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bstract

Single particle mass spectrometers are sophisticated instruments designed to measure the sizes and compositions of a wide range of individual
articles in situ, in real-time. They characterize hundreds of thousands or millions of particles, generating vast amounts of rich and complex data,
he proper mining of which requires dedicated state of the art tools. The analysis of individual particle mass spectra is particularly difficult because
f their high dimensionality—each data point, representing a single particle, includes the 450 mass spectral peak intensities, particle size, and time
f detection. The first step is to organize the data; a process typically accomplished by grouping particles of similar attributes. Since the common
ssumption is that the data should be reduced to become manageable, they are typically classified into a small number of clusters (∼10), each of
hich is represented by an average/representative spectrum. Our approach is quite different. We have developed a data mining and visualization

oftware package we call SpectraMiner that makes it possible to handle hundreds of clusters, limiting loss of information and thus overcoming
he boundaries set by traditional statistical data analysis approaches. Data, which often include over 1 million particle spectra, are organized using
-mean clustering algorithm. The clusters are merged into nodes by sequentially combining similar clusters. The final structure is displayed in a
ierarchical dynamical tree or circular dendogram. This interactive dendogram is the visual interface that allows for real-time data exploration and
ining. Clicking on any of the clusters/nodes in the dendogram reveals the detailed information about the particles that reside at that position. At

ach step the scientist is in control of the level of detail and the visualization format, rapidly switching between them while running the program
n a PC.

Here we present a study that puts the classification aspect of SpectraMiner to the test. Twelve types of laboratory generated particles are carefully

hosen to test some of the difficult aspects of single particle mass spectroscopy. We quantify the degree of particle identification and separation at
number of levels and demonstrate how the visualization tools that SpectraMiner provides can be used to refine, steer and control the data mining
rocess.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Single particle mass spectrometers (SPMSs) are presently
idely used to provide real-time, in situ information on the

izes and compositions of individual aerosol particles. The path

rom instrument design and construction to data acquisition and
nalysis is long and demanding. The goal is to use SPMSs to
enerate high quality, reproducible, easy to assign individual
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article mass spectra (IPMS). In reality IPMS that are gen-
rated by laser ablation tend to exhibit very large particle-to-
article variations, making the data mining process a daunting
ask. The steady drive to improve the instrumental aspects of
PMSs represents great challenges and remains at the center
f a significant research and development effort in the field. It
s important to realize that the immensity and complexity of
he rich data that are produced by these sophisticated instru-
ents requires comparable, dedicated state of the art analytical
ools that afford the user the opportunity to extract as much
nowledge as the data can offer. The focus of this paper is on
he approach we have developed to analyze the vast amounts

mailto:alla.zelenyuk@pnl.gov
dx.doi.org/10.1016/j.ijms.2006.06.015
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f complex and highly detailed data that are generated by
PMSs.

Analysis of IPMS, even if they are nearly reproducible, is dif-
cult because of their high dimensionality—each data point, rep-
esenting a single particle, comprises a long vector of attributes,
hich in the present applications include: the 450 mass spectral
eak intensities, particle size, and time of detection. In addi-
ion the analysis of IPMS requires means to account for the
arge particle-to-particle variations, which are an integral part of
xperimental data in general. In the case of IPMS it is important
o keep in mind that in laser ablation variability is often very
igh and it takes on a number of forms. The simplest involves
n apparently consistent fragmentation pattern but with large
article to particle variations in overall and/or in relative peak
ntensities. Another common finding is that particles of a given
omposition produce a number of different well-defined frag-
entation patterns. Which pattern dominates may correlate, to

ome degree, with particle size. And the cases that are the most
ifficult to analyze are those in which particles of different com-
ositions produce nearly identical mass spectra. Under most
pplications of SPMSs the compositions of the individual parti-
les exhibit a very wide range and they vary significantly from
ne particle to the next. The probabilities of generating ions
rom the different compounds in atmospheric particles can vary
y orders of magnitudes, worse yet, ion production varies not
nly from one component to the next, but also on the basis of
hat other compounds happen to be present in the same particle.
his partial list is intended to illustrate some of the complexity

nherent in the mining IPMS datasets.
The first step of mining datasets containing hundreds of thou-

ands of individual particle data points is to organize the datasets
nto groups of particles of similar composition. This process of
lassification is typically accomplished by grouping particles
ith similar mass spectral attributes together using statistical
ethods to define, compare and finally partition the IPMS into
number of clusters. Several clustering algorithms have been

pplied to the analysis of data produced by SPMSs [1–5]. Three
f these methods treat the IPMS as multidimensional vectors and
alculate their proximity in N-D space, which can be expressed
y Euclidean distances, dot products, correlation coefficients,
ahanalobis distances, and other metrics. Two research groups

