
Graphics Hardware (2004)
T. Akenine-Möller, M. McCool (Editors)

Squeeze: Numerical-Precision-Optimized Volume Rendering

Ingmar Bitter
Clinical Image Processing Services

Department of Radiology
National Institutes of Health

IBitter@nih.gov

Neophytos Neophytou, Klaus Mueller, Arie E. Kaufman
Computer Science

Center for Visual Computing
State University of New York at Stony Brook

{nneophyt|mueller|ari}@cs.sunysb.edu

Abstract
This paper discusses how to squeeze volume rendering into as few bits per operation as possible while still re-
taining excellent image quality. For each of the typical volume rendering pipeline stages in texture map volume
rendering, ray casting and splatting we provide a quantitative analysis of the theoretical and practical limits for
the required bit precision for computation and storage. Applying this analysis to any volume rendering implemen-
tation can balance the internal precisions based on the desired final output precision and can result in significant
speedups and reduced memory footprint.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation
E.2 [Data]: Data Storage Representations

1. Introduction

Volume rendering has undergone a tremendous evolution-
ary process in the past decade and it has found a wide
range of application domains in which it is routinely
being used. The most obvious are the visualization of

Figure 1: Thin soft tissue usingα0.8b,
√

α
0.8b, andα0.16b.

medical and scientific datasets, where the input data are
most often inherently volumetric. However, we have also
seen applications using volumetric sculpting to interac-
tively generate volumetric data using volumetric deforma-
tion to modify the data on the fly. Many advances in soft-
ware rendering algorithms [LL94, Lev88, MJC02, Wes90],
datastructures [IL95, PSL∗98, WV92], and custom hard-
ware [MKW∗02, PHK∗99] have been made, and the recent
revolution in commodity graphics hardware has helped vol-
ume rendering to gain speedups on the order of 1-2 magni-
tudes [EKE01, RSEB∗00]. What has remained quite stable
over the years is the volume rendering pipeline itself. Al-
though we have seen a shift from pre-classified pipelines
to post-classified ones (shown in Figure 1), this only re-
quires a re-ordering of the pipeline stages to facilitate clas-
sification and shading after interpolation [MMC99]. Due
to the massive amount of data that is involved in vol-
ume rendering, caching has received a fair bit of atten-

c© The Eurographics Association 2004.

/ Squeeze: Numerical-Precision-Optimized Volume Rendering

tion [Kni00, LCCK02, PSL∗98]. All this resulted in a great
deal of understanding on how to order the data items as they
flow across the pipeline. However, what about the size of
the data items? This is just as important because the size of
the data items influences (i) the computational effort, (ii) the
amount of data items that can be squeezed into the caches
and registers, and (iii) the amount of data bandwidth that can
be attained across both networks and buses. In this paper, we
have attempted to address this important issue by analyzing
the required data item precision at every stage of the volume
rendering pipeline, and in this way to come up with the opti-
mal data item size. The importance of maintaining sufficient
precision was also observed in earlier work [MHB∗00] when
comparing several popular volume rendering approaches. In
that research it was noticed that structures of low opacities
could not be visualized well when using texture mapping
hardware with limited bit-precision, especially when the pre-
classified pipeline was applied in conjunction with opacity-
weighted color interpolation [WMG98].

In our discussion we have assumed that the precision is
ultimately determined by the final stage, that is, the dis-
play on a computer monitor or projection wall, which is in
most cases 8 bits per color channel. Although input and out-
put media with higher precision do exist and our discussion
readily generalizes to those, we feel that 8 bits will be a
hard limit for a while because of the same limit within the
DVI standard used by most LCD screens and the absence
of any commodity displays with higher color resolution. We
have also concentrated on two major volume rendering algo-
rithms, raycasting and splatting. They can be implemented
in four distinct ways. (i) First, one can write a software vol-
ume renderer that uses general purpose CPUs to compute
the results of each raycast or splat volume rendering pipeline
stage. (ii) Next, one can implement the same raycast or splat
volume rendering pipeline stages using the same ray patters
and the same math at 32bit precision using custom written
shader programs for the new nVIDIA FX and ATI Radeon
9700/9800 chips. Hence, the rendering pipeline analysis is
the same for this approach, only that any result exceeding
32bit precision can not be satisfied in the implementation.
In addition, shader programs can use textures of varying bit
depth and our analysis helps to decide which one to use. (iii)
Third, one can use standard OpenGL or DirectX to imple-
ment texture map volume rendering that combines slices of
2D or 3D textures to form the volume rendered image. Map-
ping OpenGL or DirectX texture map functions to the splat-
ting math is difficult and we are not aware of any published
implementations. For raycasting a perfect match does not
exist as well, but a significant subset is implementable. We
point out where the general pipeline math can not be cast into
standard OpenGL or DirectX calls. Texture map raycasting
uses the same rendering pipeline stages, but is easier to im-
plement with classification before interpolation. In order to
accomodate this approach we analysed each pipeline stage
seperately. The order inversion of these two stages actually

have no effect on the outcome of the required precision. (iv)
The forth approach to implementing raycasting or splatting
is to build custom hardware. Here the sky is the limit, but
hardware resources need to be carefully balanced to achieve
maximum performance and our rendering pipeline analysis
gives valuable pointers of how much precision to invest in
each stage.

Our paper is structured as follows. First, Section 2 will
discuss related work, while Section 3 will present some the-
ory on fixed point arithmetic in the context of our special
volume rendering scenario. Then, Section 4, will present our
detailed precision analysis, addressing both theoretical and
practical issues. Section 5 will present some results, and Sec-
tion 6 will draw final conclusions.

