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ABSTRACT

The prime motivation of this work is to devise a projection algorithm that makes the Algebraic Reconstruction
nique (ART) and related methods more efficient for routine clinical use without compromising their accuracy. W
we focus mostly on a fast implementation of ART-type methods in the context of 3D cone-beam reconstruction
of the material presented here is also applicable to speed up 2D slice reconstruction from fan-beam data.

In this paper, we utilize the concepts of the splatting algorithm, which is a well known and very efficient voxel-d
projection technique for parallel projection, and devise an extension for perspective cone-beam projection that
siderably more accurate than previously outlined extensions. Since this new voxel-driven splatting algorithm
make great sacrifices with regards to computational speed, we describe a new 3D ray-driven projector that use
concepts than the voxel-driven projector but is considerably faster, and, at the same time, also more accurate.
clude that with the proposed fast projection algorithm the computational cost of cone-beam ART can be reduc
nificantly with the added benefit of slight gains in accuracy. A further conclusion of our studies is that for parallel-
reconstruction, on the other hand, a simple voxel-driven splatting algorithm provides for more efficient project

Keywords: Algebraic Reconstruction Technique, ART, 3D cone-beam reconstruction, iterative reconstruction, r
struction from projections, splatting, projection algorithm, forward projection, backward projection

1.  INTRODUCTION
The field of 2D and 3D reconstruction methods can be roughly divided into two main categories. On one side t
the domain of direct methods that capitalize on the Fourier Slice Theorem [4], while on the other side lies the d
of iterative methods that seek to solve the reconstruction problem by solving a system of simultaneous linear eq
The most prominent member of the former group is the Filtered Backprojection (FBP) algorithm. Here, the recon
tion is achieved by filtering the projection images with a ramp filter in frequency space, and then backprojecti
filtered projections onto a reconstruction grid [5]. The first and still most prevalent representative of the iterative
ods is the Algebraic Reconstruction Technique (ART), attributed to Gordon et. al. [9], while another well-known
type method is Simultaneous ART (SART), proposed by Andersen and Kak [2]. In both methods, a reconstructi
is iteratively updated by a projection-backprojection procedure until a convergence criterion is satisfied.

In clinical, slice-based CT, FBP is nowadays exclusively used, since it is non-iterative and therefore potentially
than the iterative ART, at least in the case when the number of projections is identical. Note, however, that clini
scanners usually acquire more than 500 line projections per slice, which approximates the continuous form
inverse Radon integral rather well. The true power of ART is revealed in cases where one does not have a larg
projections available, or when the projections are sparse or missing at certain orientations [1][13]. In contrast
1
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ART also allows the application of spatial and numerical constraints, based ona-priori information, during the reconstruction
process, which potentially leads to a better definition and contrast of the reconstructed object [21]. Finally, noisy data
handled better with ART-type methods [13][17]. More recently, the importance of ART was reinforced by Matej et. al. [17
found, for the reconstruction from noisy PET data, that ART produces quantitatively better results than the more popu
and MLE (Maximum Likelihood Estimation) methods.

In the present work, we will focus on the 3D reconstruction from cone-beam data, as this is still an active area of researc
ever, much of our discussion is also valid for the 2D reconstruction from fan-beam data. Although a variety of genera
beam algorithms based on FBP have been proposed [7][8][20], there are, as of today, no clinical 3D cone-beam scann
present literature for 3D cone-beam reconstruction with ART is mostly restricted to the reconstruction of high-contrast o
such as encountered in computed angiography [18][21] (where we usually have a small number of projections) and rec
tion from PET [17] and SPECT [19] data (where the projections are usually noisy).

We thus see that there is a great potential for ART, especially in the growing domain of cone-beam applications. Howe
slowness of ART is still an obstacle in its utility for real-life clinical application. A first step to make the iterative framewo
ART faster and also more competitive with FBP for the general reconstruction case is the reduction of the overall cost r
for an iteration.

