by the fact that the
projection sinogram is vastly undersampled, both in terms of angu-
lar resolution (due to dose constraints) and in terms of angular
range (due to limited sample access). These types of scenarios
can be handled quite well using iterative reconstruction ap-
proaches (Andersen, 1989).

Thus, iterative approaches have great potential for ET. However,
as data collection strategies (Zheng et al., 2004) and electron detec-
tors improve, the push has been to reconstruct larger and larger vol-
umes (20482 � 512 pixels and beyond). Although the benefits are
significant, the major obstacle preventing the widespread use of iter-
ative methods in ET so far has been the immense computational
overhead associated with these, leading to reconstruction times on
the order of hours to days for practical data scenarios. As in many
other scientific disciplines, the typical solution to meet these high
computational demands has been the use of supercomputers and
large computer clusters (Fernández, 2008; Fernández et al., 2004;
Zheng et al., 2006), but such hardware is expensive and can also be
difficult to use and gain access to. Fortunately, the recently emerging
graphics processing units (GPUs) offer an attractive alternative plat-
form, both in terms of price and performance. GPUs are available at a
price of less than $500 at any computer outlet and, driven by the
ever-growing needs and tremendous market capital of computer
entertainment, their performance has been increasing at triple the
rate of Moore’s law, which governs the growth of CPU processors.
lectron tomography reconstruction with long-object compensation using
.03.018

http://dx.doi.org/10.1016/j.jsb.2010.03.018
mailto:mueller@cs.sunysb.edu
http://www.sciencedirect.com/science/journal/10478477
http://www.elsevier.com/locate/yjsbi
http://dx.doi.org/10.1016/j.jsb.2010.03.018

2 W. Xu et al. / Journal of Structural Biology xxx (2010) xxx–xxx

ARTICLE IN PRESS
For example, the recent NVIDIA GPU board GTX 280 has a peak per-
formance of nearly one Trillion floating point operations per second
(1 TFlop), which is 1–2 orders of magnitude greater than that of a
state-of-the-art CPU.

The great performance of GPUs comes from their highly parallel
architecture, and the vast potential of these boards for general
high-performance computing has given rise to the recent trend
of General Purpose Computing on GPUs (GPGPU) (Owens et al.,
2005). In the past, GPU-programming was only possible via graph-
ics APIs, such as CG, GLSL and HDSL, which required programmers
to have some background in computer graphics. In order to make
the hardware more accessible to non-graphics programmers, a C-
like parallel computing programming interface called CUDA (Com-
pute Unified Device Architecture) has recently been introduced by
GPU manufacturer NVIDIA. A similar but more general API called
OpenCL has also become available. We have used GLSL for our
implementation.

The high potential of GPUs for accelerating Computed Tomogra-
phy (CT) has been recognized for quite some time in the field of X-ray
CT (Cabral et al., 1994; Chidlow and Möller, 2003; Kole and Beekman,
2006; Mueller and Xu, 2006; Schiwietz et al., 2006; Wang et al.,
2005; Xu and Mueller, 2005, 2007; Xu et al., 2006, 2010), and more
recently also for ET (Castano-Diez et al., 2007, 2008; Lawrence
et al., 2009; Schoenmakers et al., 2005; Schmeisser et al., 2009).
The majority of GPU algorithms developed for X-ray CT have focused
on 3D reconstruction from data acquired in perspective (cone- and
fan-beam) viewing geometries, using flat-panel X-ray detectors in
conjunction with X-ray point sources. This poses certain constraints
on how computations can be managed (pipelined) given the highly
parallel SIMD (Single Instruction Multiple Data) architecture of
GPUs. However, data acquisition in ET is typically posed within a par-
allel-beam configuration, and this allows for additional degrees of
freedom in the implementation, which are not available in the cone-
and fan-beam configurations. Our approach exploits these opportu-
nities to derive a novel high-performance GPU-accelerated iterative
ET reconstruction framework.

The GPU method proposed by Castano-Diez et al. can be viewed
as a first step towards achieving high-performance ET. Our frame-
work is a substantial advance of their method, speeding up their
calculations by an order of magnitude. Such speedups are espe-
cially significant when it comes to 3D reconstructions, which are
the ultimate goal of ET. The method of Castano-Diez et al. enables
only 2D iterative reconstructions to be accomplished at reasonable
speeds (where reasonable is defined here as being on the order of
minutes). However, reconstructions at the same resolution, but
in 3D, still take hours to compute. Our framework, on the other
hand, obtains these 3D reconstructions in an order of minutes,
on comparable hardware. Finally, the latest generation of GPU
hardware enables further considerable speed increases, which
may be valued as another demonstration of the immense potential
GPUs have for iterative ET.

SIRT is a commonly used reconstruction algorithm in ET and has
been shown to produce good reconstruction results. On the other
hand, SART has been shown to converge at considerably faster rates,
but generating somewhat noisier reconstructions. This occurs since
each update/correction is only based on a single projection and
therefore does not enjoy the stabilizing effect of a global SIRT update
which deals better with noise. We have recently shown (in Xu et al.,
2008) that a special caveat is imposed by the SIMD architecture of
GPUs where one must carefully choose the number of parallel
threads for optimal performance. Since the number of parallel
threads grows with the number of projections (or better, the number
of pixels they contain) it turns out that iterations with SIRT are con-
siderably faster than those with SART. However, since the slower
convergence rate requires a larger number of iterations in SIRT this
does not necessarily yield gains in real-time performance.
Please cite this article in press as: Xu, W., et al. High-performance iterative e
graphics processing units (GPUs). J. Struct. Biol. (2010), doi:10.1016/j.jsb.2010
To find a mechanism to express a compromise between SART
and SIRT, we presented (in Xu et al., 2008, 2010) an Ordered Subsets
SIRT (OS-SIRT) algorithm in which SART has N subsets of 1 projec-
tion each, and SIRT has 1 subset of N projections (with N being the
number of projections acquired). A similar compromise has been
introduced as OS-SART by (Wang and Jiang, 2004). The rational
was similar to that of (Hudson and Larkin, 1994) who devised
OS-EM, an ordered subsets algorithm for the Expectation Maximi-
zation (EM) algorithm (Shepp and Vardi, 1982). In OS-EM, the best
subset size is one that most optimally balances the noise compen-
sation offered by larger subsets (many projections in one subset)
and the smaller number of iterations required for convergence of-
fered by smaller subsets (many corrective updates within one iter-
ation). However, for our OS-SIRT the focus was to provide a
mechanism by which one can balance GPU runtime performance
(which is convergence as measured in wall-clock time) with noise
cancelation (for better reconstruction quality). For the work pre-
sented in this paper we have applied this framework to CT recon-
struction from TEM data and show that OS-SIRT also provides a
favorable algorithm here. We note that the study of OS-SIRT and
its optimization for TEM data is not the focus of this paper – this
is subject of future work. Rather, in the current work we have
aimed to provide more insight into GPU-accelerated computing
for ET reconstruction.