2. Related Work

The VolumePro volume rendering chip [PHK∗99] uses 12
bits throughout the pipeline, mainly motivated by the need
to cater to the medical imaging industry that uses 12-bit data
words. The Vizard II board [MKW∗02] uses a 16-bit fixed
point format in the compositing stage to achieve good im-
age quality. In the color lookup tables, it allocates more bits
(16) for opacities than for colors (8) to resolve low opacities
when oversampling the rays. The PentiumIII based Ultra-
Vis system [Kni00] achieves high frame rates through ex-
tremely cache-friendly data layout and access. UltraVis uses
8-bit data as well as 16-bit fixed point color and translu-
ceny buffers in the compositing stage. Finally, two major
commodity graphics board manufacturers nVIDIA and ATI
have recently made available 32-bit floating point arithmetic
within their texture shaders, which brings plenty of preci-
sion, but requires non-standard vendor specific shader pro-
grams.

3. Fixed Point Arithmetic for
Volume Rendering

In order to conduct our precision analysis within a common
framework, we will be using fixed point notation. This is
convenient since for volume rendering the range of useful
results is generally contained in the tight interval of [0.0,
1.0]. This restricted interval has a number of important, as
well as peculiar, consequences. Note that in any fixed point
representationI .Fb with I bits for the integer part andF
bits for the fractional part the number 1.0 is represented
as I = 1 andF = 0 or 1.0b. With this representation mul-
tiplying 1.0b with itself is achieved through multiplication
of the integer variable with itself and a right shift byF bits,
which results again in 1.0b. However, in OpenGL the range
of α can be expressed as [0.0f,1.0f] as well as [0,255] which
equates 1.0f with 255. If we use the [0,255] representation
and try to compute 12 with one multiply and one shift we
get 2552 >> 8 = 254. Due to truncation effects each suc-
cessive multiplication with 255 will further reduce the re-

c© The Eurographics Association 2004.

/ Squeeze: Numerical-Precision-Optimized Volume Rendering

sult by 1. As we will see in the section about composit-
ing 4.1 that we need to successively multiply total trans-
parency (1.0). Hence, with the [0,255] representation of the
unit range any attempt to composite complete transparency
for 255 or more samples will counterintuetively result in to-
tal opacity. Consequently, we need more computational ef-
fort to use the [0,255] representation. One multiply, two adds
and two shifts properly compute 12 [Bli95]:

tmp = a[0,255] ∗b[0,255] +128;

result = (tmp+(tmp>> 8)) >> 8; (1)

However, a properI .Fb fixed point format can be used to
compute the transparency compositing using only one mul-
tiply and one shift. With this approach the eliminated second
shift and adds save half the computation time compared to
the [0,255] representation. Therefore, the one saved bit in the
[0,255] representation is not worth the computational cost, in
particular in light of the fact that 8 bits are by far insufficient
for the general case, as we shall see below. On a Pentium 4
both operations together actually take longer than a single
floating point multiplication. Hence, for those CPUs it only
pays to apply the fixed point math in practice if the need
for multiplications is mixed with additions, in which case a
single integer add can be used which is much faster than a
floating point add.

4. Precision Analysis

Figure 2 illustrates the post-classification rendering pipeline
stages for ray casting and splatting (specifically image-
aligned sheet-buffered splatting [MSHC99]). The structure
of both algorithms is very similar and so are most of their nu-
merical precision requirements. Eventually both approaches
result in an image that is usually displayed on a computer
monitor. We focus here on mainstream PCs with 8 bits per
color channel for the final display. These 8 bits per color
channel are the crucial limitation for the achievable preci-
sion. We optimize all prior steps to have just enough pre-
cision to guarantee that the final image precision is not
harmed. To propagate the limitations through the rendering
pipeline, we analyze the pipeline stages in reverse order.

4.1. Compositing

The last step in the rendering pipeline is the compositing
of the shaded samples yielding the final pixel value. For
realistic-looking imagesRGBα tuples affecting the same
pixel are interpreted as samples along a light ray into this
pixel. Further, the light attenuation when traversing semi-
transparent colored material is simulated [KV84, Kru91] us-
ing theOVERoperator (see Equation 2) tocompositecon-
secutiveRGBα tuples along the ray in sorted order. This
blends the tuples with the proper partial occlusion. The com-
putations have to be applied for each of the red, green and

blue color channels, with any one of them denoted asCλ .

OVER
αCλ = Cλ front ∗αfront +Cλback∗αback∗ (1−αfront)

OVER
α = 1− (1−αfront)∗ (1−αback) (2)

Compositing all samples contributing to the same pixel with
the OVERoperator in front to back order is calledfront to
back compositing (F2B). It can be done through incremen-
tal compositing of colorCλback

andαback into a compositing
buffer (CB):

F2B
αCλCB += Cλback∗αCB∗ (1−αCB)

F2B
αCB = 1− (1−αCB)∗ (1−αback) (3)

(the += operator is borrowed from the C/C++ language). It is
most efficient to incrementally compositeα-pre-multiplied
colorsĈλ = αCλ and transparencyT = 1−α, thus, com-
positing(αR,αG,αB,T) tuples:

F2BĈλCB += Ĉλback∗TCB

TCB ∗= Tback (4)

Blending with theOVERoperator in the reverse direction is
called back to front compositing (B2F)and results in the
same final color:

B2F
αCλCB ∗= 1−αfront;

B2F
αCλCB += Cλ front ∗αfront

B2F
αCB = 1− (1−αCB)∗ (1−αfront) (5)

Again, it is more efficient to compositêCλ andT.

B2FĈλCB ∗= Tfront += Ĉλ front

TCB ∗= Tfront (6)

Compositing all contributions along a ray yields the final
transparencyTCB, which is a material property that is inde-
pendent of the sampling rate. Hence, the transparency given

Figure 2: The rendering pipeline stages for ray casting and
splatting.

c© The Eurographics Association 2004.