1,4] are currently using an artificial neural network, ART-2A to
rganize the IPMS into classes. This algorithm groups particles
ccording to the dot products of the normalized particle vec-
ors. Murphy et al. [2] utilize a hierarchical clustering analysis
o classify data acquired with their SMPS. They also use the dot
roducts of normalized individual particle vectors as a measure
f spectra similarity and compare it to a set threshold. This pro-
ess yields typically a large number of clusters, which are then
ierarchically combined until stopping conditions are met. What
s interesting is that in this approach there is an option for expert
nowledge input to play a role in determining the final outcome
f the classification. To account for the complex internal mix-

ures of individual atmospheric aerosol particles Trimbom et al.
3] use a fuzzy classification algorithm, in which individual par-
icles can belong to more than one class, with varying degree of

embership. Another method—an algorithm for discriminant
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nalysis of mass spectra (ADAMS) [5] classifies aerosol mass
pectra into predetermined classes and groups rare particles into
n outlier class. Each of the defined classes is characterized by
iscriminant chemical markers that are assigned to it on the basis
f prior mass spectral knowledge.

While the methods, metrics and threshold distances used as
riteria for particles to belong to the same class can be different
or the different data classification methods, a common assump-
ion for all of them is that the data must be organized into a man-
geable number of classes, where manageable refers to a number
hat can be easily comprehended and handled by the scientist.
n most cases this means that the data are classified into a small
umber of clusters (∼10), each of which is then represented
y an average/representative spectrum. The results are typically
resented in pie charts, bar graphs, or 2D and 3D plots of time
nd/or, size and class [1,6,7]. It is important to keep in mind that
nce the data are organized and reduced there is no convenient
ath back to the original data or to a higher level of details.

Our aim is to develop a software package that provides the
ser with the option and tools to push data mining to the point
here the limits are determined by the data and not by the mining
rocess. Because the information content in these datasets is
ften overwhelming, we provide the user ease and flexibility
o choose at any stage the depth and details of the data mining
rocess. In this study we show that even the very limited dataset,
ontaining only 12 particle types, cannot be properly represented
y a very small number of statistical classes.

At the root of our approach [8] is a requirement that the
tatistical classification algorithm is used to order the data for
ining with a minimal loss of information. Thus, we classify

ur data, which often include over 1 million IPMS, into hun-
reds of groups, which we call clusters. The clusters are merged
nto nodes by sequentially combining similar clusters and the
odes are further merged into larger nodes. The final structure is
isplayed in a hierarchical dynamical tree portrayed in a space
fficient polar format, or circular dendogram. Most importantly,
he dendogram serves as the visual interface that allows the user
o navigate through the complexities of the individual particle

ass spectral datasets with ease, taking advantage of the fact that
he human brain is capable of comprehending visual informa-
ion that is orders of magnitude more complex than text, speech,
r tabulated numbers. Hence, we have overcome the need to
educe the data to ∼10 clusters by providing novel visualiza-
ion and data mining tools. This task is accomplished with the
ata mining and visualization software package we call Spec-
raMiner. With SpectraMiner the user can explore the data on
ny level: from nodes that include hundreds of thousands of par-
icles down to the individual particle level with speed and ease,
ever having to permanently disregard even the smallest fraction
f details or data.

Here, we present a study that illustrates some aspects of
he data organization and identification part of SpectraMiner.
lthough this study yields a detailed quantification of the parti-
le identification process, our goal is not to tabulate the number
f particles that are correctly or incorrectly classified. Instead,
e use this study to identify some of the common difficulties of

nalyzing IPMS and describe our approach to curtail information
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oss and illustrate specific solutions. To this end we generated
nder controlled settings IPMS of 12 types of particles, whose
omposition is specifically chosen to illustrate the problems we
ace in atmospheric science, and demonstrated the contribution
hat SpectraMiner makes to resolve them.

