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ABSTRACT

The Algebraic Reconstruction Technique (ART) reconstructs a 2D or 3D object from its projections. It has, in certain sce
many advantages over the more popular Filtered Backprojection approaches and has also recently been shown to per
for 3D cone-beam reconstruction. However, so far, ART’s slow speed has prohibited its routine use in clinical application
rently, a software implementation requires several hours for a 3D reconstruction, even on modest reconstruction gr
Although one solution to combat these problems would be the time-consuming design of expensive custom accelerato
we would rather like to resort to existing and widely available hardware for our purposes. In this sense, we find that ART
operations, i.e., volume projections and image backprojections, can be performed very rapidly on standard 2D texture m
hardware, resident in many graphics workstations and PC graphics boards. In this paper, we discuss the use of this ha
two volume decomposition modes: voxel and slice. Although we find that the speedups obtained in the voxel mode are
able, the speedups obtained in the slice-mode are tremendous. Here, a quality cone-beam reconstruction on a 1283 grid can be
obtained in less than 2 minutes, which corresponds to a speedup of over 70. Since our rapid ART reconstruction algor
be run on the same workstations that are typically used for the viewing of clinical datasets, it is immediately available for
parallel- and cone-beam CT.

Keywords: Algebraic Reconstruction Technique, ART, SART, Computed Tomography, CT, cone-beam CT, parallel-bea
reconstruction from projections, texture mapping hardware.

1.   INTRODUCTION
The Algebraic Reconstruction Technique (ART), first proposed by Gordon et. al. [7], is a tomographic reconstruction m
which reconstructs a 3D object from its projection images. These projection images may be acquired from any projectiv
ing modality, such as X-Ray, PET, or SPECT. ART is an iterative method and reconstructs a volumetric object by a se
of alternating volume projections and correction backprojections. Here, the volume projection measures how close the
state of the volume matches one of the scanner projections, while in the backprojection step a corrective image is dis
onto the volume grid. Many such projection/backprojection operations are typically required to make the volume fit all p
tions in the acquired set. Different ART variants exist: While the original ART corrects the volume on a ray-basis, Simulta
ART (SART) [1] corrects the volume only after a whole projection image has been computed.

The iterative process is slow, and this lack of computational speed has so far prevented ART to be used in real-life clinic
cations. However, scenarios exist where ART has many advantages over the more commonly used Filtered Backp
(FBP): It is superior when one does not have a large set of projections available, when the projections are not distribu
formly in angle, or when the projections are sparse or missing at certain orientations [12]. These scenarios may occur
operative CT, in cardiac CT, or when metal artifacts require the exclusion of some portions of the projection data [23].
fan-beam CT, and more recently, helical CT [11] have established themselves as routine clinical imaging methods, con
CT is still in a research state. As yet, there are no clinical cone-beam scanners, although a variety of cone-beam algorith
been proposed in the mid-80s. Present cone-beam algorithms are mostly based on FBP [5][8][21] (see also [17][22] f
parisons and reviews). However, more recent research [14] has demonstrated that ART (with certain modifications) an
can reconstruct general cone-beam data as well, at high accuracy and even for large cone-angles of up to 60˚.
Further author information:

Klaus Mueller (correspondence): 2015 Neil Ave, 789 Dreese Lab, Columbus, OH 43210; Email: muellerk@acm.org;
WWW: http://www.cis.ohio-state.edu/~mueller; Phone: (614) 292-0060; Fax: (614) 292-2911