/ Squeeze: Numerical-Precision-Optimized Volume Rendering

to each sample has to be adjusted accordingly if the sam-
pling rate is altered. For a homogeneous semi-transparent
gel and a sampling rate of one sample per voxel andN sam-
ples along a ray, the final composited transparency becomes
TCBN = TN (using Equation 6). If we now sampleK times
along the same ray, the sampling rate changes tor = K/N
and the new final transparency isTCBN = T̃K . As the mate-
rial has not changed, both expressions have to be equivalent:

T̃K = TN

T̃ = TN/K = Tr

α̃ = 1− (1−α)r (7)

Adjustingα according to Equation 7 is calledalpha correc-
tion [LCN98].

In a slice-order rendering algorithm, such as splatting
or texture map volume rendering or Cube-4 style ray-
casting [PK96], a complete slice of the intermediate results
is stored in the compositing buffer which requires a signif-
icant amount of memory. A 5122 RGBα-image in floating
point format uses 4MB, which is well beyond the on-chip
cache sizes of special-purpose volume rendering chips. It
is also well beyond the sizes of general purpose processors
level-1 and level-2 caches. Hence, reducing the compositing
buffer to the numerically required minimum will improve
the cache hit ratio.

4.1.1. Theoretical Analysis

Multiplying two numbers in fixed-point format withf1 and
f2 fractional bits each results in a new number withf1 + f2
fractional bits. During B2F and F2B compositing each sam-
ple requires a multiplication for color as well as for opacity
or transparency. Thus, compositing ofN samples requires
N f fractional bits for an absolute correct result. However,
when constrained to a frame buffer with 8-bit precision, the
compositing buffer precision may be reduced.

Compositing colorĈλCB through Equation 4 or 6 accu-
mulates the sample color contributions. WithN = 2p sam-
ples along a ray, small contributions sum up such that the
same low significance bit in each summand can influence a
higher significance bitp positions further to the left in the
final sum. The exponentp depends on the volume size and
sampling rate, and it ranges from 8 for 2563 volumes and one
sample per voxel to 11 for 5122×2048 volumes. Hence, to
allow 8-bit precision of the final color, 8+ p bits are needed
to account for this accumuation of small contributions. Note
that these small contributions may come from a saturated
color being multiplied with a small opacity (or high trans-
parency). Hence, opacity should be represented with with
8+ p fractional bits as all of those can potentially affect the
final composited result. Further, the final display of the ren-
dered image is assumed to be on a 24-bit(R,G,B) display
device which requires a conversion ofĈλCB = αCλCB to just
CλCB. This conversion needs a division byα. If only the least

significant bit ofα is non-zero, then during the division the
bits inαCλCB are shifted to the left by 8+ p positions. Thus,
over all, to allow 8-bit precision of the final color, 2(8+ p)
bits are needed to compositêCλCB which adds up to 32-38
bits.

Compositing using F2B (Equation 4) or B2F (Equation 6)
both compute the transparencyT through successive multi-
plications. IfT is represented with the same precision asα

usingt = 8+ p fractional bits thenT it is a number in 1.t for-
mat and is always in the value interval [0.0, 1.0]. Note, that
during multiplication with any other number in the interval
[0,1] none of the bits after thetth have any effect on the first
t fractional bits of the multiplication result. Hence, reducing
the transparency compositing buffer precision to the same
8+ p bits as each sample’s transparency is sufficient which
for our volume sizes and sampling rates equates to 16-19
bits. Note that this is only half for the precision needed for
ĈλCB.

CompositingRGBα through Equation 3 or 5 adds more
operations, but the number of multiplications and the num-
ber of sample contributions to sum up do not change. Hence,
the precision analysis of(αR,αG,αB,T) also applies to
RGBα.

At a sampling rater, applying alpha correction adjusts the
transparencyT to T̃ = Tr . For sub-sampling(r < 1) there are
no precision limitations, but for super-sampling(r > 1) the
value of anyT̃ ∈ (0,1) is less than that ofT. The smallest
change is needed for values close to zero and the smallest
value of T at f fractional bits is 2− f . Even for this value
0 < T̃ < T still has to be true.

0 < T̃ = Tr < T = Tmin

0 < T̃ =
(
2− f

)r
< T = 2− f

0 < T̃ = 2− f r < T = 2− f
(8)

Equation 8 shows that the number of bits needed to represent
T̃ is by a factorr larger than the bits needed forT. Hence,
the assumed 8+ p bits in the previous paragraphs need to be
increased tor(8+ p).

The overall compositing buffer precision requirements are
r2(8+ p) for ĈλCB andr(8+ p) for TCB andαCB. This adds
up to 1*2*(8+8) = 32 bits forTCB and 1*(8+8) = 16 bits for
αCB for 2563 volumes and no super-sampling. For 5122×
2048 volumes and 16 samples per voxel we get 16*2*(8+11)
= 608 bits forTCB and 304 bits forαCB.

4.1.2. Practical Considerations

If we ignore the precision requirements due to alpha correc-
tion, we setr to 1 and just slightly modify the transparency
of some structures without changing the overall impression.
Fortunately, the largest error occurs at low transparencies,
affecting samples that do not have much of a chance to accu-
mulate the error. This is because low transparency is synony-
mous to most opaque and any contributions of samples be-
hind a nearly opaque sample are usually not noticeable. In-

c© The Eurographics Association 2004.

/ Squeeze: Numerical-Precision-Optimized Volume Rendering

correctly snapping 99% opaque to 100% opaque is very ac-
ceptable. With this approximation the requirement forĈλCB
becomes 2(8+ p) bits and forTCB or αCB 8+ p bits.