. Experimental

.1. Particle types and particle generation

The 12 types of particles used in this study are listed in Table 1
ith their corresponding abbreviations. These compounds were

hosen to represent a very small sample of the types of particle
ompositions we routinely encounter in the atmosphere. They
ere selected in a manner that reasonably reproduces some of the

undamental categories of complexities encountered in single
article mass spectroscopy.

The two Na-containing particle types test our ability to dif-
erentiate these very different particle types whose mass spectra
re dominated by the Na+ ion peak. Similarly, distinguishing
etween the pure ammonium nitrate particles and the internally
ixed particles that are composed of ammonium nitrate and

auric acid is difficult since the IPMS for both of these particle
ypes are dominated by the NO+ peak. Ammonium sulfate and
mmonium nitrate are some of the most common compounds
ound in tropospheric aerosols. Yet in similar studies by other
esearchers [2,4] it was found that these two particle types are
ifficult to differentiate with SPMSs. It was important for us to
est our ability to detect ammonium sulfate and properly classify
hese two particle types. Our experience sampling atmospheric
articles revealed that a large fraction of them are composed
f sulfates or nitrates, which are internally mixed with organ-
cs. The AN/LA and the three mixtures of AS with SA provide
n opportunity to test the performance of the instrument and
he software on these types of internally mixed particles. We
ncluded three very different types of organic particles in this

tudy: SA is a small dicarboxylic acid of four carbon atoms, LA
s a 12 carbon long-chain fatty acid and PY is a four-ring poly-
romatic-hydrocarbon (PAH). The soot data is a small subset of
ur diesel exhaust emissions characterization research project

able 1
isting of the 12 particle compositions and their abbreviations

bbreviation Compositiona

C Sodium chloride
N Sodium nitrate
N Ammonium nitrate
N/LA Ammonium nitrate/lauric acid (1:1)
A Lauric acid
Y Pyrene
S Ammonium sulfate
.8AS Ammonium sulfate/succinic acid (4:1)
S/SA Ammonium sulfate/succinic acid (1:1)
.8SA Ammonium sulfate/succinic acid (1:4)
A Succinic acid
T Soot

a The compositions of all binary mixtures refer to the weight fraction ratios
f the corresponding components.
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nd was included in this study because soot is commonly found
n the atmosphere, where it plays an important climatic and pub-
ic health role. Moreover, for the present project it was important
o include soot since during laser ablation a fraction of organic
articles can fragment to the point at which they are difficult to
istinguish from soot.

All particle types, except soot, were generated by aerosolizing
hem from solutions using an atomizer (TSI Inc., Model 3076).
erosol flow was first dried to remove solvent by two diffusion
ryers (TSI Inc., Model 3062), connected in series, and then
iluted and further dried by mixing with dry compressed air at
∼50:1 ratio in a large volume mixing/drying chamber.

Soot particles were sampled from a Mercedes 1.7L A-Class
iesel engine during the deployment of our single particle
aser ablation time-of-flight mass spectrometer (SPLAT) at the
ational Transportation Research Center at the Oak Ridge
ational Laboratory. The raw exhaust was dried and diluted by
factor of 2500 by mixing with dry air. For the present study we
ave chosen exhaust particles sampled under engine operating
onditions when 96% of the particulate emission was determined
o be composed of pure soot.

The entire dataset presented here contains 36,000 IPMS and
as constructed by combining 3000 individual particle mass

pectra from each of the 12 particle types.

.2. Individual particle mass spectra

Polydisperse aerosol particles were sampled by SPLAT, a
etailed description of which is given in [9]; here we give a
rief description only. Particles enter the instrument through a
00 �m orifice into an aerodynamic lens inlet. The lens is used to
ocus entrained particles into a narrow, low divergence particle
eam and transmit the particles into the vacuum chamber with
igh efficiency. Two stages of optical detection placed along
he well-defined particle path provide aerodynamic velocity and
ize information for the individual particles in the particle beam.
ulse from an excimer laser, operated at 193 nm, is timed to
rrive coincident with the particle at the ionization region of the
ime-of-flight-mass spectrometer (TOF-MS) and generates ions
y ablation. IPMS are subsequently acquired by measuring the
ons time-of-flights in the reflectron TOF-MS.