To achieve this goal, we must improve the speed of ART’s projection engine, as most of the computational expense of
spent for projection and backprojection. It turns out that the computational cost of this projection engine is greatly affe
the perspective nature of the cone-beam projection. In the following sections, we will give a detailed description of tw
highly accurate 3D projection algorithms, one voxel-driven and one ray-driven, and analyze their efficiency in both the p
beam and cone-beam setting. Although other voxel-driven projectors [23] and ray-driven projectors [15] have been de
these algorithms are only efficient for the parallel-beam case. Furthermore, our voxel-driven perspective projection al
is considerably more accurate than the one described by Westover [23]. Our ray-driven algorithm, on the other hand,
extension of the 2D algorithm proposed by Hanson and Wecksung [10].

Thus the outline of this paper is as follows. Section 2 gives a short recap on the workings of ART-type algorithms and de
previous work. Section 3 then describes a voxel-driven projection algorithm for cone-beam that is more accurate for per
projection than existing ones, but does not improve the state of the art in terms of speed. Section 4 gives a new ray-dri
jection algorithms for cone-beam ART that fulfills both goals: accuracy and efficiency. Finally, Section 5 presents some
and results obtained with our ART testbed software.

2.  PRELIMINARIES AND PREVIOUS WORK
In this section, we will give a brief review of those aspects of ART that are relevant to the work presented here. Whil
originally was proposed for the 2D case, the mathematical notation translates trivially to the 3D case.

As was mentioned before, ART poses the reconstruction problem as a system of linear equations:

(1)

Here, thevj are the values of the reconstruction grid elements (calledvoxelsfrom now on), thepi are the values of the pixels in
the acquired projection images, and the weight factorswij represent the amount of influence a voxelj has on a ray passing from
the source through image pixeli.

Usually one reconstructs on a cubic voxel grid with a side length ofnvoxel, thus the total number of voxelsN=n3 and the number
of image pixelsM=S·n2, whereS is the number of projections. Also, for a 3D single-orbit reconstruction we generally ass
a spherical reconstruction region. In this case we have unknown voxel values and rel
pixels per image. For the equation system (1) to be determined, the number of projectionsS=N/M has then to be 0.67n. This
means that forn=128, 86 projections images are required. However, it is not always the case that S=0.67n. Sometime
overdetermined, or, more often, it is underdetermined. In either case, the large magnitude of (1) does not allow its sol
matrix inversion or least-squares methods. In addition, usually noise as well as sampling errors in the ART implementa
not provide for a consistent equation system anyhow. Thus an iterative scheme proposed by Kaczmarz [12] is used.

w11v1 w12v2 w13v3 … w1NvN+ + + + p1=

w21v1 w22v2 w23v3 … w2NvN+ + + + p2=

…
wM1v1 wM2v2 vM3 … wMNvN+ + + + pM=

N 1 6⁄( )πn= M 1 4⁄( )πn
2=
2
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from an initial guess for the volume vector,V=V(0), we select at each iteration stepk, k>0 one of the equations in (1), say the
one forpi. A valuepi

(k) is measured which is the value of pixeli computed using the voxel values as provided by the pres
state of the vectorV=V(k). A factor related to the difference ofpi

(k) andpi is then distributed back ontoV(k) which generates
V(k+1) such that if api

(k+1) were computed fromV(k+1), it would be closer topi thanpi
(k). Thus, we can divide each grid updat

into three phases: a projection step, a correction factor computation, and a backprojection step.

The correction process for one element ofV, i.e.vj, can be expressed by:

(2)

whereλ is therelaxation coefficienttypically chosen within the interval (0.0,1.0], but usually much less than 1.0 to dam
correction overshoot. This procedure is repeated in an iterative fashion for all equations in (1).

Instead of updating the volume on a ray-basis, SART [2] corrects the volume on an image-basis. This was shown to sign
reduce the noise artifacts that were observed with ray-iterative ART. The projection step of SART performs a summed
rendering [11] of the reconstruction grid, then subtracts the rendered image from the acquired projection image, norma
result, and backprojects the image in an inverse volume rendering process. More formally, the SART correction equat
follows:

(3)

In this equation, the correction term for voxelj depends on a weighted average of all rays of a projectionPϕ that traverse the
voxel j. (Here,ϕ denotes the orientation angle at which the projection was taken.)