4.1.2.1. Opaque Iso-surface VisualizationIf texture map
volume rendering is supposed to display only one or more
iso-surfaces and if these are to be rendered as opaque sur-
faces, then the compositing buffer precision can be even
more reduced. Storing the colors asCλCB requires a divi-
sion byα for each sample, but reduces the bit precision re-
quirement to 8+ p bits. Additionally,p can be reduced to 3,
as usually no more than 8 non-zero samples are needed to
reach opaque surface appearance. If we further assume that
the colors assigned by the transfer function are very bright
and can deal with a 3% inaccuracy (≥8/256), then we can
delete 3 more bits from the input color resulting in 5+ p =
5+3 = 8 bits forCλCB. Hence, with opaque iso-surface ori-
ented visualization configurations using 8 bits per channel
are sufficient.Note, that this restricted scenario allows tex-
ture map volume rendering to perform the compositing in
the frame buffer with sufficient precision.

4.1.2.2. Fog Visualization Practical scenarios in which
more bits are needed occur when an object is partially hid-
den in fog or bones are partially hidden behind nearly com-
pletely transparent soft tissue. Here, we cannot ignore the
accumulation effect of small contributions building up over
a long stretch of low opacity samples. If the volume is cov-
ered in fog and a structure whose iso-surface is supposed to
be displayed is centered in the volume, each ray reaching this
structure first traverses fog for about half the volume. This
adds up to 1024 samples for a 5123 volume and a sampling
rate of 4 samples per voxel. In this scenario we have two spe-
cial cases due to the high transparency values that need to be
successively composited toTCB according to Equation 4.

The first special case is concerned with the successively
compositing of completely transparent material, and we al-
ready showed in Section 3 that we need to represent the
transparencyT as 1.Fb format number to maximize com-
putation efficiency and ensure that 12 = 1. The second spe-
cial case is the soft tissue or fog that we do want to see,
but only highly transparent such that the opaque structure or
bone within is still fully visible. Using a fixed point format
1.7b with only 7 bits for the fractional partF , 27−1

27 = 127
128 is

the smallest partial transparency selectable. With this setup,
each fog sample reduces the ray transparency by1

128, reach-
ing full opacity after 63 samples. Therefore, the structure
would be completely hidden by the fog. Increasing the frac-
tional precision to 8, 10, 12, 14, 15, and 16 bits results
in 1024 samples of thin fog accumulating to 100%, 100%,
25%, 6.25%, 3.08%, and 1.7% opacity, respectively. Note
that here the color compositing buffer channels need at least
the same precision as the transparency channel, but the per
sample color does not need such high precision as it is used
only once.

The teaser images on the title page illustrate the effect
of the compositing buffer bit depthb = 8,10,12,14,15,16
when rendering a human spine from a 5123 dataset with a
sampling rate of 2 and with all non-bone tissues and the
background set toα = 1

2b . This enables only the least sig-
nificant bit and completely encloses the spine in this least-
significant-bit-fog. It is clear that for this type of visualiza-
tion 8 bits or 10 bits are not enough. 12 bits may be sufficient,
but adjusting the fog density will only be possible in very no-
ticeable discrete steps. 14 bits is sufficient for smooth fog ad-
justments. 15 bits would even allow increasing the sampling
rate from 2 to 4 and still result in an image similar to the 14-
bit fog image. Hence, for general visualization settings, the
compositing buffer should have 15 bits per color channel.
A hardware implementation geared towards general volume
visualization and5123 maximum volume dimension may re-
duce the compositing buffer to 14 bits per color channel.

Placing the preferred fixed point bit precision 1.15b as
"exponent", the preferred compositing equation is:.

F2BĈ1.15b
λCB += Ĉ1.15b

λback∗T1.15b
CB

T1.15b
CB ∗= T1.15b

back (9)

4.2. Shading

The colorCλ used in compositing results from evaluating
the Phong illumination:

PhongCλ = kambientOλ Iλ

+ kdiffuseOλ

Nlights

∑
i=1

Iλi

(
~N•~Li

)
+ kspecular

Nlights

∑
i=1

Iλi

(
~RV •~Li

)r
(10)

For OpenGL and DirectX texture map volume rendering the
specular term must be dropped because of the inability to
compute the reflectance vector. However, it could be com-
puted inside a custom shader program.

4.2.1. Theoretical Analysis

In Equation 10 the object colorOλ is usually an 8-bit value
representing the range [0,1] read from a lookup table. Fur-
ther, eachIλi

is in the range [0,1] and the vectors are sup-
posed to be normalized such that their dot product is in the
range [-1,1]. However, a negative dot product signifies that
the local surface element is facing away from the eye point
such that its contribution should better be culled. Hence, all
negative dot products are clamped to zero, which reduces the

dot product result range to [0,1]. In addition, the sums∑Nlights

i=1
are clamped to the [0,1] range as well, and finally one can as-
sume thatkambient+kdiffuse+kspecular= 1 as those constants
represent the weighting of the intensity contributions due to
ambient, diffuse and specular light. Consequently, the over-
all sum will be in the range [0,1].

c© The Eurographics Association 2004.

/ Squeeze: Numerical-Precision-Optimized Volume Rendering

4.2.2. Practical Considerations

Knowing from Section 4.1.2 that the computed color needs
15 fractional bits and that the value range is [0,1], a 1.15b
format to representPhongCλ is sufficient. However, each of
the multiplications needs additional bits. These bits can ei-
ther come from using standard floating point numbers or
through the use of an extended fixed point format. If for
each product one factor is in the range [0,1] and the other
in the range [0,1), then a balanced fixed point format such as
16.16b will not overflow during the integer multiplication
part. And if after each multiplication the result is shifted
right by 16 bits all consecutive multiplications with more
values in the [0,1] range do not overflow as well. If any of
those factors is in the range (0,1) but still truncates the multi-
plication result to zero because of limited precision, we only
incur a neglible error as the number of lights is usually small.