The signal from the TOF-MS microchannel plates is dig-
tized at a rate of 50 MHz using 8-bit A/D card for PCI bus
Gage Applied Technologies, Inc., Model CompuScope 8500).
he digitized IPMS are paired with the corresponding parti-
le size information, bundled to form files, each containing five
PMS to match Windows allocation unit size, compressed on the
y and written to the hard drive. At present the sampling rate of
20 particles per second is limited by the rate with which the

ata could be transferred and written to the computer hard drive.
To prepare the IPMS for classification the raw data are first

rocessed and reduced: spectra are decompressed, a baseline is
ubtracted, ions’ time-of-flights are converted to the correspond-

ng mass-to-charge (m/z) ratios, and the integrated area of each
f the IPMS and the areas under each of the peaks are calculated
y integrating the intensities within 0.5 Da of each of the 450
/z values. “Hits” are separated from “misses” on the basis of a
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omparison between the total integrated mass spectral intensity
nd a preset threshold, which is set to be slightly larger than
he average integrated area of the particle-free background mass
pectrum. At the conclusion of this process two files are gener-
ted: one contains the measured aerodynamic diameter and the
ime of detection for each of the detected particles and the sec-
nd file lists for each particle that was classified as a “hit” the
erodynamic diameter, time of detection, total integrated mass
pectrum area and the 450 mass spectral peak intensities, one
or each of the m/z values.

.3. Data classification

To assure fast response by SpectraMiner to the user com-
ands during the data mining process we have taken a two-tier

pproach: an off-line data clustering process and a real-time data
ining and visualization.
We first run an off-line process based on K-means cluster-

ng that organizes the data into hundreds or a few thousands of
epresentative groups we call clusters, by combining together
articles with very similar mass spectra. We treat each of the
PMS as vectors in 450-D space and group them into clusters
ased on their proximity in the 450-D space. The first, randomly
elected particle mass spectrum serves as the first seed and the
istance between each of the subsequently picked mass spectra
nd that seed is calculated. If the calculated distance is less than
threshold distance, the particle is placed into that cluster, if the
istance is greater than the threshold; that mass spectrum is set
o be an additional seed. Each of the IPMS is added to the cluster
hat it is nearest to. Once the entire data has been clustered, the
verage mass spectrum for each of the clusters is calculated and
he distance between each of the IPMS and these average mass
pectra are recalculated and compared and particles are placed in
he clusters they are nearest to. This iterative process is designed
o take into account the fact that the cluster center shifts during
he classification and drive the process to convergence.

As a measure of the distance between mass spectra we use the
alue of (1 − r), where r is the Pearson correlation coefficient. In
his study the IPMS are not normalized, but the distance between
wo proportional mass spectra is very small and therefore they
re always grouped together.

At the end of this off-line procedure an output file with the
alculated statistical properties of each cluster, like the cluster
ean mass spectrum and the covariance matrix, is created. In

ddition the information about each particle size, time of detec-
ion and the mass spectral peak intensities are included. The final
isting of “particles” and the clusters they belong to is later uti-
ized by the interactive data mining and visualization program
escribed in the sections below.

The dataset presented in this study consists of 36,000
PMS–3000 IPMS of each particle type. Classification of this
ataset, i.e., the off-line portion of the data analysis, takes
2 min on an office PC. For a distance threshold of 0.3 the
lassification produces a total of 583 clusters, 62 of which con-
ain more than 20 particles each, accounting for 98% of all the
articles. It is important to note that although our analysis from
his step forward will be focused on the 62 clusters, the infor-
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ation on the remaining 2% of particles will not be lost and can
e instantaneously visualized. Even though this feature of the
oftware is not very important for the present study, it is crucial
or measurements that depend on the ability to identify and track
few “gold nuggets”.