Finally, an important issue in CT is the ‘‘long object” reconstruc-
tion problem. It arises in spiral CT when the goal is to reconstruct a
region of interest (ROI) bounded by two trans-axial slices, using a
set of axially truncated cone-beam projections corresponding to a
spiral segment long enough to cover the ROI, but not long enough
to cover the whole axial extent of the object (Defrise et al., 2000).
Essentially, in this situation some rays used for ROI reconstruction
also traverse object regions not within the ROI, and these rays are
sometimes called ‘‘contaminated” rays. This problem is similar to
the ‘‘local tomography” problem in ET. While for ET the data acqui-
sition trajectory is orthogonal to the one in spiral CT, ray contam-
ination occurs whenever the object contains material not covered
by every projection (that is, only a sub-region of the object is ex-
posed to electrons in a local view). These areas are then incom-
pletely reconstructed in the iterative procedure, which is
evidenced by vignetting – a brightness fall-off in the peripheral re-
gions of the reconstructed object. We derive a method, within our
iterative framework, which effectively compensates for this effect,
correcting the contaminated rays for the missing information.

Our paper is structured as follows. Section 2 presents relevant
background both on reconstruction algorithms and on GPU hard-
ware. Section 3 describes our various contributions, that is, the ad-
vanced GPU acceleration framework, the extension to the OS-SIRT
mechanism, and the long-object compensation method. Section 4
presents results and Section 5 ends with conclusions.
2. Background

Before detailing the contributions of this paper, we first give a
brief overview over the implemented – and then accelerated and
extended – reconstruction algorithms and the relevant intricacies
of GPU hardware. In this paper, we have only considered algebraic
reconstruction algorithms, but the hardware acceleration general-
izes readily to expectation maximization (EM) type procedures (for
more information, see (Xu and Mueller, 2005)).
2.1. Iterative algebraic reconstruction: theory and practice

Most iterative CT techniques use a projection operator to model
the underlying image generation process at a certain viewing con-
figuration (angle) u. The result of this projection simulation is then
lectron tomography reconstruction with long-object compensation using
.03.018

http://dx.doi.org/10.1016/j.jsb.2010.03.018

W. Xu et al. / Journal of Structural Biology xxx (2010) xxx–xxx 3

ARTICLE IN PRESS
compared to the acquired image obtained at the same viewing con-
figuration. If scattering or diffraction effects are ignored, the mod-
eling consists of tracing a straight ray ri from each image element
(pixel) and summing the contributions of the volume elements
(voxels) vj. Here, the basis function wij determines the contribution
of a vj to ri. The projection operator is given as:

ri ¼
XN

j¼1

v j �wij i ¼ 1;2; :::;M ð1Þ

Here, M and N are the number of rays (one per pixel) and voxels,
respectively. One can cast the choice of the weighting factors wij as
an interpolation problem, where the rays traverse a field of basis
functions (kernels) wij, each centered at a voxel vj (Mueller et al.,
1999). The most efficient basis functions for GPUs are the near-
est-neighbor and linear interpolation functions, in conjunction
with point sampling. We have shown in earlier work (Xu and
Mueller, 2006) that for 3D iterative reconstruction (with SART) this
type of sampling is sufficient. There we showed that the error func-
tion was similar to the one obtained with Siddon’s line and area/
volume integration schemes which assume lower-quality near-
est-neighbor kernels (but integrate them). A similar observation
was also made for SIRT (Benson and Gregor, 2005).

Once M and N are sufficiently large, it becomes infeasible to
store the wij as a pre-computed array. In fact, since GPUs are heav-
ily optimized for computing and less for memory bandwidth
(which is consequence of general semi-conductor technology),
computing these wij on the fly is by far more efficient. This is even
more so, since linear interpolation up to three dimensions and up
to 32-bit floating point precision is implemented on GPUs in spe-
cial extra-fast ASIC circuitry. As it turns out, on the latest GPU cards
there is almost no difference in performance for nearest-neighbor
and bi-linear interpolation. This is fortunate, since iterative algo-
rithms are very sensitive to the accuracy of the projector and thus
bi-linear interpolation is a requirement for high-quality recon-
structions (see Section 4). This sensitivity comes from the need
for accurate correction factors to be used for the iterative updates.
Here, linear interpolation strikes a good balance between aliasing
and smoothing. The correction update for projection-based alge-
braic methods is computed with the following equation:

v ðkþ1Þ
j ¼ v ðkÞj þ k

P
pi2OSs

pi�riPN
l¼1

wil

PN

i¼1
wij

ri ¼
XN

l¼1

wil � v ðkÞl ð2Þ

We have written this equation as a generalization of the original
SART and SIRT equations to support ordered subsets for the OS-
SIRT. Here, the pi are the pixels in the P/S acquired images that form
a specific subset OSs where P is the total number of projection
images, S is the number of subsets, and 1 6 s 6 S. The factor k is
a relaxation factor, which will be chosen as a function of subset
size (for SIRT where S = P, k = 1). The factor k is the iteration count,
where k is incremented each time all P projections have been pro-
cessed. In essence, all voxels vj on the path of a ray ri are updated
(corrected) by the difference of the projection ray ri and the ac-
quired pixel pi, where this correction factor is first normalized by
the sum of weight encountered by the (back-projection) ray ri.
Since a number of back-projection rays will update a given vj, these
corrections need also be normalized by the sum of (correction)
weights. Note that for SIRT, these normalization weights are trivial.

2.2. Graphics hardware: architecture and programming model

GPUs have their origin as dedicated graphics processors. In
graphics, high visual detail (when geometric detail is not needed)
Please cite this article in press as: Xu, W., et al. High-performance iterative e
graphics processing units (GPUs). J. Struct. Biol. (2010), doi:10.1016/j.jsb.2010
can be generated by simply mapping an image of sufficient resolu-
tion onto a large polygon. This requires two units. First, one needs a
high-performance parallel polygon rasterizer, since each such
polygon potentially affects many screen pixels onto which the im-
age must be mapped. Second, with each rasterized pixel giving rise
to a fragment one also requires a high-performance parallel frag-
ment processor, able to process the oncoming front of fragments
efficiently. Traditionally, each such fragment computation was just
an interpolation of the mapped image at the coordinates attached
to the fragment by the rasterizer. But now these computations can
be much more involved, such as generating sophisticated lighting
effects, driving complex physical simulations, or, in a GPGPU appli-
cation, the execution of an arbitrary program (called shader). The
key to a successful GPGPU implementation is that these computa-
tions can be cast as parallel operations, executed in lock-step
(SIMD = Single Instruction Multiple Data) on the parallel fragment
processors. This puts certain constraints on both data flow and pro-
gramming model, which often requires a creative re-organization
of the existing CPU program to enable optimal utilization of all par-
allel GPU resources.