Roni Yagel: Email: yagel@emitf.com; WWW: http://www.cis.ohio-state.edu/~yagel



mproved.
n addi-
wever,

he usual
ng and
us task,
olution
s hard-
ts of the
ithm [3].
d more
tations

phics
re, and
s only,

any mod-

elerate
me is
pproach
,
iderably

The

oftware
hm in

jection
cted by
e graph-
rojection
plement
ing so
lity than

ulated
ith the
nt) con-

D inter-

oxel
l kernel
correc-
r image
jec-
rrection
rrection
Thus ART possesses great prospects for 3D reconstruction from cone-beam data if its computational speed could be i
It was already demonstrated in [14] that two to three iterations are sufficient to reconstruct a 3D object of low-contrast. I
tion, the required number of projections in ART is typically smaller than for FPB, at least in the theoretical sense [9]. Ho
still more than 2.5 hours are needed on a modern workstation to reconstruct a 1283 volume from 80 projections [15]. As a rem-
edy, one could build dedicated ART accelerator boards and incorporate those into the clinical scanners, along with t
custom DSP (Digital Signal Processing) chips which already run the FBP algorithm extremely fast. However, designi
configuring special chips or boards to implement our ART and SART algorithms would be a rather expensive and tedio
and would produce narrow devices with little room for modifications and adaptations of the algorithms, hampering the ev
of technology. Fortunately, today’s widely available graphics workstations provide us with a better option: The graphic
ware resident in these workstations is especially designed for fast projection operations, which are the main ingredien
algebraic algorithms. In a different approach, this hardware was also used by Cabral et. al. to accelerate the FBP algor
Another plus of this hardware choice is the growing availability of these machines in hospitals, where they are more an
utilized in the daily task of medical visualization, diagnosis, and surgical planning. The feature of these graphics works
that we will rely on most istexture mapping, a technique that is commonly used to enhance the realism of the polygonal gra
objects by painting pictures onto them prior to display. Texture mapping is not always, but often, implemented in hardwa
runs at fill rates of over 100 Megapixels/sec. However, hardware texture mapping is not limited to graphics workstation
many manufacturers nowadays offer dedicated graphics boards with texture-mapping capabilities that can be added to
ern PC.

In the following sections, we will describe two algorithms that make use of the 2D texture mapping hardware to acc
ART’s projection and backprojection operations. The two algorithms differ by the level of granularity at which the volu
decomposed for texture mapping purposes. While the first algorithm projects the volume on a voxel basis, the second a
works on a volume-slice basis. The voxel-based approach reconstructs a 1283 volume from 80 projections in about 50 minutes
which corresponds to a speedup of 3 compared to an optimized software implementation [9]. The second version is cons
faster: It reconstructs the same dataset in about 2 minutes — a speedup of over 70 with respect to the fast software solution.
new rapid ART implementation is termedTexture-Mapping hardwareAccelerated ART (TMA-ART), and all software was writ-
ten using the widely accepted OpenGL API (Application Programming Interface). This standard interface allows easy s
portability to any medium-range graphics workstation or PC with graphics board. Although we will describe our algorit
terms of cone-beam reconstruction, it naturally also applies to parallel-beam reconstruction as a private case.

2.   PRELIMINARIES
ART is inherently a pixel-based reconstruction algorithm, i.e., a grid correction is based on the projection and backpro
of a single image pixel at a time. This is usually performed via image-order projection methods, i.e., the volume is proje
casting rays into the volume, pixel by pixel. Graphics hardware, however, uses object-order projection methods, i.e., th
ics objects are projected to the screen where their contributions accumulate into the final image. This image-based p
makes it tedious and inefficient to implement a pixel-based approach, such as ART. Hence, we have opted not to im
ART, but the related method SART, which performs grid correction only after an entire projection image is available. Do
is, in fact, to our advantage: It was shown in [14] that SART produces cone-beam reconstructions that are of similar qua
those obtained with cone-beam ART, but without requiring depth-adaptive interpolation filters.

We shall now briefly describe the individual steps of the SART algorithm, producing a decomposition that will later be em
in the graphics pipeline. Recall that SART reconstructs a volume by a series of grid projections and grid corrections, w
latter being implemented as image backprojections. Consider Fig. 1a, that shows how a grid voxel (i.e., a volume eleme
tributes to a projection and a backprojection, respectively. We can think of the volume to be decomposed into a field of 3
polation kernels, with one such kernel placed at each grid voxel location and attenuated by the voxel’s valuevj. During
projection (and backprojection), this field can be thought of being traversed by projection raysri, connecting the X-ray source
with the image pixelspi. The influential weightwij that a voxel has on one of these rays is the integral of the traversed v
kernel function. During projection, the rays traverse the voxel kernels, weighting all voxel values by the respective voxe
integrals, and accumulating the weighted voxel contributions into the ray integrals. A projection image results. The grid
tion factors are calculated by subtracting the ray integrals in this projection image from the pixel values in the scanne
Pϕ, obtained at the same orientationϕ than the computed projection. This yields a grid correction image. During backpro
tion, the rays traverse the volume again, but this time the voxel kernel integrals weight the correction factors in the co
image. Each voxel adds all contributions so obtained and normalizes them by the sum of weights. The resulting voxel co
is then added to the present voxel value.
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Stated more formally, the SART correction for voxelj, to be performed for each grid correction stepk, is written as follows:

(1)

Here, λ is a relaxation factor, typically chosen «1.0. Fig. 1b illustrates the algorithm, decomposed in its constituents.

The software implementations typically perform grid projection and backprojection by a procedure termedsplatting[24]. In
splatting, the kernel integrals (i.e., the weightswij) are pre-computed and stored in a table, called the kernelfootprint. If the
kernel function is radially symmetric, such as the Gaussian function, we can use the same footprint at all viewing orien
Two variants of the splatting algorithms are commonly used for ART: an object-order approach and an image-order ap
In the object-order approach [13][15], a footprint is associated with each grid voxel and mapped to the screen, weighte
voxel’s value. The accumulation of all weighted footprints then makes up the projection image (see Fig. 2a). In backpro
each voxel footprint is again mapped to the screen, but this time it weights the correction image contributions and adds
the voxel, properly normalized. In the image-order approach, the rays traverse the volume, as described above, and the
tables provide the pre-integrated kernel integrals [13][15].

We are now ready to describe the two hardware implementation variants of SART. We will start with the voxel-based ap
and then move to the slice-based variant.

3.  VOXEL-BASED TEXTURE MAPPING HARDWARE ACCELERATION OF ART
The voxel-based TMA-ART approach emulates the object-order software implementation of SART, i.e., each voxel is
ated with a footprint. The texture mapping hardware is used to map these footprints onto the screen. Similar to the a
described in [4], we associate each voxel with an identical square polygon of side length 2r, wherer is the radial extent of the

wij
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Fig. 1.  (a) The interpretation of a voxel weight factorwij , (b) the steps of the SART algorithm.
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The SART algorithm

Initialize volume

Until convergence

    Select a projectionPϕ
Image projection:

               Compute line integrals through allpi of Pϕ
               (the inner sums in equation (1))

Correction image computation:

               For allpi, subtract line integrals from scannerpi

               (expression in parentheses in nominator of (1))

Image backprojection:

               Distribute corrections onto grid voxels

               (the remainder of (1))
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kernel function, and map the footprint function as a texture onto it. While the hardware projection step is similar to the so
projection step, the hardware backprojection step is different. We now describe both steps.

3.1 Projection

For the voxel projection, we set the color of each polygon to the value of the corresponding voxel. Recall that a footprin
to the integration of a kernel function in the direction of the viewing rays. Hence, for cone-beam projection, the graphic
ware must rotate each polygon to a position perpendicular to the cone-beam ray that traverses the center of the footprin
(see Fig. 2b). Following this rotation, the polygon is perspectively projected to the screen. The polygon color is mod
(=weighted) by the footprint texture (i.e. the footprint function) when the polygon is rasterized. The accumulation of a
jected footprint polygons then yields the projection image. Note that, for parallel-beam projection, all footprint polygo
rotated by the same amount, parallel to the screen. Also note that only voxels within the spherical reconstruction regi
be projected. Furthermore, we only need to project voxels that have non-zero values.

3.2 Correction image computation

To compute the correction image, we read the framebuffer, subtract the read projection image from the scanner image
by the relaxation factorλ, and divide it by the corresponding weight image. The weight images are computed beforeha
each viewing angle, by projecting the footprint polygons of all relevant voxels, with colors set to unity, to the screen. N
these operations can be performed in hardware, since they either exceed the valid pixel range of the framebuffer or c
performed efficiently using the provided hardware. Hence, these operations are done on the CPU. Since the texture ma
framebuffer can only hold values in the range [0.0...1.0], but the correction image may have values in the range [-1.0...
must scale and translate the values in the correction image to the [0.0...1.0] interval. Note that, in this way, the value
volume slices are always in the range [0.0...1.0].