The sum terms in the nominators of (2) and (3) require us to compute the integration of a ray across the volume. The int
process can be performed by using raycasting, i.e., sampling the volume at equidistant locations with an interpolationh
and accumulating the interpolated values. Since accurate integration requires many sampling points, this is very time
ing. A better way that allows a more efficient and more accurate evaluation of the ray integral was proposed by a nu
authors [10][14][15][23]. It consists of reordering the ray integral so that each voxel’s contribution to the integral can be v
isolated from the other voxels. In this alternative volume decomposition, the interpolation kernel is placed at the voxel loc
and the volume grid is viewed as a field of overlapping interpolation kernels which, as an ensemble, make up the con
object representation. A voxelj’s contribution is then given by , wheres follows the integration of the interpolation
kernel in the direction of the ray. Here, represents a voxel weight factor in (1), (2) and (2). If the viewing dire
is constant for all voxels or if the interpolation kernel is radially symmetric, we can pre-integrate , often analyti
into a lookup-table (also called thekernel footprint). We can then map all voxel footprints to the screen, scaled by the vo
value, where they accumulate into a projection image, as is done in the splatting approach of Westover [23]. Alternativ
can use rays to intersect the lookup tables in volume space, again scale the indexed value by the voxel value, and ac
the density integrals ray by ray [10][14][15]. The former approach we call voxel-driven splatting, which produces an im
an image region at a time and makes only sense in conjunction with an image-based correction algorithm, such as SA
second approach is called ray-driven splatting and can be used with either ART or SART. Note, that the lookup-tables
used to retrieve all other weight terms in (2) and (3). Moreover, backprojection is performed in a similar way than forwa
jection, only that here the voxels receive (corrective) energy, scaled by their weight factors, instead of emitting it.

The splatting approach has two advantages: (i) The ray integrals are calculated very accurately, since each footprint ta
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can be integrated analytically or with good quadrature, and (ii) the complexity for interpolation is reduced from O(n3) in volume
space to O(n2) in image space. Fast incremental algorithms can then be used to index the footprint tables in volume sp
ray-driven splatting) or image space (in voxel-driven splatting).

While the concept of representing a volume by a field of interpolation kernels and pre-integrating a 3D kernel into a 2D fo
is common to all existing splatting implementations, the strategy chosen to map the footprint table onto the screen (in th
driven approach) or to map the rays into the footprint table (in the ray-driven approach) varies. The mapping task is fac
since we only use spherically symmetric kernels and cubic grids, which yields a circular footprint. For voxel-driven spl
both Westover [23] and Matej and Lewitt [15] simply map the circular footprint to the projection screen for one voxel an
incremental shifts for the remaining voxels at that projection angle. This, however, is only correct for parallel projections
in perspective projection the elliptical shape and size of the footprint is different for every voxel (More detail is given in S
3). In the case of ray-driven splatting we again assume a spherically symmetric interpolation kernel. In one approach, M
Lewitt [15] decompose the voxel grid into a set of 2D slices. Here the orientation of the slices is that orientation most p
to the image plane. Recall that a footprint is the pre-integrated kernel function in the direction of a ray, thus a footprin
necessarily planar with the slice planes. The authors project this footprint function onto a slice plane, giving rise to an e
footprint. Since in parallel projection all rays for a given projection angle have the same angle with the volume slices,
mapped elliptical footprint can be used for all slices and all rays that are spawned for a given projection orientation.
incremental algorithms can be designed to trace a ray across the volume slices, computing all indices into the elliptical fo
that are intersected. However, for perspective projection, every ray has a different orientation, necessitating a footprint
ping for every ray, which is inefficient both to compute on the fly and to store. A more appropriate approach was outlin
the 2D case by Hanson and Wecksung [10]. These authors model a 2D ray as an implicit line equation. If one runs a line
to the ray across the center of a given voxel, then the offset difference of the equations of these two lines yield the perpe
distance of the ray to the voxel center, which then can be used to index a 1D footprint table. Our ray-driven approach
extension of this algorithm, optimized for speed, that enables the efficient use of the same footprint table for all projecti
everywhere in the volume.

It should be mentioned that the choice of the interpolation kernelh varies in the various ART implementations. We will be usin
a kernel based on the Bessel-Kaiser window, as proposed by Matej and Lewitt [15]. Multidimensional Bessel-Kaiser fu
have many desirable properties, such as fast decay for frequencies past the Nyquist rate and radial symmetry. It can also
so that the kernel’s frequency spectrum is at a minimum at multiples of the sampling frequency, where the signal’s alia
largest.