The NVIDIA G70 chip (which forms the GPU in the 7800 GTX
and in the Quadro FX 4500) has 24 SIMD fragment processors
(and 8 vertex processors), 512 MB of DDR memory, and 165 GFlops
performance. On the other hand, the recent GTX 280 has 240 gen-
eralized processors, 1 GB of DDR memory, and nearly 1TFlops per-
formance (for further detail on these chips and boards the reader is
referred to the corresponding Wikipedia pages). As mentioned, up
to recently, the only way to interface with GPU hardware was via a
graphics API, such as OpenGL or DirectX, and using CG, GLSL, or
HDSL for coding the shader programs to be loaded and run on
the fragment processors. With CUDA, the GPU can now directly
be perceived as a multi-processor, and a suitable programming
interface is available for this model where fragments become the
CUDA (SIMD) computing threads and the shader programs become
the computing kernels, which can be launched by a single
instruction.

Textures are the data structures utilized most frequently in GPU
graphics programming (and they can also be used with CUDA).
Textures are essentially 1D–3D arrays supporting data types of var-
ious precisions ranging from 8-bit fixed point to 32-bit floating
point. Among those, 2D floating point textures are most suitable
for general purpose computing due to their complete support of
all data formats and interpolation schemes. Conceived within a
graphics context, textures are designed to contain up to four chan-
nels (RGBA) of data, where RGB is (red, green, blue) color and the A
(alpha) channel carries the opacity (1-transparency) value. This
feature provides additional data parallelism, in addition to the
intrinsic pipeline parallelism described above. However, in order
to achieve this parallelism one needs to fulfill even stronger
requirements than just SIMD.

Understanding the GPU memory hierarchy is the key to maxi-
mizing computational performance. On the GPU, memory is orga-
nized in register, shared, texture, and global memory. Registers and
shared memory are fastest and on-chip, while texture and global
memory is maintained as slower DDR memory and on-board.
Shared memory stores recently accessed data blocks for use by
parallel threads, and each memory miss causes 100 or more wait
clock cycles. Fortunately, GPUs hide these latencies by replacing
any waiting thread by another thread that (already) has the data
it needs to compute the current SIMD instruction. It is therefore
desirable to (a) maintain data locality among neighboring threads
in order to prevent costly cache misses overall, (b) launch a suffi-
cient number of threads (many more than the number of available
microprocessors) so the latencies incurred by cache misses can be
hidden by overlapping the memory waits with computation, and
(c) keep the kernel program sufficiently long to amortize setup
lectron tomography reconstruction with long-object compensation using
.03.018

http://dx.doi.org/10.1016/j.jsb.2010.03.018

4 W. Xu et al. / Journal of Structural Biology xxx (2010) xxx–xxx

ARTICLE IN PRESS
cost, minimize synchronization overhead, and promote efficient
instruction and data flow.

3. Methods

Most relevant in a GPU-accelerated CT reconstruction frame-
work is to have an efficient projection and back-projection opera-
tor. The remaining operations, such as the correction
computations, are simple vector operations of low complexity
and can be implemented on the GPU by subtracting two 2D tex-
tures, the texture holding the acquired projections and the texture
computed during projection. In the following we (a) describe an
efficient parallel framework that accelerates these operations,
and (b) present a new method that efficiently deals with the effects
of the limited specimen coverage of the detector.

3.1. Acceleration of forward and backward projection

We begin our discussion by writing the projection procedure in
form of a typical CPU implementation. Assuming S exclusive sub-
sets and P projections in total, the pseudo-code for projection is
shown in Fig. 1 (the back-projection is interleaved for each subset,
but not shown here). A ray steps across a slice, interpolates the
slice at the sample positions (which results in the weights), sums
these contributions (and the weights) and finally divides the ray
sum by the sum of weights for normalization. We pre-compute this
sum of weights in a pre-processing step and store into a texture.

From the code in Fig. 1 we observe that (i) the projection proce-
dure has 5 nested loops (indicated in blue), and (ii) the body of the
final level is the longest in terms of operations. The implementa-
tion of Castano-Diez et al. maps this loop structure directly to
the GPU. The body of loop (4) as well as loop (5) and its body are
executed in the fragment shader, while the head of loop (4) itself
is parallelized by generating a raster of fragments, one for each
loop instantiation. A polygon of size T � 1 is created (where T is
the number of pixels within a projection) and this polygon is ras-
terized to the screen. Since each volume slice is processed sepa-
rately, the projection data is just a set of 1D lines drawn from
the set of 2D projections. This process generates one fragment
Fig. 1. Forward projection loop of a str

Fig. 2. Pseudo code for sinogram-based forward projection. The first two grey lines are ex
fragment in this code is the equivalent of a CUDA thread.

Please cite this article in press as: Xu, W., et al. High-performance iterative e
graphics processing units (GPUs). J. Struct. Biol. (2010), doi:10.1016/j.jsb.2010
per pixel and for each pixel the fragment program is executed. Gi-
ven this decomposition, executing all instantiations of loop (4)
then encompasses a single parallel operation (called pass in GLSL),
and therefore one gets VS�P such passes. Furthermore, due to then-
existing limits on the number of instructions that could be exe-
cuted in one kernel, Castano-Diez et al. were forced to break each
volume slice into TL tiles and computed the rays sum for each tile
in a separate pass, adding the results in the end. Thus the final
number of passes became even higher, that is, VS�P�TL. Assuming
SIRT and P = 85, VS = 1024 slices, and TL = 4 tiles, this would then
result in 348 k passes, causing significant overhead.

This early implementation does not promote the rules set for-
ward at the end of Section 2.2 which hampers performance and
also scalability. There is only little parallelism, there are only few
threads per pass, and the threads themselves are short. We have
improved on this as follows, referring to the pseudo-code given
in Fig. 2:

� Minimize synchronization overhead: We do not subdivide the
domain into tiles, but trace all rays from entry to exit. Option-
ally, we pre-compute for each ray its starting locations (rx, ry,)
at the slice boundary as well as its direction vector (rdx, rdy)
and store these four values into a ray texture TXray.
� Encourage latency hiding: We launch all rays in a subset at the

same time. Thus the number of threads can be controlled by the
subset configuration. It is this flexibility that makes our OS-SIRT
scheme so attractive and powerful for high-performance GPU
computing. For this, we group all |OS| 1D projections in a subset
(corresponding to a certain volume slice) into a single 2D sino-
gram texture TXproj. Then, during projection, we create a poly-
gon of size T�|OS|, and use TXsim as a rendering target. This
generates rays/fragments for all angles and pixels in the cur-
rently processed subset, and eliminates loop (3).
� Exploit RGBA channel parallelism: For this to work, all frag-

ments in these parallel channels must exhibit the exact same
mapping function – all that can be different are the data and
the rendering target, with each such simultaneous pair being
stored in the RBGA channels. Such a strong parallelism is readily
exposed in parallel projection, and we can achieve it by storing
aightforward CPU implementation.

ecuted on the CPU, while the remainder is GPU-resident fragment code. Note that a

lectron tomography reconstruction with long-object compensation using
.03.018

http://dx.doi.org/10.1016/j.jsb.2010.03.018

Fig. 3. Pseudo code for sinogram-based back-projection. The first two grey lines are executed on CPU, while the remainder is GPU-resident fragment code.