3.3 Backprojection

Although the replication of the projection step in hardware is straightforward, the backprojection step requires an appro
is different from that of the software implementation. But let us first discuss a strategy that emulates the software alg

voxel kernel

kernel footprint, weighted by voxel value

im
age plane

Fig. 2. (a) Screen projection of two representative kernel footprints, weighted by the value of the corresponding voxel (shown in
(b) Cone-beam screen projection of two representative voxel footprint polygons in voxel-based TMA-ART (shown in 2D). Since
footprints represent the integrated kernel function in the direction of the traversing rays, the footprint polygons must be rotated pe
dicular to the cone-beam ray traversing the center of the footprint polygon. This provides a good approximation to the true ray inte
The footprint polygons are perspectively mapped onto the image plane by the texture mapping hardware, and the resulting foo
are scaled by the polygon color, set to the voxel value.

rotated footprint polygons

perspectively mapped footprints,

cone-beam source

image plane

(a) (b)
scaled by voxel value

with footprint function
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exactly. In the software implementation, we simply map the footprint polygons to the screen, using the same procedure
the projection step, and weight the pixel values in the correction image according to the projected footprint functio
weighted correction values are then integrated and normalized by the sum of respective footprint weights to yield the
voxel correction. A possible hardware implementation of this process is as follows: First, the hardware loads the frame
alpha channel with the correction image, and the framebuffer blending mode is set toRfb=Rpoly·αfb. Here,Rfb are the pixel values
in the Red framebuffer channel after footprint projection,Rpoly is the Red color of the polygon, set to unity, andαfb are the pixel
values in the framebuffer opacity channel (set to the correction factors). This blending function achieves the multiplica
the correction factors with the footprint weights. After footprint projection, the framebuffer pixels that fall within the footpr
extent are read into memory. An integration of these pixel values then yields the nominator of the voxel correction in eq
(1). However, we need the denominator as well. For this purpose, we again project the footprint, but this time we use th
ing functionRfb=Rpoly·1. Integrating the resulting pixel values yields the denominator of the voxel correction equation (1
then perform the division and update the grid voxel. Note, that we need to scale the voxel updates back from the
[0.0...1.0] to [-1.0...1.0]. Also note, that we must clip the volume values to an interval [0.0...1.0] after the update.

This approach requires two framebuffer reads, two integrations, and one division per voxel. In particular, the two forme
ations are rather expensive, and performing them for each voxel would offset all advantages gained by the hardware
tion. Fortunately, we can revert the direction of the footprint mapping. Instead of mapping a voxel footprint onto the corr
image, we can alternatively map the correction pixel footprints onto the volume slices. In this scheme (see Fig. 3), each
slice is updated separately. First, each (non-zero) correction image pixel is associated with a texture polygon. Again, th
is given by the integrated kernel function, and the polygon has a side length of 2r. The Red color of each such polygon is set t
the correction factor and the Blue color is set to unity. Before projecting a polygon to the volume slice, represented by the
it is aligned perpendicular to the cone-beam ray that traverses its center. (For parallel-beam all polygons are aligned p
the view plane.) All aligned texture polygons are then perspectively projected to the screen. As a result, the Red color
holds the nominator of equation (1) and the Blue channel holds the denominator. Following, the framebuffer is read into m
and the division Red/Blue channel image is performed. This yields the correction image for that slice. We transform a

cone-beam source

volume slice i = screen

volume slicej = screen

perspectively mapped footprints,
scaled by correction factor

rotated footprint polygons

correction image plane

Fig. 3. Projecting the correction factors onto two representative volume slices in voxel-based TMA-ART. Each non-zero correction
tors is associated with a footprint polygon. The footprint polygons are centered at the corresponding correction image pixels in th
rection image plane (= the projection plane of the previous projection step). Each polygon is then rotated to align it perpendicular
cone-beam ray that traverses its center. Then the screen is aligned with the first volume slice, and all polygons are projected. Th
correction image accumulates in the framebuffer, and after scaling and clipping the image values, this image is added to the corre
ing volume slice in memory. This procedure is repeated for every volume slice, moving the screen to the corresponding volume
location.
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the correction image values, as mentioned above, and add it to the volume slice. We then proceed to the next volume
this approach, only one framebuffer read and one image division is required per slice. The correction integration per
done in hardware. Hence, this algorithm is considerably faster than the first, without a loss of accuracy.