3.  AN ACCURATE VOXEL-DRIVEN SPLATTING ALGORITHM FOR CONE-BEAM ART
Let us first introduce some terminology. As suggested by Crawfis and Max [6], we can think of the interpolation kernel fo
as a polygon with a superimposed texture map that is placed in object (volume) space. Here, the texture map is give
projected kernel function, i.e. the array of line integrals. For the remainder of our discussion we will refer to the footp
object space as thefootprint polygon, while the projection of the footprint polygon onto the image plane will be called thefoot-
print image. Recall that splatting accumulates the same value in a pixel on the image plane as a ray would accumula
traversing the volume. Thus, when projecting the footprint polygon to obtain the line integral for the pixel in the footprint i
we must ensure that we position the footprint polygon orthogonal to the direction of the sight-ray in object space. The lin
grals are retrieved from the footprint table by indexing it at the ray-footprint polygon intersection point. Thus, for splatt
be accurate, the 2D footprint must be mapped to the pixel as if the ray emanating from the pixel had traversed it at a pe
ular angle. Only then does the looked-up pre-integrated integral match the true kernel integration of the ray. Westover’s p
tive extension to voxel-driven splatting violates this condition at three instances: (i) He does not align the footprint po
perpendicularly to the voxel center ray when calculating the projected screen extent. Instead he aligns it parallel to th
and stretches it according to the perspective viewing transform. (ii) When mapping the footprint to the screen pixels he
linear transform instead of a perspective one. (iii) The footprint polygon is not rotated for every mapped pixel such that t
responding pixel ray traverses it at a perpendicular angle. While the error for the last approximation is rather small, th
ratio of the computed footprint table index vs. the correct index in the first two approximations can be up to 1.15 for a 30
half angle.

Consider now Fig. 1, where we illustrate a new and accurate solution for perspective voxel-driven splatting. For simpl
drawing, we show the 2D case only. Note that the coordinate system is fixed at the eye point. To splat a voxelvx,y,z, it is first
rotated about the volume center such that the volume is aligned with the projection plane. Then the footprint polygon is
orthogonal to the vector starting at the eye and going through the center ofvx,y,z. Note that this yields an accurate line integra
4
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only for the center ray, all other rays traverse the voxel kernel function at a slightly different orientation than given b
placement of the 2D (1D in Fig. 1) footprint polygon in object space. Thus the first error in Westover’s approximation st
vives. This error, however, can be shown to be less than 0.01, even for voxels close to the source.

The coefficients of the footprint polygon’s plane equation are given by the normalized center ray (the vectorsource-vx,y,z).
From this equation we compute two orthogonal vectorsu andw on the plane (onlyu is shown in Fig. 1). Here,u andw are cho-
sen such that they project onto the two major axes of the image. Usingu andw, we can compute the spatialx,y,zpositions of
the four footprint polygon vertices in object space (VRight(vx,y) andVLeft(vx,y) in the 2D case depicted in Fig. 1). These four ve
tices are perspectively projected onto the image plane. This yields the rectangular extent of the footprint image, align
the image axes (ExtRight(vx,y) andExtLeft(vx,y) in the 2D case). By expressing the intersections of the pixel rays with the fo
print polygon in a parametric fashion, we can then set up an incremental scheme to relate the image pixels within the f
image with the texture map entries of the footprint table.

The computational effort to map a footprint polygon onto the screen and to set up the incremental mapping of the pix
the footprint table is quite large: Almost 100 multiplications, additions, and divisions, and two square root operations a
essary. No incremental scheme can be used to accelerate the mapping of neighboring grid voxels. The high cost is am
the fact that the expensive mapping has to be done at O(N)=O(n3). And indeed, in our implementation, perspective projectio
was more than twice as expensive than parallel projection.