K-mean clustering is only one out of a number of available
lassification methods that can be applied to our data. We have
ested a number of them on our SPLAT data and have come to the
onclusion that as long as the IPMS are organized in a reasonable
anner the classification algorithm plays only a minor role. The

ritical point is the ability to visualize and explore the data in an
fficient manner.

.4. The interactive dendogram: design and construction

Dendograms are an effective and established way to con-
ey results of a hierarchical clustering or classification process.
ere we describe an advanced incarnation of the dendogram
aradigm, which combines a more space-efficient polar or cir-
ular layout with a number of interactive features to facilitate
he exploration of large data hierarchies. Hence, we call our
pproach the interactive dendogram. In our polar dendogram
ayout we have chosen the equispaced arrangement of clusters
n the outer-most circle. This is the most appropriate place-
ent since each cluster stands for a partition of the original

large, preprocessed) dataset, and all partitions (or clusters) have
een chosen in such a way that their similarities are equal or
maller to a preset distance or similarity threshold, max Sim.
s the requirement on the similarity between IPMS is sequen-

ially relaxed, similar clusters are merged together to form larger
roups, we call nodes, until eventually all IPMS in the dataset
re merged together, forming the root node. In our polar den-
ogram layout the radius R of a concentric circle onto which a
ode with similarity node Sim is placed is given by

=
(

min Sim − node Sim

min Sim − max Sim

)
max Rad (1)

max Sim is the partitioning threshold of the K-means pre-
rocessing algorithm (or some other metric), min Sim is the
imilarity of the root node, and max Rad is the radius of the
uter-most circle.

In this configuration, however, when the number of nodes in
sub-tree is large, or the tree is highly imbalanced (as is the

ase in our application), sub-tree edges that connect a cluster or
ode on circle R1 to a node on circle R2, which is smaller than
1, may pass through the circle with R3, which is smaller than
2, which could lead to a cluttered display. To avoid this we
se curved arcs instead of edges to connect the tree branches.
n addition edges and curved arcs on the dendogram are colored
sing a rainbow colormap to indicate the number, or percentage
f particles they carry.

The clusters are placed along the circumference of the den-
ogram in such a way that no crossings between branches occur.

o other rules apply. It is for that reason that there is no unique

olution to the dendogram structure. But, since its construction
ollows a specific and reproducible order, the end results tend to
e similar.
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Often, the classification of mass spectral data produces many
lusters which contain only few particles. To avoid the visual
lutter that they can create in SpectraMiner the user interactively
elects the minimum number of particles that clusters need to
ave in order to be displayed. Modifying this threshold redraws
he dendogram with the full rainbow color spectrum mapped to
he active population interval. The user has the ability to expand
he node into its full sub-tree and expand or collapse the sub-tree.

From the perspective of data exploration and mining, setting
he dendogram to suit user preferences is only the beginning. The

ost important features of this software are ease, speed, and ver-
atility with which data exploration can be performed. Some of
hese features will be presented in the sections below describing
he data mining process in this paper. Other features, specifi-
ally designed to be used with ambient data that are acquired
s a function of time and make it possible to search for corre-
ations between particle types and their relationships to other
hronological observation, will be demonstrated in the another
ublication.

. Results and discussion
.1. Setting-up the present dendogram

Fig. 1 shows one of SpectraMiner’s annotated visual displays.
t the center is the hierarchical tree, in which the classified

w
c
i
d

ig. 1. An annotated screen capture of a SpectraMiner visual display. At the center i
he top left is a table describing the dendogram input parameters and below is a graph
Mass Spectrometry 258 (2006) 58–73

nd organized data are displayed. It is generated by loading the
utput of the off-line data clustering process. What makes this
ree different from typical hierarchical trees is that it is trans-
ormed into a polar format, called the circular dendogram. In
he table in the top left corner the scientist can select the time
eriod to be covered and the particles size range to be dis-
layed. In the present dendogram we include particles with sizes
rom 50 nm to 3 �m. Other dendogram display parameters are
efined in the tree type table below. The “# of levels” defines
he number of distinct concentric levels on the dendogram, on
hich nodes are located. The radius is a true measure of sim-