Given eight lights the sum∑Nlights

i=1 could bring back eight
contributions that are one bit below the least significant to
the second to last position of the valid range. On the 16.16b
format this is the difference between 0.003% intensity and
0% intensity, which is a very acceptable error. The only oper-
ation during the Phong equation evaluation that can not eas-
ily be replaced by integer math is the exponentiation needed
for the specular light contribution. Knittel [Kni00] proposed
to replace the exponential function with an inverted parabola
that has a very similar shape and very similar area under the
curve. Unfortunately, this approach has a discontinuous first
derivative at the location where the contribution approaches
zero. This discontinuity in the change of brightness is very
visible to the human eye (see Figure 3). A better method
is to restrict the exponent to powers of two and to compute
the power through successive multiplications of intermedi-
ate results. If each multiplication truncates the results to 16
fractional bits then a value raised to the power of 26 = 64
will have a maximum error of 1− (1− 1

217)6 = 0.0046%
which results in much smoother perceived changes in bright-
ness (see Figure 3).Hence, for the use of fixed point math
the Phong illumination equation can be evaluated using the
16.16b fixed point format:

PhongC16.16b
λ

= k16.16b
ambientO

0.8b
λ

I16.16b
λ

+ k16.16b
diffuse O0.8b

λ

Nlights

∑
i=1

I16.16b
λi

(
~N16.16b •~L16.16b

i

)
+ k16.16b

specular

Nlights

∑
i=1

I16.16b
λi

(
~R16.16b

V •~L16.16b
i

)2n

(11)

4.3. Gradients

Our analysis is based on the most commonly used gradient
estimator, the Central Difference GradientGx,y,z, with Gx =
1
2sample(x+1,y,z)−sample(x−1,y,z),Gy andGz analog.

4.3.1. Theoretical Analysis

The central difference gradient computation is straightfor-
ward. Given samples in aI .Fb format the difference opera-
tor adds one bit of precision requirement to the integer partI
and the division by 2 one bit to the precision requirement of
the fractional partF . If the division by 2 is performed first,
we do not even need the extra bit for the integer part. Hence,
the result should be represented in aI .(F +1)b format.

After normalization the gradient components are repre-
sented in 1.Fb format. This allows a discrete set of gradient
directions with nearest neighbors having an angular differ-
ence of:

sinφ =
1

2F , sinφ ≈ φ ⇒ φ ≈ 1
2F . (12)

This differenceφ has the most severe influence in the specu-
lar lighting computation. With an exponent of 64 the power
of the original dot product 164 = 1 may shrink to(1− 1

2F)64,
which is a reduction by 22%, 6.1%, 1.6% and 0.4% ifF is 8,
10, 12 or 14, respectively. Hence, for acceptable small dif-
ferences in shading intensity, normalized gradients should

Figure 3: A 5123 sphere with Knittel’s Phong approximation
(top), with float precision and the pow() function of Phong
(middle), and with fixed point Phong (bottom).

c© The Eurographics Association 2004.

/ Squeeze: Numerical-Precision-Optimized Volume Rendering

be accurate up to at least 12 fractional bits. Figure 4 dis-
plays spheres rendered with a specular highlight and gradi-
ent precision of 4, 6, 8, 10, 12 and 14 bits. We observe that
for 4-bit precision there are significant quantization artifacts
in form of rings for the diffuse shading and an almost non-
existent specular highlight. While 8-bit gradients are suffi-
cient for the diffuse shading, the close-up images indicate
that we need at least 12-bit gradients to obtain high-quality
specular highlights.

4.3.2. Practical Considerations

For data from medical scanners the integer part of the sam-
ples often has 12 bits, while the fractional bits are set due
to the sample interpolation computation. As shown in sec-
tion 4.2 the normal used in the shading computation is ex-
pected to be normalized with components in the [0,1] range
and in 1.15b format. If we perform this normalization the in-
teger part of each component will be reduced fromI to just
1 and there will be up toI bits added to the fractional part
of each gradient vector component leaving only 4 interpola-
tion bits to fill the remainder of the 16 significant fractional
gradient vector bits. However, if the actual gradient magni-
tude is very small, then the normalization divides by a much
smaller number and the fractional interpolation bits remain
more significant. In the extreme all 16 bits can be influenced
by the interpolation result.

In summary, both gradient computation and gradient nor-
malization can be carried out using a 16.16b format.

This is a much harder requirement than can be satisfied

Figure 4: First two rows:5123 spheres with gradient preci-
sion of 4, 6, 8, 10, 12, and 14 bits. Third row: close-ups for
gradient precision of 10, 12, and 14 bits.

by 8 bit per channel texture map implementations. Fortum-
nately, this requirement is mostly based on the specular re-
flection contribution which texture map volume rendering
must ignore anyway. The remaining diffuse shading is suffi-
ciently represented with 8 bits such that iso surface oriented
texture map volume rendering still can be achived without
precision compromises.

4.4. Classification

Classificationis the process of converting a voxel or sample
into anRGBα tuple (the object colorOλ and the object opac-
ity Oα). A color transfer functionis used to map samples to
colors. Anopacity transfer functionor α-transfer function
is used to map samples to opacitiesα. It assigns high opacity
to voxels and samples that should be visible and zero opacity
to those that should be invisible.