4.  A FAST AND ACCURATE RAY-DRIVEN SPLATTING ALGORITHM FOR CONE-BEAM ART
We saw in the previous section that perspective voxel-driven splatting can be made accurate, however, the expense o
tive voxel-driven splatting seems prohibitive for use in cone-beam reconstruction. In this section we take advantage of
that, in contrast to voxel-driven approaches, ray-driven methods are generally not sensitive to the non-linearity of the p
tive viewing transform. It can thus be expected that ray-driven splatting is more advantageous to use in the perspecti
beam situation. The new ray-driven approach is in some respect a 3D extension to the 2D algorithm sketched by Han
Wecksung [10] and will work both for ART and SART.

In ray-driven splatting, voxel contributions no longer accumulate on the image plane for all pixels simultaneously. In co
each pixel accumulates its raysums separately, which makes it also more suitable for ART than voxel-driven splatti
algorithm proceeds as follows. The volume is divided into 2D slices formed by the planes most parallel to the image
When a sight-ray is shot into the 3D field of interpolation kernels, it stops at each slice and determines the range of vo

ExtLeft(vx,y)

ExtRight(vx,y)

Proj(vx,y)

vx,y

Source
x

y

VLeft(vy,z)

VRight(vx,y)
pi+3

pi

pi+1

pi+2

Image plane

Projected kernel
(footprint image)

Footprint table

(footprint polygon)
 in object space

Fig. 1. Perspective voxel-driven splatting: First, the footprint polygon of voxelvx,y is mapped onto the image plane,
then the affected image pixelsp are mapped back onto the footprint table.

pi+4

Rotated volume

u
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nels within the slice that are traversed by the ray. This is shown in Fig. 2 for the 2D case: The ray originating at pixelpi pierces
the volume slice located atxs at y=y(i,xs). The voxel kernels within the slicexs that are intersected by the ray are given by th
interval [Ceil(yLeft(i,xs)), Floor(yRight(i,xs))]. We computeyRight(i,xs) as:

(4)

whereα is the inclination of the ray. The computation foryLeft(i,xs) is analogous. After determining the active voxel interv
[yLeft(i,xs), yRight(i,xs)] we must compute the indices into the voxel footprint table. This can be efficiently implemented by
izing that the index into the footprint table of a grid voxelv located at coordinates (yv,xv) is given by the distancedr of the two
parallel lines (planes in 3D) that traversev’s centerpoint and the slice intersection point of the ray aty(i,xs), respectively (see
Fig. 2b). One finds:

(5)

wherea andb are the coefficients of the implicit line equation of the ray and are also given by the c
ponents of the (normalized) ray vector. Maintaining the variablesyLeft(i,x), yRight(i,x), anddr along a ray can all be done using
incremental additions. f

For the 3D case, we need to replace the linear ray by two planes. A 3D ray is defined by the intersection of two orth
planes cutting through the voxel field. The normal for one plane is computed as the cross product of the ray and on
image plane axis vectors. The normal of the second plane is computed as the cross product of the ray and the normal o
plane. Thus, the two planes are orthogonal to each other and are also orthogonal to the voxel footprint polygons. Thu
pierces the footprint polygon in a perpendicular fashion, as required. Intersecting the horizontal plane with a footprint p
and using plane equations in the spirit of (5) results in the horizontal row indexdrrow into the footprint table, while the inter-
section with the vertical plane yields the vertical column indexdrcol. Using these two indices, the value of the ray integral c
be retrieved from the 2D footprint table.

There are now three nested loops: The most outer loop sets up a new ray to pierce the volume, the next inner loop adv
ray across the volume slice by slice and determines the set of voxels traversed per slice, and finally, the most inn
retrieves the voxel contributions from the footprint tables. For perspective projection, the plane equations have to comp
every ray. This amounts to about 50 extra additions, multiplications, and divisions, and three square roots per pixel. The
advancing a ray across the volume and determining the footprint entries is comparable to the cost of rotating a kernel a
ting it onto the image plane in the orthographic voxel-driven approach. The ray-driven approach changes the splattin
rithm from voxel order to pixel order. Thus, the most outer loop is of O(n2). This has the advantage that the complexity of an

yRight i xs,( ) y i xs,( )
extentkernel

α( )cos
---------------------------------+=

dr a xs⋅ b y i xs,( )⋅ a xs⋅– b yv⋅–+ b y i xs,( ) yv–( )⋅( )= =

a x⋅ s b y i xs,( ) 0=⋅+

Fig. 2. Ray-driven splatting: (a) Determining the range of voxels within a given compositing plane that are traverse
by a ray originating at pixelpi. (b) Computing the indexdr into the footprint table.
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extra work that has to be done for perspective projection (e.g. recomputing the two planes that define the ray in 3D) is
one order of magnitude less than in voxel-driven splatting. Note also that ray-driven splatting does not introduce inacc
As a matter of fact, it prevents the indexing errors in the voxel-driven approach by design.