larity: the further from the center a node is the more similar
he particles within it are. Hence, moving from the circum-
erence towards the center amounts to reducing the similarity
equirements for particles to be grouped together. The # of lev-
ls can therefore be viewed as defining the resolution scale,
ith which the tree branching are displayed. Here we have

hosen to divide the dendogram radius into 30 resolution ele-
ents and display them on logarithmic scale, to accommodate

he fact that many of the clusters in this dataset merge together
t high similarity levels. “Flat” defines the overall wrap angle
f the dendogram layout and “empty” sets the angle of the

hite wedge, whose role is to help define beginning and end

lusters. “Min # particles”, in this case set to 20, defines the min-
mum size of visible clusters or nodes to be represented in the
endogram.

s the dendogram and above it is a linear projection of clusters populations. On
ic display of the mass spectral information of node J.
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At the circumference of the dendogram in Fig. 1 we find
2 numbered clusters, each of which contains more than 20
articles. Each of the edges and arcs on the dendogram, “tree
ranches”, are colored using a rainbow colormap to indicate the
umber, or percentage of particles they carry, with red being
igh, blue being low and black (not present in Fig. 1) corre-
ponding to zero fraction of the particle population. Here we
se a log(log(population)) color scale, resulting in a display that
akes it easy to recognize the presence of even sparsely popu-

ated clusters.
The linear strip above the dendogram is the projection of

lusters’ populations. Each of the small colored rectangles rep-
esents, with identical color scale, the population of the corre-
ponding cluster at the circumference of the dendogram. For
his presentation we have labeled the projections of the clusters’
opulations by the corresponding cluster number to make the
onnection with the dendogram straightforward. The structure
bove the projection was also added specifically for this study
nd is intended to illustrate which clusters are merged to form the
odes that are alphabetically labeled in the dendogram in Fig. 1.
ike the dendogram, the projection is interactively explorable.

The merged clusters form nodes, similar nodes merge
ogether to form larger nodes, and the colored lines mark the

erging pathways, with their colors representing particle pop-
lation they carry. Clusters with similar particles merge rapidly
nd clusters containing very different particles do not merge
ntil the center of the circle, root node, is reached.

An all encompassing view of the dendogram in Fig. 1 reveals
1 main branches. The nodes at which we chose to define the
mportant bifurcation points in each of the 11 branches are alpha-
etically labeled. These nodes were chosen on the basis of a brief
xploration and personal experience and preference, but can eas-
ly be changed to adapt to the questions at hand.

.2. Exploring the dataset

.2.1. Connecting dendogram points with particle mass
pectra

Our interactive dendogram is tightly coupled with what we
all the cluster/node content browser. It creates for the researcher
he connection between the clusters/nodes, in which particles
eside, and their mass spectra and hence the particle compo-
itions. We begin data mining by examining the 11 key nodes
abeled alphabetically in Fig. 1. It is important to note that the
1 nodes, which we chose as examples in this study, represent
oints on the classification tree that have a wide range of radii,
r similarity parameters. In other words the visual, interactive,
ierarchical classification tree guides the researcher in making
hoices and provides the possibility to make them with a flexible
imilarity requirement for each of the tree branches. If we had
nstead attempted to force the entire dataset into less than 15
xed clusters with a single similarity threshold we would need

o set that threshold at the level shown in Fig. 1 by the dashed

hite ellipse. Instead we have the flexibility to explore nodes

hat appear to be important branching points and have signifi-
ant particle population despite the fact that they happen to be
ositioned at different radii.

n
o
T
d
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To browse the content of a cluster/node one needs simply
lick on the corresponding point on the dendogram and the pro-
ram generates the graphic and tabular information shown in
he lower left side of Fig. 1. Here we illustrate the outcome of
licking the mouse on the node labeled J. Under the heading
Cluster/Node Information” the program displays the average
ass spectrum of all the particles in this node. The J node mass

pectrum shown here is easily assigned to pyrene by making use
f the interactive display readout of the peaks positions.