Note that for both projection and backprojection, the orientation of the projected and updated volume slices is depen
which volume axis is most perpendicular to the screen. For example, if the screen is most perpendicular to the x-axis,
volume is decomposed into the slices that are aligned with the y-z plane.

4.  SLICE-BASED TEXTURE MAPPING HARDWARE ACCELERATION OF ART
The voxel-based approach is considerably faster than the software implementation. It, however, requires a separate po
terization for each voxel (or correction pixel) to be texture-mapped. This produces computational overhead, since the p
overlap on the image plane, requiring the screen pixels to be updated more than once. The footprint approach is efficie
number of projected polygons is sparse with respect to the volume size, i.e., a large percentage of voxels have a value
However, this is usually not the case in the iterative ART. Thus, we need to increase the granularity of our projected e
in order to minimize the number of pixel updates. This can be achieved by projecting an entire volume slice (or cor
image), and not just a voxel (pixel) footprint. We will now describe this approach.

4.1 Projection

The slice-based TMA-ART approach decomposes the volume into slices and treats each slice separately. In grid pr
(shown in Fig. 4), each slice is associated with a square polygon with the volumetric slice content texture-mapped on
projection image is obtained by accumulatively rendering each such polygon into the framebuffer. Here, a bilinear interp
kernel is used by the hardware to resample the texture image into screen coordinates.

Note that the ray integrals so computed are equivalent to the ray integrals obtained in a software solution that uses a
interpolation filter and samples only within each volume slice. In this respect, the integration follows the trapezoidal rule
similar to that obtained by Joseph’s algorithm [10]. Note that since the distance between sample points is not identical f
ray (due to the perspective distortion), we have to normalize the projection image for this varied distance. This can be
niently achieved by normalizing the scanner images by the inverse amount in a pre-processing step.

4.2 Correction image computation

After a projection image has been generated, the correction image is computed. First, the projection image is subtrac
the scanner image. The resulting image is then divided by the weight image at that orientation. (The weight images are c
beforehand by projecting a volume in which all voxels within the spherical reconstruction region have been set to 1.0.)
to the voxel-based approach, we must scale and shift the values in the correction image to the range [0.0...1.0]. At least
all computations with regards to the correction image are performed on the CPU.

ϕ

texture polygons

screen (projection image)

cone angleγ
 (volume slices)

Sliced-Based TMA-ART Projection algorithm

Rotate texture polygons by projection angleϕ
Texture map the volume slices onto texture polygons

Project textured polygons onto the screen

Accumulate screen contributions at each pixel

Fig. 4.  Grid projection with slice-based TMA-ART.
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4.3 Backprojection

In backprojection (shown in Fig. 4), we need to distribute a correction image onto the volume slices. This is achieved b
ciating each volume slice with the framebuffer onto which the correction image, mapped to a polygon, is rendered. (Th
inverse situation of Fig. 4.) Although projection is simple, backprojection is not as straightforward, since here the main v
direction is not always perpendicular to the screen. This, however, is required by the graphics hardware. To enable this
geometry, we implemented a virtual slide-projector (using the projective texture approach of Segal et. al. [18]) that sh
correction image at the oblique projection angle onto a polygon, which in turn is orthographically viewed by the frame
This is shown in Fig. 4 for one representative volume slice. The correction image is perspectively mapped, accordin
cone-geometry, onto the volume slice that has been placed at the appropriate position in the volume. This “slide” proje
then viewed by the screen. After the correction image has been projected onto the slice screen, we must scale and tra
values of the screen image back into the [-1.0...1.0] range. The resulting image is then added to the volume slice in m
limiting the voxel values to an interval of [0.0...1.0] and setting voxels outside the spherical reconstruction region to ze

Let us now explain this slide-projector approach in some more detail. In OpenGL, a polygon is represented by three
vertices. When the polygon is projected onto the screen, the coordinates of its vertices are transformed by a sequence
operations, as shown in Fig. 6 (For more detail on these fundamental issues refer to [6] and [16].)