5.  RESULTS
Fig. 3a shows a slice of the 3D extension of the Shepp-Logan phantom [22] (see [3] for details). Fig. 3b shows the sa
reconstructed from 20˚ cone-beam data with ART using the ray-driven splatting algorithm presented in the previous
Fig. 3c shows the same slice reconstructed with SART, also using ray-driven splatting.

Table 1 lists the run-times for SART and ART for both parallel-beam and cone-beam reconstruction. The runtime
obtained on an SGI Indigo2 workstation and refer to a reconstruction on a 1283 grid, based on 80 projections with a cone ang
of 40˚. In this table we see that for parallel-beam reconstruction with SART the voxel-driven approach is about 33% fas
the ray-driven approach. Hence, it is more advantageous in the parallel-beam case to perform the grid projection in obje
(i.e. to map the footprint polygons onto the screen) than to perform the projection in image-order (i.e. traverse the array
print polygons by the pixel rays). The computational savings in the voxel-driven algorithm for parallel-beam projection
from the fact that here the footprint-screen mapping is much simpler than the mapping described in Section 3, i.e. the m
does not undergo perspective distortion.

In cone-beam reconstruction, however, the situation is reversed in favor of the ray-driven projector. Here, the speedup f
the ray-driven projector over the voxel-driven projector in SART is about 2.4. For ART, the use of the image-based voxel
splatting algorithm is not practical anyhow.

In Table 1 we also observe that SART is about 13% slower than ART. This is rooted in the fact that SART requires add
CPU cycles for averaging the ray contributions for each voxel and also incurs overhead to handle the temporary accum
volume data.

6.  CONCLUSIONS
The prime motivation of this work was to devise techniques that make ART and SART more efficient for routine clinica
while not compromising their accuracy. Since the projection algorithm represents the main source of computations, we
focused on this portion of the algebraic algorithms in this paper. First, we described a cone-beam extension to Westover
driven parallel-beam splatting algorithm [23]. This new extension removes almost all inaccuracies of previously outlined
sions of that sort. Then, we analyzed existing ray-driven projectors in terms of their suitability for perspective cone-beam
struction. It was found that generally a ray-driven algorithm is far more suitable for the perspective cone-beam projecti
than a voxel-driven splatting algorithm. It was also found that most of the existing ray-driven algorithm were not applica
the special needs of cone-beam reconstruction. We then extended a conceptually existing 2D ray-driven splatting algor

(a)

Fig. 3. (a) A slice from the 3D extension of the Shepp-Logan phantom [22], as described in [3], (b) the same slice re
structed with ART and (c) reconstructed with SART. All reconstructions were performed for a cone angleγ=20˚, the volume
was initialized toV(0)=0, S=80 projections, and reconstruction was performed for 3 iterations on a 1283 grid. The relax-
ation coefficient for the ART reconstructions wasλ=0.08, for SARTλ=0.3.

(b) (c)
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3D and optimized it for speed and accuracy. In addition to its benefits in speed, this new ray-driven 3D splatting algorit
none of the inaccuracies of Westover’s perspective extension to splatting. Timing experiments revealed that while ray
splatting is considerably more efficient than voxel-driven splatting for cone-beam reconstruction, this situation is rever
the reconstruction from parallel-beam data where a simple, parallel-beam voxel-driven splatting algorithm provides for
efficient projection. These same relationships also exist in the context of fan-beam vs. parallel-beam 2D reconstructio

We should also mention that the projection methods outlined in this paper for cubic grids also fully extend to the dodec
or body-centered grids that were proposed by [16]. These grids were shown to reduce the number of voxels to be proc
about 30%. Since the dodecahedral grids are really just a stack of interleaved square grids, the incremental grid trave
rithms have to be modified only slightly.
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