Fig. 4. Limited detector/long-object problem: (a) the shadowed area indicated regions not reconstructed, but participating in the image formation, (b) area for acquired sum
of weights term.

W. Xu et al. / Journal of Structural Biology xxx (2010) xxx–xxx 5

ARTICLE IN PRESS
and processing a consecutive 4-tuple of volume slices and asso-
ciated projection data in the RGBA channels of their correspond-
ing textures. This reduces the number of required passes
theoretically by a factor of 4, but in practice this factor is about
3. GLSL provides a better interface than CUDA for accessing
these functionalities since RGBA color is typically used for
graphics rendering.

All put together, we can reduce the number of passes required
for one iteration to VS/4�S. For example, assuming classic SIRT with
S = 1 and VS = 1024 slices as before, we would have 256 passes (if
less passes are desired we could also combine equivalent rays in
multiple slices). This is less than 0.1% of the implementation of
Castano-Diez et al. which has a significant impact on reconstruc-
tion performance.

Equivalent to the projection code, Fig. 3 lists the pseudo frag-
ment code for back-projection. Similar to Castano-Diez.et al. the fi-
nal two loops of the above pseudo-codes are explicitly controlled
and executed on the GPU and are rendered in a single pass. How-
ever, in addition, we also exploit the RGBA 4-way parallelism,
reducing the total number of required passes to VS/4�S.

Note that the major difference of back-projection and forward
projection is that in the former the pixel rays are processed in par-
allel (forming a pixel-driven operator), while in the latter the voxels
form the threads (yielding a voxel-driven operator). This makes
both projectors gathering operations which are more efficient than
scattering operations in which every interaction would be a spread-
ing instead of an interpolation. More concretely, a voxel-driven for-
ward projector would have to splat (scatter, distribute) a kernel
function onto the detector plane, while a pixel-driven backprojec-
tor would have to splat the corrective updates into the reconstruc-
tion grid. These already expensive operations would have to be
written as kernel code, while interpolation is accelerated in special
super-fast hardware circuits. Although this forms an unmatched
projector-backprojector pair it has been shown by (Zeng and Gull-
berg, 2000) to work very well in practice.

Finally, since our backprojector uses linear interpolation where
the weights always sum to 1.0 for each projected voxel the post-
weighting normalization in Eq. (2) simplifies to a division by
|OSs|, which is the number of projections in subset s. Eq. (2) is then
written as:
Please cite this article in press as: Xu, W., et al. High-performance iterative e
graphics processing units (GPUs). J. Struct. Biol. (2010), doi:10.1016/j.jsb.2010
v ðkþ1Þ
j ¼ v ðkÞj þ k

P
pi2OSs

pi�riPN
l¼1

wil

jOSsj
ri ¼

XN

l¼1

wil � v ðkÞl ð3Þ

This reduces the need for keeping track of the sum weights in
the back-projection and saves on memory and calculations.
3.2. Limited detector problem compensation

During the data collection stage only a small portion of the sam-
ple is imaged to obtain the tilt projections. This results in the ‘‘lim-
ited detector” or ‘‘long object” problem as discussed in Section 1,
and an illustration is shown in Fig. 4a. Here an off-center acquired
projection image contains ray integrals across the whole sample,
but the simulated projection at the same angle does not have the
complete integral since the reconstruction volume must be limited
(typically by a box). In other words, voxels residing in the shadow
area of the original complete sample (shown shaded in grey) par-
ticipate in the projection formation during imaging, but due to
the restricted reconstruction area (shown in solid color), they do
not contribute in the value formation of any pixels during the
reconstruction, resulting in severe vignetting effects if we do not
compensate for this.

This vignetting effect is shown for three datasets in Fig. 5a. The
top row shows the reconstruction of a long slab of uniform density,
while the others show two TEM datasets – a tobacco mosaic virus
and the HPCcere2 dataset (see below) – all after one iteration with
SART. Note that these raw CT slices are vertical cross-sections of
the stack of slices typically displayed for visualizing the salient bio-
logical structures – we present these more familiar cross-sectional
images in Section 4. We observe that while the vignetting effects
are most prominent for the slices at the top and bottom ends of
the stack, all slices are principally affected (see the bow-tie like
structures which will cause density fall-off within all cross-sec-
tional slices).

We propose a weight correction scheme that effectively re-
solves this problem for iterative ET – other compensations exist
for analytical algorithms (Sandberg et al., 2003) based on Filtered
backprojection, where an extended area of around double the
length of the region of interest (ROI) is used as the reconstruction
lectron tomography reconstruction with long-object compensation using
.03.018

http://dx.doi.org/10.1016/j.jsb.2010.03.018

Fig. 5. Limited detector effect: (a) without compensation, and (b) with compensation during iterative reconstruction. Top to bottom row: a uniform slab, the HPFcere2
dataset, and the tobacco mosaic virus.

Fig. 6. (Top row) Reconstruction results for a tobacco mosaic virus dataset using the extreme OS configurations (SIRT and SART) and OS-SIRT 5, all taking about 30s to
reconstruct (intensity windowing was applied in each to boost contrast). (Bottom row) Zooming into a specific detail (again with intensity windowing). The number of
projections was 61, the tilt angle 120�, the volume size 680 � 800 � 100, and k was set to 1.0 for SIRT, 0.5 for OS-SIRT 5, and 0.03 for SART.

6 W. Xu et al. / Journal of Structural Biology xxx (2010) xxx–xxx

ARTICLE IN PRESS
target to prevent sampling artifacts. While the over-sampling ap-
proach resolves the edge problem, it introduces an extra amount
Please cite this article in press as: Xu, W., et al. High-performance iterative e
graphics processing units (GPUs). J. Struct. Biol. (2010), doi:10.1016/j.jsb.2010
of computation. Our approach does not require these extra compu-
tations, as we compensate for the missing target regions on the fly.
lectron tomography reconstruction with long-object compensation using
.03.018

http://dx.doi.org/10.1016/j.jsb.2010.03.018

Fig. 7. Reconstruction results for the HPFcere2 dataset using the extreme OS configurations (SIRT and SART) and OS-SIRT 5, all taking about 22s to reconstruct (intensity
windowing was applied in each to boost contrast). The number of projections was 61, the tilt angle 120�, volume size 356 � 506 � 148, and k was set to 1.0 for SIRT, 1.0 for OS-
SIRT 5, and 0.3 for SART.