A texture is an image indexed by 2D coordinates in the range [0.0...1.0, 0.0...1.0]. When a texture is mapped onto a p
the polygon’s vertices are associated with texture coordinates [s,t], as shown in Fig. 7. The viewing transformation of th
gon vertices yields a closed region on the screen. In a process calledscan conversion,all pixels inside this region are assigne

ϕ

projective texture screen

projected polygons

r

s

-z

x

γ

dvc-ts

slice screen

 (correction image)

(volume slices)

       T1:  translate by dvc-ts R: rotate byϕ  T1
-1: translate by -dvc-ts P: perspective mapping

S: scale by 0.5  T3: translate by 0.5

Slice-based TMA-ART Backprojection algorithm

Set texture matrix toTM =T1⋅R⋅T1
-1⋅P⋅S⋅T3

For each volume slice

     Associate 3D-texture coordinates with each vertex, set r-coordinate to z-coordinate

     Render the texture-mapped polygon onto the screen
               (useTM  to map texture coordinates onto texture screen)

     Scale and translate the values in the screen image back into the interval [-1.0...1.0].

Add the resulting image to the respective volume slice (limit the summed values to the interval [0.0...1.0]).

Fig. 5.  Grid backprojection with slice-based TMA-ART.
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(via interpolation) texture coordinates within the range assigned to the bounding vertices. Note that this transformation
to a stretching or shrinking of the texture.

The texture mapping coordinates need not be two-dimensional. As a matter of fact, they can be up to four-dimensional
ing a homogeneous coordinate), just like the vertex coordinates. In addition, OpenGL provides a transformation facility,
to the one supplied for vertex transformation, with which the interpolated texture coordinates can be transformed prior to
ing the texture image. We can use this facility to implement our virtual slice projector.

The algorithm proceeds as follows. First, we create an array ofn square texture coordinate polygons with vertex coordina
(s,t,r). Here, we set the (s,t) coordinates to (n, n), i.e., the extent of the volume slices. Ther-coordinate we vary between [dvc-

ts-n/2,dvc-ts+n/2]. (dvc-tsis the distance of the source to the volume center.) Refer now back to Fig. 6, where we show the d
position of the texture transformation matrix. The Modelview matrix is set to the productT1⋅R⋅T1

-1, i.e., each polygon is rotated
about the volume center by the viewing angleϕ. The Projection matrix is set to a perspective mapping of the texture coordin
onto the projective texture screen. After the perspective divide, the texture coordinates would be in the range [-1.0...1.0
we can only index the texture image within a range of [0.0...,1.0], we need to scale and translate the texture perspectiv
coordinates prior to indexing. This is achieved by incorporating a scale and translation given byS⋅T3 into the Projection matrix.

We can now perform the backprojection of the correction image, represented by the texture, onto the volume slices. Le
look at one of the volume slices, represented by polygonPswith vertex coordinates (n, n, z), which is projected orthographically
on the slice screen. Depending on itsz-location, the polygon is assigned one of the texture coordinate polygons. When map
Ps onto the screen, texture coordinates are generated for each pixel within the projected polygon extent. However, thes
coordinates are not used directly to index the correction image, but are first passed through the texture transformation
The transformed coordinates then index the correction image texture as if this image had been projected ontoPs at the back-
projection angleϕ.

One should add that this process is not any more expensive than direct texture mapping. Once the texture transformatio
is compounded, just one hardware vector-matrix multiplication is needed. As a matter of fact, this multiplication is alwa
formed even if the texture transformation is unity.

5.   RESULTS
Using both the software implementation of ART (discussed in [14][15]) and the two new hardware-accelerated versions
based and slice-based TMA-ART, we reconstructed a simulated brain dataset, the 3D extension of the Shepp-Logan
[19] (described e.g. in [2], a slice of which is shown in Fig. 8a). Note that since both versions of TMA-ART return similar re
structions, we only show the images generated with the slice-based approach. Projection sets of 80 cone-beam pr
(γ=40˚) of 1282 pixels each were obtained by analytical integration of the brain phantom and used to reconstruct a 1283 recon-
struction volume in 3 iterations (λ=0.1). To evaluate the effect of the limited framebuffer resolution in TMA-ART, we acqui
the brain projection sets at three different feature contrast levels. The original contrast of the main features in the pha
2% of the full dynamic range, while the background contrast of the small tumors in the bottom portion of the slice sho
Fig. 8a is only 0.5%. (Note that in all images of Fig. 8, the small dynamic range of the features was stretched into the f
playable range in order to make the features visible.)