4.4.1. Theoretical Analysis

As the transfer function may have high frequencies, the
sampling rate used during rendering must be very high to
avoid aliasing artifacts. The best way to achieve a high sam-
pling rate without much computational cost is to use pre-
integrated classification [EKE01, MGS02]. Beyond a data
dependent sampling rate placing additional samples in be-
tween an existing pair of samples produces data values that
are practically linearly distributed between the two corner
values. Hence, one can restrict sampling during rendering to
the corner samples and tabulate a very finely sampled inte-
gral for any pair of previous and current sample value.

4.4.2. Practical Considerations

With our focus on 12-bit input data a 1D transfer func-
tion table needs to have 4096 entries resulting in 32KB
if 16 bits are used for eachRGBα entry. The correspond-
ing pre-integrated 2D table has 40962 entries, occupying
128MB. Because of this high storage requirement, preci-
sion is sometimes sacrificed and a 2562 table of 8-bitRGBα

is used instead, which occupies only 256KB. According to
our previous analysis we have seen that we prefer to com-
posite transparency and not opacity, and we have also seen
that we need more bits in the transparency channel than
in the color channels. Hence, a good compromise may be
theR0.8bG0.8bB0.8bT1.15b format. However, this results in 5
bytes perRGBα lookup table tuple, which is not very cache
friendly. We have also shown that quantization errors for
high transparency values have much larger effects than those
for high opacities. Our preferred solution therefore uses only
8 bits, but distributes the values with increased concentration
in the high transparency range. We achieve this by not stor-
ing T, but

√
α in the lookup table. Now, reading

√
α

0.8b

from the table and then computingT1.16b = 1− (
√

α)2 re-
sults in a 1.16b value forT. With this approach we use all
8 bits for the fractional part and, thus, doubling the number
of possible values in the [0,1] range compared to using an

c© The Eurographics Association 2004.

/ Squeeze: Numerical-Precision-Optimized Volume Rendering

1.7b format forα. The reason to store a form ofα and not
T in the lookup table is that we can not distinguish between
a 1.0f and2552

2562 , which is a difference of 0.8%. This does
not lead to perceivable image differences for these opacities,
but would for high transparencies as shown earlier. Figure 1
depicts the differences in the thin fog scenario when using
α0.8b,

√
α

0.8b, andα0.16b.

Hence, the preferred lookup table entry has the format
R0.8bG0.8bB0.8b√α

0.8b.

For texture map volume rendering this format is not an
option and we have to resort toR0.8bG0.8bB0.8b0.8b, which,
again, provides sufficient precision as long as only iso-
surfaces are being visualized.

4.5. Sample Interpolation / Splat Scan Conversion

To compute the value of a sample along a ray at an off-grid
location, tri-linear interpolation is commonly used. Any tri-
linear interpolation can be decomposed into seven linear in-
terpolations. Similarly, when a splat is scan converted into a
sheet buffer from its off grid splat center location, bilinear
interpolation is used to find the splat weights at the pixel lo-
cations. Any bi-linear interpolation can be decomposed into
three linear interpolations. Each linear interpolation involves
four or three operations:

sample = voxel0 ∗ (1−w)+voxel1 ∗w (13)

= w∗ (voxel1−voxel0)+voxel0 (14)

4.5.1. Practical Considerations

The most precision we require of samples is for their use in
gradient computation. We capped the gradient precision ear-
lier to the 1.12b format after normalization. The second use
of samples is as input for transfer function lookup in which
case 12-bit integers are needed. As voxels are represented as
12.0b format the weights need to be in 1.12b format to en-
sure that in the extreme case the two voxel values that are
being interpolated differ only by one, there are still 12 bits
used in the dynamic range of the interpolated results. Thus
we have enough precision for both possible scenarios: gra-
dient estimation in low-dynamic range neighborhoods and
in high-dynamic range neigborhoods. In the former case,
normalization by a small gradient magnitude will shift the
lower bits back to the left, while in the latter case we need
the bits for the actual gradient computation. Hence, by pro-
viding 12.12b precision for the samples we are able to deal
with both scenarios and therefore will be able to pick out
even small density variations accurately (which makes most
sense in datasets with low noise levels).

The preferred linear interpolation formula is therefore:

sample12.12b = w1.12b∗(voxel12.0b
1 −voxel12.0b

0)+voxel12.0b
0
(15)

Texture map volume rendering is again restricted to 8 bits
and only appropriate for iso-surface rendering.

4.6. Sample / Splat Location

To follow a ray through the data volume sample locations
along the ray are computed at off grid locations. This com-
putation is usually done incrementally. Hence, thekth sample
is at location~P0+∑~Vinc. This involvesk additions which can
accumulate the error in the least significant bit of the~Vinc and
invalidate all of the last logk bits. Consequently, at four sam-
ples per voxel and a 5122×2048 volume as many as 14 bits
could be incorrect. The remaining bits of the location must
be sufficient to represent an off-grid location that accurately
interpolates the surrounding data values that uses 12 bits, as
explained in the next section. And finally the non-fractional
part has to have sufficient precision to enumerate all voxels,
which requires up to 12 bits for 5122×2048. Thus, theoret-
ically, the only proper choice to compute ray sample loca-
tions is double precision.

4.6.1. Practical Considerations

In practice, the limited precision location representation in
I .Fb format has the effect that continuous rays are snapped
to a discrete set of rays with an angular difference of

sinα =
k 1

2F

k
, sinα ≈ α ⇒ α ≈ 1

2F . (16)

Hence, with only 6 fractional bits those discrete rays differ
by 0.9 degrees, with 12 bits they differ by 0.05 degrees, and
with 16 bits by only 0.0009 degrees. For parallel projection
all rays in a single frame have the same direction alleviating
any precision influence on image quality. During rotations a
limitation to 0.9 degree steps is not perceivable so 6 bits pre-
cision are sufficient. For perspective projection 0.9 degree
steps between neighboring rays are not enough, but 0.05 are,
as this allows to distribute 1024 rays across a 60 degree field
of view.