W. Xu et al. / Journal of Structural Biology xxx (2010) xxx–xxx 7

ARTICLE IN PRESS
In a typical iterative algebraic framework, at a particular tilt an-
gle (see Fig. 4), the corrective update is derived as:

Correction ¼ Pacq � Psim

Wsumsim
¼ Pacq

Wsumsim
� Psim

Wsumsim
ð4Þ

Here the acquired projection is denoted as Pacq and the simu-
lated projection as Psim. The problem with using this equation to
derive a correction is that the computed sum of weights Wsumsim

is calculated based on the bounding box which does not exist (in
this closed form) in the acquired data. Therefore, this sum should
not be applied towards the acquired projection Pacq. Instead, the
acquired sum of weights Wsumacq (shown in Fig. 4b) is the correct
value that should be used. Using these arguments, we derive an
updated correction equation as follows:

Correction ¼ Pacq

Wsumacq
� Psim

Wsumsim

¼ Pacq �Wsumsim � Psim �Wsumacq

Wsumacq �Wsumsim

¼
Pacq �

Wsumsim
Wsumacq

� Psim

Wsumsim
ð5Þ

Consequently, an additional correction factor determined by
dividing Wsumsim over Wsumacq should be computed to pre-weight
the acquired projection Pacq before it participates in the regular
correction stage. In practice, we assume that the true extent of
the specimen falls within a box extending the box bounding the
reconstruction region. The ratio Wsumsim/Wsumacq could then be
obtained as the ratio of the length of the parallel rays clipped to
the reconstruction region’s bounding box and the length of these
rays fully intersecting the extended box at the given tilt angle.
The latter can be computed by L = d/cos(a) where d is the thickness
of the specimen (typically the number of voxels in that dimension
assuming unit cell size) and a is the tilt angle. While using a metric
ray length L to normalize Pacq has been already described in (Kak
and Malcolm Slaney, 1988 and Gilbert, 1972), these authors only
used this formulation as a measure more accurate than a sum of
discrete weights W. They did not differentiate the sum of weights
to be used for weighting Pacq and Psim within a limited detector
scenario.

To reduce computational overhead we pre-compute L for each
tilt angle and store its reciprocal into a constant texture. The ratio
Please cite this article in press as: Xu, W., et al. High-performance iterative e
graphics processing units (GPUs). J. Struct. Biol. (2010), doi:10.1016/j.jsb.2010
for a given ray is then computed by multiplying this constant by
the ray’s actual sum of weights Wsumsim obtained from the weight
sum texture (see Section 3.1). Alternatively we may also pre-com-
pute and store the ratios themselves as a (constant) texture.

The reconstruction results (again after one iteration with SART)
presented in Fig. 5b show that this approximation is reasonably
accurate, and we find that by applying the new correction the
strong vignetting artifacts present in Fig. 6a are effectively
removed.
4. Results

We have experimented with two TEM datasets: (1) a cryo data-
set of a frozen hydrated tobacco mosaic virus, comprised of 61 pro-
jections of size 680 � 800 each and obtained at uniform spacing
over a tilt angle of around 120�and (2) a brain synapse (the HPF-
cere2 dataset from the Cell Centered Database http://
www.ccdb.ucsd.edu), comprised of 61 projections of size
2242 � 3340 each and obtained at uniform spacing over a tilt angle
of 120� (these are double tilt data, but we only used a single tilt). In
order to align all projections, we cropped them to size
1424 � 2024. Next we show results we have obtained with our
GPU-accelerated SIRT, SART, and OS-SIRT algorithm. We first show
reconstructions we obtained, then present the timing results, and
end with further results on our limited detector artifact compensa-
tion scheme.

4.1. Reconstruction quality, in the context of computational
performance

For OS-SIRT we experimentally determined that OS-SIRT 5 gave
the best reconstruction quality in the shortest wall-clock time for
the TEM datasets we tested. We used k = 1 for SIRT in all cases.
For SART we used a fixed k = 0.3 for the brain synapse dataset
and k = 0.05 for the noisier tobacco mosaic virus. Fig. 6 displays
reconstruction results for the tobacco mosaic virus, with all 800
slices (resolution 680 � 100) reconstructed via the two extreme
OS configurations (SIRT and SART) and OS-SIRT 5. Here we found,
similar to Castano-Diez et al. that a single iteration was sufficient
for SART to converge and that SIRT will eventually reach conver-
gence as well with similar results, but requires many more
iterations (50 or more). The top row shows the full slice view of
lectron tomography reconstruction with long-object compensation using
.03.018

http://www.ccdb.ucsd.edu
http://www.ccdb.ucsd.edu
http://dx.doi.org/10.1016/j.jsb.2010.03.018

8 W. Xu et al. / Journal of Structural Biology xxx (2010) xxx–xxx

ARTICLE IN PRESS
(a linear intensity window was applied to maximize contrast) of
the reconstructed volume, and the bottom row shows a detail view
of the same slice (with intensity windowing). All reconstructions
were obtained at the same wall-clock time of 30 s, matching the
time required for one iteration with SART (using the more versatile
single-channel implementation, see below). It appears that OS-
SIRT 5 provides somewhat better detail and feature contrast than
both SART and SIRT – the tube channels seem better preserved
for OS-SIRT 5. Fig. 7 shows a similar series for the HPFcere2 dataset
(with 506 slices at 356 � 148 resolution) obtained at a wall-clock
time of about 22 s, with similar observations. SIRT produces signif-
icantly less converged (blurrier) images at this wall-clock time.
They improve (sharpen) if further iterations are allowed, which
we study in Fig. 8. There we see that 20 iterations appear to be suf-
ficient to match the reconstruction result obtained with OS-SIRT 5
(but at more than triple the time).

Fig. 9 compares the three different algorithms (SART, OS-SIRT 5,
and SIRT) quantitatively using the R-factor. Although the R-factor
still improves beyond the images we have shown here, we found
that these improvements are not well perceived visually and so
we have not shown these images here. To visualize the aspect of
computational performance in the context of a quantitative recon-
struction quality measure (here, the R-factor) we have inserted
into Fig. 9 a metric which we call the ‘computation time iso-
contour’. Here we used 22s for this contour – the approximate time
Fig. 8. Reconstruction results for the HPFcere2 dataset comparing the results obtained wi
each to boost contrast). The number of projections was 61, the tilt angle 120� and the vo
SIRT yield similar results than 6 iterations with OS-SIRT, but at double the wall-clock ti

Please cite this article in press as: Xu, W., et al. High-performance iterative e
graphics processing units (GPUs). J. Struct. Biol. (2010), doi:10.1016/j.jsb.2010
required for 1 SART, 6 OS-SIRT, and 8 SIRT iterations (see Fig. 7)
which yielded reconstructions of good quality for OS-SIRT 5. We
observe that OS-SIRT 5 offers a better time-quality performance
than SART, and this is also true for other such time iso-contours
(although not shown here) since the time per iteration for OS-SIRT
is roughly 1/6 of that for SART. SIRT, on the other hand converges at
a much higher R-factor.