Fig. 8b shows a slice (from the same location than that in Fig. 8a) across a volume reconstructed with the software im
tation of ART. We observe that very little reconstruction noise is present and that the brain features can be well disting
The software implementation uses both floating point arithmetic and floating point buffers throughout the reconstructi
cess. TMA-ART, on the other hand, also uses floating point arithmetic but only fixed point buffers. The main restriction
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the limited resolution of the 12 bit framebuffer (we use an SGI Octane workstation), which can only resolve 1/4096=0.02

texture image

polygon

(0.0,0.2)

(0.9,1.0)(0.0,1.0)

(0.9,0.2) mapped texture

Fig. 7. Texture mapping of an image onto a polygon. The texture coordinates assigned to the polygon vertices are given in paren
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Fig. 8. Slices across reconstruction volumes obtained with different implementations of ART, software and hardware-accelerate
reconstructions were performed using 80 128×128 projections of the 3D extension of the Shepp-Logan phantom (cone-angleγ=40˚, 3
iterations, 1283 reconstruction grid,λ=0.1).
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Fig. 8c indicates, this is apparently not sufficient to resolve the three small tumors in the bottom portion of the phanto
limited resolution also gives rise to a somewhat noisy appearance of the reconstructed slice. However, as can be ob
Fig. 8d, TMA-ART manages to resolve slightly higher tumor contrasts of 1% rather well. In addition, only little noise is app
in the slice of Fig. 8e, where the tumor contrast is 2%. It appears that the limited resolution of the framebuffer and, prob
a lesser extent, the limited resolution of the texture memory, causes reconstruction noise levels equivalent to the 0.5-1%
range.

Finally, Table 1 compares the run times for both the optimized software and the two different TMA-ART implementation
the voxel-based and the slice-based approach). We observe, that by utilizing texture mapping hardware for the grid pr
and backprojection operations, dramatic speedups can be achieved: A cone-beam reconstruction of a 1283 volume from 80 pro-
jections can now be performed in about 51 minutes with the voxel-based approach (speedup=3), and in 2 minutes with t
based approach (speedup=73), down from the 2.5 hours that were required in the optimized software implementation

6.   CONCLUSIONS
In this paper, we have shown that ART can be accelerated to almost interactive speeds, without building any expensive
hardware. All that is needed is a standard graphics workstation with 2D texture mapping capabilities or one of many inex
texture mapping boards that are readily available for almost any desktop PC. Previously, ART’s many qualitative adv
could not be utilized in clinical applications since the computational effort was too high compared to other 2D and 3D
struction methods. Our texture-mapping accelerated algorithm closes this performance gap and makes ART availabl
clinical setting, with the added benefit that it runs on a platform that can also be used to visualize the reconstructed d

7.   FUTURE WORK
The quality of the reconstructions is currently limited by the resolution of the framebuffer (and, to a lesser extent, tha
texture memory). We find that objects of 1% contrast can be resolved well even with a 12 bit framebuffer. We also find t
reconstruction noise levels are in the 0.5-1% contrast range. This means that once the features exceed this range, the
noise ratio becomes sufficient for a reconstruction of good quality. It is hoped that hardware manufacturers will supply m
with higher-resolution framebuffers, yielding better signal-to-noise ratios. To parallel this effort, we are currently worki
schemes that extend the machine’s framebuffer resolution (independently of what it is) by utilizing all color channels an
bining them to yield a virtual, higher resolution data word. These schemes extend a 12 bit framebuffer into 16 bits, an
results look promising.

We are also working to implement other portions of the ART algorithm in hardware, such as the computation of the cor
image, the accumulation of the projection image, and the voxel update. In addition, a TMA-ART version for multi-proc
PCs and workstations is currently being developed. It is expected that this version will achieve a reconstruction in less
sec.
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