Further considering that we want to address locations in
up to 2048 slices we need at least 11 bits for the integer part
of the sample location.Consequently, the minimum sample
location precision is the 11.12b format.

In Splatting, we deal with one “ray” per voxel instead of
the one ray per image pixel during ray casting. The splat-ray
traverses from the voxel to the eye. For parallel projection
again all rays are parallel and again 6 fractional bits are suf-
ficient to allow for smooth rotation. In the perspective pro-
jection case we can have volumes as large as 5123× 2048
with as many as 2048 voxels projecting from a line perpen-
dicular to the view direction towards the eye. This is a factor
of two more than the ray density during ray casting.There-
fore, to include splatting, we need one additional fractional
bit resulting in a minimum sample location format require-
ment of 11.13b.

c© The Eurographics Association 2004.

/ Squeeze: Numerical-Precision-Optimized Volume Rendering

For efficient splatting it is best to transform all contribut-
ing voxels first and store their transformed locations in sheet
buffer bins according to their distance from the image plane.
In addition, au-index into the pre-integration splat table is
needed that is derived from the transformedz-coordinate.
After that thez-coordinate can be dropped and onlyx and
y have to be stored to signify the pixel in the image and the
weights for bilinear interpolation. Finally, the voxel valuev
is needed as well. Representingv using 8 bits all four values
together can be stored asx11.13bu8.0by11.13bv8.0b which oc-
cupies a cache friendly total of 64 bits. After a table lookup
only a single shift getsx or y into a processor register and a
single masking AND to getu or v into a register.

5. Results

In summary, the minimum data precision requirements are
as follows:

rendering stage input output

sample locations n/a 11.12b

sample interpolation 12.00b 12.12b

classification 12.00b 0.15b

gradients 12.12b 1.12b

shading 1.12b 1.15b

compositing 1.15b 1.15b

For texture map volume rendering all data items have to
be reduced to 8 bits and speculr reflections can not be com-
puted, however, for the restricted case of visualizing one
or possibly multiple iso-surfaces the OpenGL and DirtectX
rendering pipelines do provide sufficient precision.

Note that the output data may be stored either as a sin-
gle value or in an image-sized buffer. For raycasting, unless
a ray-beam is traced (for tile-casting), all output items are
computed on a pixel-basis and no buffers are needed. On the
other hand, for the image-aligned sheet-buffered splatting al-
gorithm both sample interpolation and compositing occurs
on a sheet-basis. However, all other values can be computed
on a pixel-basis. For rendering with slice-based texture map-
ping hardware a similar situation is given. Here, however, all
data items have to be reduced to 8 bits and specular reflec-
tions can not be computed. Nevertheless, for the restricted
case of visualizing one or possibly multiple iso-surfaces the
OpenGL and DirtectX rendering pipelines do provide suffi-
cient precision.

Modern PC CPUs are highly optimized to use integers that
exactly fit the internal registers. A Pentium 4 can perform
two simple 32-bit integer operations per clock cycle. Our
analysis showed, that we never needed more than 16-bit pre-
cision for the integer part of our computations and also never

more than 16 bits of precision for the fractional part. Hence,
everything conveniently fits into a 16.16b fixed point format,
which also happens to be the ideal fit considering hardware
resources. We measured speedups of up to 4× compared to
using 32-bit floating point format.

It should be noted that fixed point arithmetic is not always
faster than floating point arithmetic on today’s CPUs. For
example, while additions are faster for integer-based fixed
point numbers, multiplications tend to be slower due the
fact that integers use the floating point unit as well, but in
addition incur an extra shift operation. At the current date,
we do not know if the same holds true for the upcoming
GPU and CPU generations. In practice, we use floating point
arithmentic for all color channel operations, such as classi-
fication, gradients, shading, and compositing, while we use
fixed-point arithmentic for all geometry operations, such as
viewing transform, splat positioning, and rasterization. The
floating point format will use 8 bits to store the exponent
and one bit for the sign, which leaves 23 bits for precision in
the narrow dynamic range volume rendering is using. Hence,
both formats will suffice for our precision requirements, and
we can simply pick the format that yields best performance
in the CPU or GPU.

6. Conclusions

We have shown how the physical display hardware limita-
tions of 8 bits per color channel propagate back through
the rendering pipeline and how each pipeline stage can
be optimized for its numerical precision requirements. The
union of all rendering pipeline stage requirements is cap-
tured in the 32 floating point format. Double precision
does not increase the perceived image quality. Alterna-
tively, a 16.16b format can be used to achieve the same
quality images. We also showed that for splatting trans-
formed voxel locations are sufficiently stored in a 64-bit
x11.13bu8.0by11.13bv8.0b format. For splatting and ray cast-
ing alike transfer function table entries are sufficiently stored
in a 32-bitR0.8bG0.8bB0.8b√α

0.8b format and partially com-
posited pixels / fragments are sufficiently stored in a 64-bit
R1.15bG1.15bB1.15bT1.15b format.

7. Acknowledgements

This work was partially supported by Hewlett Packard Lab-
oratories, by ONR grant N000140110034, NSF CAREER
grant ACI-0093157, and DOE grant MO-068. We would
also like to thank Tom Malzbender and Michael Meissner
for many fruitful technical discussions.

References

[Bli95] B LINN J. F.: Jim Blinn’s corner: Three wrongs
make a right. IEEE Computer Graphics and
Applications 15, 6 (Nov. 1995), 90–93.

c© The Eurographics Association 2004.