Finally, Fig. 10 presents detail results obtained from higher res-
olution reconstructions with OS-SIRT 5 (of the HPFcere2 dataset).
We confirm that crisper detail can be obtained with higher resolu-
tion, and we will present the time overhead required in the follow-
ing section.

4.2. Absolute computational performance

We now discuss the general performance of our optimized GPU-
accelerated ET-framework. First, to illustrate the benefits of our
new projection/back-projection scheme in general, we provide
Table 1 which compares the running times obtained via our frame-
work with those reported in (Castano-Diez et al., 2007). The tim-
ings presented here refer to a 2D slice reconstruction with SIRT,
using projection data from 180 tilt angles, including the time to
transfer the data to the GPU. We have run our framework on
GPU hardware comparable to the one employed by Castano-Diez
et al., that is, the NVIDIA G70 chip (this chip forms the core of both
th extended iterations with SIRT and OS-SIRT 5 (intensity windowing was applied in
lume size 356 � 506 � 148. We observe by visual inspection that 20 iterations with
me. The relaxation factor k was set to 1.0 for both SIRT and OS-SIRT 5.

lectron tomography reconstruction with long-object compensation using
.03.018

http://dx.doi.org/10.1016/j.jsb.2010.03.018

Fig. 9. Comparison of SART, OS-SIRT 5, and SIRT in terms of quality (R-factor) and
performance (22s iso-contour) for the HPFcere2 dataset.

Table 2
Running time for 1 iteration for the reconstruction of volumes of different sizes
(resolutions) using SIRT, OS-SIRT 5 and SART, with the 1-channel and 4-channels
schemes, and parallel projections acquired at 61 tilt angles.

Volume resolution SIRT OS-SIRT 5 SART

1-ch 4-ch 1-ch 4-ch 1-ch 4-ch

356 � 506 � 148 2.642 2.103 3.672 2.278 15.867 5.712
712 � 1012 � 296 12.822 10.665 14.625 11.053 47.993 19.341
1424 � 2024 � 591 75.708 58.471 82.055 62.135 192.337 87.042

W. Xu et al. / Journal of Structural Biology xxx (2010) xxx–xxx 9

ARTICLE IN PRESS
the Quadro 4500 and the GeForce 7800 GTX boards, with only min-
or performance differences). Since then, newer generations of NVI-
DIA chips have emerged, with the latest being the G200 chip
(available as the GTX 280 board) for which we also report timings.
More detail on these two architectures was already presented in
Section 2.2. We observe that the significant decrease in passes of
our GPU-algorithm leads to consistent speedups of nearly an order
of magnitude across all resolutions and iteration numbers (7800
GTX columns). The newer platforms yield further speedups mainly
founded in hardware improvements (GTX 280 columns).

Table 2 studies the performance per iteration for SART, SIRT,
and OS-SIRT 5 for different volume sizes/resolutions (assuming
the same number of projections). In this table we also compare
the timings obtained for the more versatile single-channel imple-
mentation with the RGBA (4) channel solution implemented with
Fig. 10. Reconstruction results for the HPFcere2 dataset using 8 iterations with OS-SIRT 5
but the data used was at matching resolution. The relaxation factor k was set to 1.0 for

Table 1
Timings for the reconstruction of a single volume slice at different resolutions using SIRT an
and platforms.

Number of iterations Slice resolution (Castano-Diez et al.) Quadro

10 256 � 256 N/A
50 256 � 256 N/A
10 512 � 512 9s
50 512 � 512 39s
10 1024 � 1024 32s
50 1024 � 1024 146s
10 2048 � 2048 123s
50 2048 � 2048 567s

Please cite this article in press as: Xu, W., et al. High-performance iterative e
graphics processing units (GPUs). J. Struct. Biol. (2010), doi:10.1016/j.jsb.2010
GLSL. We make two observations. First, we see that the 4-channel
scheme pays off more as the number of subsets increases, with
SART being the extreme case where it can achieve speedups be-
tween 2 and 3. Second, we observe that the performance gap of
SIRT, OS-SIRT, and SART narrows (but more so for the 4-channel
implementation) with increasing volume size, with eventually SIRT
being only 1.5 times as fast than SART (for one iteration) in the 4-
channel configuration. Since in ET practice the volume slice resolu-
tion tends to be at the order of 2–4 k and larger, this means that the
choice of subsets will be mainly determined by the traditional
tradeoff between speed of convergence and noise cancelation.
Fig. 11 shows similar trends with a more standardized metric,
the number of voxels (multiplied by the number of projections in
the subset) processed per second. This yields a metric for the over-
all task complexity measured in gigavoxels/s.

4.3. Limited detector problem compensation

Our final results present the impact of our compensation scheme
on reconstruction quality. Section 3.2 has already shown that arti-
facts are effectively removed in the reconstructed thick specimen
and for increasing resolution. The number of projections was 61, the tilt angle 120�,
all reconstructions.

d parallel projections acquired at 180 tilt angles, comparing different implementations

4500 7800GTX Speedup GTX 280 Speedup

0.41s N/A 0.13s N/A
2.05s N/A 0.66s N/A
1.23s 7.3 0.34s 26.0
5.32s 7.3 1.75s 22.2
4.30s 7.5 1.23s 25.8

21.89s 6.7 6.44s 22.7
17.39s 7.1 5.06s 24.3
85.30s 6.7 26.94s 21.0

lectron tomography reconstruction with long-object compensation using
.03.018

http://dx.doi.org/10.1016/j.jsb.2010.03.018

10 W. Xu et al. / Journal of Structural Biology xxx (2010) xxx–xxx

ARTICLE IN PRESS
slab (which is a portion of a much wider and longer sheet). We have
also mentioned that in most cases this slab is re-sliced orthogonally
and then the grey level densities reversed and windowed, which
yields the images typically visualized and also shown in our Figs. 8–
10. In Fig. 12 we present the center slices of the re-sliced slabs of
Fig. 5 (center row, the HPFcere2 dataset) before and after grey level
Fig. 11. Reconstruction performance expressed in Gigavoxels/s for differen

Fig. 12. Comparing reconstruction results obtained for the HPFcere2 dataset without and
than for Fig. 7).