/ Squeeze: Numerical-Precision-Optimized Volume Rendering

[EKE01] ENGEL K., KRAUS M., ERTL T.: High-
quality pre-integrated volume rendering using
hardware-accelerated pixel shading. InEuro-
graphics / SIGGRAPH Workshop on Graphics
Hardware(2001), pp. 9–16.

[IL95] I HM I., LEE R.: On enhancing the speed of
splatting with indexing. InProceedings of Visu-
alization ’95(Oct. 1995), Nielson G. M., Silver
D., (Eds.), IEEE, pp. 69–76.

[Kni00] K NITTEL G.: The ultravis system. InVolume
Visualization and Graphics Symposium(Salt
Lake City, Utah, Oct. 2000), IEEE, pp. 71–79.

[Kru91] KRUEGER W.: The application of transport
theory to visualization of 3-d scalar data fields.
Computers in Physics 5, 4 (July 1991), 397–
406.

[KV84] K AJIYA J. T., VON HERZENB. P.: Ray tracing
volume densities. InComputer Graphics, SIG-
GRAPH(Minneapolis, Minnesota, July 1984),
Christiansen H., (Ed.), vol. 18, pp. 165–174.

[LCCK02] LEVEN J., CORSOJ., COHEN J., KUMAR S.:
Interactive visualization of unstructured grids
using hierarchical textures. InVolume Visual-
ization and Graphics Symposium(Boston, MA,
Oct. 2002), IEEE, pp. 37–44.

[LCN98] L ICHTENBELT B., CRANE R., NAQVI S.: In-
troduction to Volume Rendering. Prentice Hall
PTR, 1998.

[Lev88] LEVOY M.: Display of surfaces from volume
data. IEEE Computer Graphics and Applica-
tions 8(5)(May 1988), 29–37.

[LL94] L ACROUTE P., LEVOY M.: Fast volume ren-
dering using a shear-warp factorization of the
viewing transformation. InComputer Graph-
ics, SIGGRAPH(Orlando, FL, July 1994),
vol. 28, ACM, pp. 451–458.

[MGS02] MEISSNERM., GUTHE S., STRASSERW.: In-
teractive lighting models and pre-integration
for volume rendering on PC graphics acceler-
ators. InProc. Graphics Interface(May 2002),
pp. 209–218.

[MHB∗00] MEISSNER M., HUANG J., BARTZ D.,
MUELLER K., CRAWFIS R.: A practical
comparison of popular volume rendering algo-
rithms. In2000 Symposium on Volume Render-
ing (2000), pp. 81–90.

[MJC02] MORA B., JESSELJ.-P., CAUBET R.: A new
object-order raycasting system. InIEEE Visu-
alization 2002(2002), pp. 203–210.

[MKW ∗02] MEISSNER M., KANUS U., WETEKAM G.,

HIRCHE J., EHLERT A., STRASSER W.,
DOGGETT M., FORTHMANN P., PROKSA

R.: Vizardii: A reconfigurable interactive vol-
ume rendering system. In2002 Eurograph-
ics/SIGGRAPH Workshop on Graphics Hard-
ware(2002).

[MMC99] M UELLER K., MÖLLER T., CRAWFIS R.:
Splatting without the blur. InIEEE Visual-
ization ’99 Conference Proceedings(N.Y., Oct.
1999), Ebert D., Gross M.„ Hamann B., (Eds.),
IEEE, ACM Press, pp. 363–370.

[MSHC99] MUELLER K., SHAREEF N., HUANG J.,
CRAWFIS R.: High-quality splatting on recti-
linear grids with efficient culling of occluded
voxels. IEEE Transactions on Visualization
and Computer Graphics 5, 2 (Apr.June 1999),
116–134.

[PHK∗99] PFISTER H., HARDENBERGH J., KNITTEL

J., LAUER H., SEILER L.: The volumepro
real-time ray-casting system. InComputer
Graphics, SIGGRAPH(Los Angeles, CA, Aug.
1999), ACM Siggraph, pp. 251–260.

[PK96] PFISTER H., KAUFMAN A. E.: Cube-4 - a
scalable architecture for real-time volume vi-
sualization. InSymposium on Volume Visual-
ization (San Francisco, CA, Oct. 1996), ACM,
pp. 47–54.

[PSL∗98] PARKER S., SHIRLEY P., LIVNAT Y.,
HANSEN C., SLOAN P.-P.: Interactive ray
tracing for isosurface rendering. InIEEE
Visualization ’98 Conference Proceedings
(Oct. 1998), Ebert D., Hagen H.„ Rushmeier
H., (Eds.), IEEE.

[RSEB∗00] REZK-SALAMA C., ENGEL K., BAUER M.,
GREINER G., ERTL T.: Interactive vol-
ume rendering on standard pc graphics hard-
ware using multi-textures and multi-stage-
rasterization. In2000 Siggraph/Eurographics
Workshop on Graphics Hardware(2000).

[Wes90] WESTOVER L.: Footprint evaluation for vol-
ume rendering. InComputer Graphics, SIG-
GRAPH (Dallas, TX, July 1990), vol. 24(4),
ACM, pp. 367–376.

[WMG98] WITTENBRINK C. M., MALZBENDER T.,
GOSSM. E.: Opacity-weighted color interpo-
lation for volume sampling. InIEEE Sympo-
sium on Volume Visualization(Chapel Hill, NC,
Oct. 1998), IEEE, pp. 135–142.

[WV92] W ILHELMS J., VANGELDER A.: Octrees for
faster isosurface generation.ACM Transactions
on Graphics 11, 3 (1992), 201–227.

c© The Eurographics Association 2004.