Please cite this article in press as: Xu, W., et al. High-performance iterative e
graphics processing units (GPUs). J. Struct. Biol. (2010), doi:10.1016/j.jsb.2010
reversal (top and bottom row, respectively) and without and with
compensation (left and right column, respectively) after one itera-
tion with SART. We observe, in the uncompensated images, the
peripheral density fall-offs at the left and right edge and we also ob-
serve a slight vertical stripe artifact due to the bow-tie border. Both
artifacts are effectively removed with our compensation scheme.
t volume sizes, algorithms and the 1-channel and 4-channel scheme.

with limited detector compensation for 1 iteration with SART (at the same settings

lectron tomography reconstruction with long-object compensation using
.03.018

http://dx.doi.org/10.1016/j.jsb.2010.03.018

W. Xu et al. / Journal of Structural Biology xxx (2010) xxx–xxx 11

ARTICLE IN PRESS
5. Conclusions

We have described new contributions within three major areas
of 3D Electron Tomography (ET): (i) the iterative reconstruction
framework using algebraic methods in different subset configura-
tion schemes, (ii) the compensation for the limited angle at which
projections can be obtained, and (ii) the acceleration of ET via com-
modity graphics hardware (GPUs). For the latter, we have pre-
sented a novel data decomposition scheme that minimizes the
number of GPU passes required, yielding speedups of nearly an or-
der of magnitude with respect to present GPU-acceleration efforts.
We also compared acceleration with a versatile single-channel
scheme that is available with any GPU API with a 4-channel
scheme (currently) only available with graphics APIs, such as GLSL,
which offers additional speedups of up to 2 for large practical data-
sets (more for smaller datasets). Our GPU-accelerated framework
allows full-size 3D ET reconstructions to be performed on the order
of minutes, using hardware widely available for less than $500.

Our GPU-accelerated ET platform allows ET researchers to
achieve a major task which has so far been infeasible without
expensive and extensive hardware: the iterative reconstruction
of full-size 3D volumes. We have shown that it is now possible
to reconstruct a 20482 � 100 volume within a few minutes, while
Castano-Diez et al. report nearly an hour or more for this task. A
CPU-based reconstruction would take on the order of days. We
emphasize that all of our results were obtained with a single
GPU solution (of a cost of less than $500) – a multi-GPU configura-
tion would provide even higher performance. We believe that the
impact of gaining such capabilities is great, as it enables demand-
ing iterative schemes crucial for the improvement of image resolu-
tion and contrast, such as iterative projection alignment and
registration, and we are planning to further our efforts in this
direction.

Current work is directed towards determining a framework that
can automatically optimize the number of subsets and determine
the best relaxation factor k for a given imaging scenario, as ex-
pressed in SNR, imaged specimen, and imaging platform. We have
already obtained encouraging initial results in this direction, as
recently reported in (Xu and Muller, 2009).
Acknowledgements

This work was partially funded by NSF grants CCF-0702699 and
CCF-0621463, NIH grants R21 EB004099-01 and GM31627 (DAA),
and the Keck Foundation and the Howard Hughes Medical Institute
(DAA).
References

Andersen, A., 1989. Algebraic reconstruction in CT from limited views. IEEE
Transactions on Medical Imaging 8, 50–55.

Andersen, A.H., Kak, A.C., 1984. Simultaneous algebraic reconstruction technique
(SART): a superior implementation of the ART algorithm. Ultrasonics Imaging 6,
81–94.

Benson, T.M., J. Gregor. 2005. Modified simultaneous iterative reconstruction
technique for faster parallel computation, IEEE Nuclear Science and Medical
Imaging Symposium, pp. 2715–2718

Cabral, B., Cam, N., Foran, J. 1994. Accelerated volume rendering and tomographic
reconstruction using texture mapping hardware, ACM Symposium on Volume
visualization, pp. 91–98.

Castano-Diez, D., Moser, D., Schoenegger, A., Pruggnaller, S., Frangakis, A.S., 2008.
Performance evaluation of image processing algorithms on the GPU. Journal of
Structural Biology 164, 153–160.

Castano-Diez, C., Seybert, A., Frangakis, A.S., 2006. Tilt-series and electron
microscope alignment for the correction of the non-perpendicularity of beam
and tilt-axis. Journal of Structural Biology 154, 195–205.

Castano-Diez, D., Mueller, H., Frangakis, A.S., 2007. Implementation and
performance evaluation of reconstruction algorithms on graphics processors.
Journal of Structural Biology 157 (1), 288–295.
Please cite this article in press as: Xu, W., et al. High-performance iterative e
graphics processing units (GPUs). J. Struct. Biol. (2010), doi:10.1016/j.jsb.2010
Chidlow, K., Möller, T., 2003. Rapid emission tomography reconstruction,
Proceedings of the 2003 Eurographics/IEEE TVCG Workshop on Volume
graphics. ACM Press, Tokyo, Japan, pp. 15-26.

Defrise, M., Noo, F., Kudo, H., 2000. A solution to the long-object problem in helical
cone-beam tomography. Physics in Medicine and Biology 45, 623–644.

Fernández, J.-J., García, I., Carazo, J.-M., 2004. Three-dimensional reconstruction of
cellular structures by electron microscope tomography and parallel computing.
Journal of Parallel and Distributed Computing 64, 285–300.

Fernández, J.J., 2008. High performance computing in structural determination by
electron cryomicroscopy. Journal of Structural Biology 164 (1-6), 2008.

Frank, J., McEwen, B.F., 1992. Alignment by cross-correlation. In: Frank, J. (Ed.),
Electron Tomography. Plenum Press. pp. 205–214.

Frank, J. (Ed.), 2006. Electron Tomography: Methods for Three-Dimensional
Visualization of Structures in the Cell, second ed. Springer, New York.

Gilbert, P., 1972. Iterative methods for the 3D reconstruction of an object from
projections. Journal of Theoretical Biology 76, 105–117.

Hudson, H., Larkin, R., 1994. Accelerated image reconstruction using ordered
subsets of projection data. IEEE Transaction of Medical Imaging 13, 601–609.

Kak, A.C., Slaney, Malcolm, 1988. Principles of Computerized Tomographic Imaging.
IEEE Press.

Kole, J.S., Beekman, F.J., 2006. Evaluation of accelerated iterative X-ray CT image
reconstruction using floating point graphics hardware. Physics in Medicine and
Biology 5, 875–889.

Lawrence, M.C., 1992. Least-squares method of alignment using markers, pp. 197–
204. In: Frank, J. (Ed.), Electron Tomography. Plenum Press.

Lawrence, A., S. Phan, R. Singh. 2009. Parallel Processing and Large-Field Electron
Microscope Tomography. 3:339-343. WRI World Congress on Computer Science
and Information Engineering.

Lucic, V., Forster, F., Baumeister, W., 2005. Structural studies by electron
tomography: from cells to molecules. Annual Review of Biochemistry 74,
833–865.

Mueller, K., and Xu, F., 2006. Practical considerations for GPU-accelerated CT, IEEE
International Symposium on Biomedical Imaging (ISBI), Arlington, VA, pp.
1184-1187.

Mueller, K., Yagel, R., Wheller, J.J., 1999. Anti-aliased 3D cone-beam reconstruction
of low-contrast objects with algebraic methods. IEEE Transactions on Medical
Imaging 18, 519–537.

Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Kruger, J., Lefohn, A.E., Purcel, T.,
2005. A Survey of General-Purpose Computation on Graphics Hardware,
Eurographics 2005, Eurographics Association, pp. 21-51.

Quinto, E.T., Skoglund, U., Oktem, O., 2009. Electron lambda-tomography.
Proceedings of the National Academy of Sciences 106 (51), 21842–21847.

Radermacher, M., 2006. Weighted back-projection methods. In: Frank, J. (Ed.),
Electron Tomography: Methods for Three-Dimensional Visualization of
Structures in the Cell, second ed. Springer, pp, pp. 245–273.

Sandberg, K., Mastronarde, D.N., Beylkina, G., 2003. A fast reconstruction
algorithm for electron microscope tomography. Journal of Structural Biology
144, 61–72.

Schiwietz, T., T. Chang, P. Speier, and R. Westermann. 2006. MR image
reconstruction using the GPU, vol. 6142, Proceedings of the SPIE, pp. 1279–
1290. .

Schmeisser, M., Heisen, B.C., Luettich, M., Busche, B., Hauer, F., Koske, T., Knauber,
K.H., Stark, H., 2009. Parallel, distributed and GPU computing technologies in
single-particle electron microscopy. Acta Crystallographica Section D: Biological
Crystallography 65, 659–671.

Schoenmakers, R.H.M., Perquin, R.A., Fliervoet, T.F., Voorhout, W., Schirmacher, H.,
2005. New software for high resolution, high throughput electron tomography.
Microscopy and Analysis 19 (4), 5–6.

Shepp, L., Vardi, Y., 1982. Maximum likelihood reconstruction for emission
tomography. IEEE Transaction of Medical Imaging 1, 113–122.

Skoglund, U., Ofverstedt, L.G., Burnett, R.M., Bricogne, G., 1996. Maximum-entropy
three-dimensional reconstruction with deconvolution of the contrast transfer
function: a test application with adenovirus. Journal of Structural Biology 117,
173–188.

Wang, Z., Han, G., Li, T., Liang, Z., 2005. Speedup OS-EM image reconstruction by
PC graphics card technologies for quantitative SPECT with varying focal-
length fan-beam collimation. IEEE Transactions on Nuclear Science 52, 1274–
1280.

Wang, G., Jiang, M., 2004. Ordered-subset simultaneous algebraic reconstruction
techniques (OS-SART). Journal of X-Ray Science and Technology 12, 169–
177.

Xu, F., Mueller, K., 2005. Accelerating popular tomographic reconstruction
algorithms on commodity PC graphics hardware. IEEE Transactions on
Nuclear Science 52, 654–663.

Xu, F., Mueller, K., 2006. A comparative study of popular interpolation and
integration methods for use in computed tomography IEEE International
Symposium on Biomedical Imaging (ISBI), Arlington, VA, pp. 1252-1255.

Xu, F., Mueller, K., 2007. Real-time 3D computed tomographic reconstruction
using commodity graphics hardware. Physics in Medicine and Biology 52,
3405–3419.

Xu, F., Mueller, K., Jones, M., Keszthelyi, B., Sedat, J., Agard, D., 2008. ‘‘On the
Efficiency of Iterative Ordered Subset Reconstruction Algorithms for
Acceleration on GPUs,” MICCAI (Workshop on High-Performance Medical
Image Computing and Computer Aided Intervention), New York.

Xu, F., Xu, W., Jones, M., Keszthelyi, B., Sedat, J., Agard K., Mueller, K., 2010. ‘‘On the
Efficiency of Iterative Ordered Subset Reconstruction Algorithms for
lectron tomography reconstruction with long-object compensation using
.03.018

http://dx.doi.org/10.1016/j.jsb.2010.03.018

12 W. Xu et al. / Journal of Structural Biology xxx (2010) xxx–xxx

ARTICLE IN PRESS
Acceleration on GPUs,” Computer Methods and Programs in Biomedicine, (to
appear, available online at http://linkinghub.elsevier.com/retrieve/pii/
S0169260709002521).

Xu, W., Mueller, K., 2009. ‘‘Learning Effective Parameter Settings for Iterative CT
Reconstruction Algorithms,” Fully 3D Image Reconstruction in Radiology and
Nuclear Medicine, Beijing, China, September.

Xue, X., Cheryauka, A., D. Tubbs, D., 2006. Acceleration of fluoro-CT reconstruction
for a mobile C-Arm on GPU and FPGA hardware: a simulation study, Vol. 6142,
Proc. SPIE, pp. 1494–1501.
Please cite this article in press as: Xu, W., et al. High-performance iterative e
graphics processing units (GPUs). J. Struct. Biol. (2010), doi:10.1016/j.jsb.2010
Zeng, G., Gullberg, G., 2000. Unmatched projector/backprojector pairs in an iterative
reconstruction algorithm. IEEE Transactions on Medical Imaging 19 (5), 548–555.

Zheng, Q.S., Braunfeld, M.B., Sedat, J.W., Agard, D.A., 2004. An improved stategy for
automated electron microscopic tomography. Journal of Structural Biology 147,
91–101.

Zheng, S.Q., Keszthelyi, B., Branlund, E., Lyle, J.M., Braunfeld, M.B., Sedat, J.W., Agard,
D.A., 2006. UCSF tomography: an integrated software suite for real-time
electron microscopic tomographic data collection, alignment, and
reconstruction. Journal of Structural Biology 157, 138–147.
lectron tomography reconstruction with long-object compensation using
.03.018

http://linkinghub.elsevier.com/retrieve/pii/S0169260709002521
http://linkinghub.elsevier.com/retrieve/pii/S0169260709002521
http://dx.doi.org/10.1016/j.jsb.2010.03.018

	High-performance iterative electron tomography reconstruction with long-object compensation using graphics processing units (GPUs)
	Introduction
	Background
	Iterative algebraic reconstruction: theory and practice
	Graphics hardware: architecture and programming model

	Methods
	Acceleration of forward and backward projection
	Limited detector problem compensation

	Results
	Reconstruction quality, in the context of computational performance
	Absolute computational performance
	Limited detector problem compensation

	Conclusions
	Acknowledgements
	References