Underneath the average mass spectrum the program displays
scrollable pixel-map of all the 386 mass spectra, one for each
f the particles in this node. It is constructed from 386 hor-
zontal lines, one for each of the IPMS, and the mass spectral
eaks intensities are indicated by color, again using rainbow col-
rmap, with red being high and blue being low. In this display
he color scheme uses a log(log(I)) scale to enhance the presence
f low intensity peaks and to make it easy to observe particle-to-
article variations. Clicking on any horizontal line displays the
orresponding particle size and its time of detection. An overall
iew of the “mosaic” in this panel reveals three distinct regions
hat correspond to three different fragmentation patterns, one for
ach of the three clusters, 58, 59 and 60. These clusters merge
o form node containing many of the are pyrene particles. The
rogram is presently set to display up to 500 IPMS at a time
nd provides the option to scroll through the entire node/cluster
ontent.

The last, green mass spectrum is a dynamic cluster summary
iew. By examining this mass spectrum the user can gain an
dditional level of understanding that is not observable from the
verage mass spectrum. The cluster summary mass spectrum is
enerated by superimposing the 386 IPMS on top of each other
ith an opacity that is determined by the slider bar below it.
hanging the opacity allows the user to gradually bring up and
bserve the features that are present in fewer particles and learn
ore about the mass spectral peak intensity distribution. This

isplay is a simplified version of parallel coordinates tuned to
ork on very high dimensional data. Note that all three views

re aligned on the m/z scale, making it possible for the user to
irectly compare the different views.

The table below the three graphically displayed mass spec-
ra summarizes the information about the node that is being
xplored. The node name is originally assigned by the scientist
uring dendogram exploration. Once assigned and saved, it can
e reloaded, such that it will reappear anytime this node, or any
nnamed node/cluster connected to it and positioned at larger
adii is clicked. The other two cells in the table display the num-
er of particles in the node and its fraction of the total number
f particles represented in the dendogram.

In addition to the cluster/node information described above
pectraMiner easily generates other informative visualization
ormats of each cluster/node, which include, for example, 3D
lots of particle population as a function of size and time of
etection; individual particle mass spectra, linear plots of the

umber of particles in any clusters/nodes as a function of time
r any other observable that was simultaneously measured, etc.
he use of these commonly utilized visualization tools will be
escribed in other publications.



64 A. Zelenyuk et al. / International Journal of Mass Spectrometry 258 (2006) 58–73

F
t

3
n

a
1
e
n
k
o

s
t
p

Table 2
Listing of the tentative assignments of the 11 major nodes and their abbreviations

Abbreviation Assignment

Na Sodium
AS/o AS with minor amount of small organic acid
A/AS Small organic acid with AS
A/as Small organic acid with minor amount of AS
Nit Nitrate
O Small organic acid
OxOrg1 Oxygenated organics
OxOrg2 Oxygenated organics
EC Elemental carbon
PAH1 Pyrene
PAH 2 Pyrene
ig. 2. Average mass spectra of the 11 major nodes (the m/z scale is 0–250),
heir tentatively assigned compositions and the fraction of particles in each node.

.2.2. Exploring the average mass spectra of the major
odes

Shown in Fig. 2 are the average mass spectra, our tentative
ssignments and the fraction of particles in each of the selected
1 major nodes. The tentative assignment was carried out by
xamining all of the mass spectral information, while assuming
o prior knowledge of particle composition. Table 2 provides a
ey to the shorthand notations used here and throughout the rest
f the paper.
In Fig. 3a and b we present in bar graph format the relation-
hip between the tentative assignments of the 11 nodes and the
rue particle compositions. Fig. 3a shows which particle types
opulate each of the 11 nodes. Note that even at this rather crude

Fig. 3. (a) A bar graph display illustrating which particle types reside in which
of the 11 nodes; (b) a bar graph display illustrating which nodes contain which
of the 12 particle types.
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evel of classification AS particles (red) and AN particles (dark
reen) are for the most part distinguishable. In contrast, at this
lassification level there is insufficient detail to properly distin-
uish AS particles from internally mixed particles, composed of
S mixed with SA, or even from some of the pure SA particles.
ut a careful view of nodes B–D and F reveals that as we move

rom node B to C to D and to F the fraction of the particles with
igh AS content in the nodes decreases, while that of particles
ith high SA content increases. AN particles and AN/LA par-

icles, the mass spectra of which are dominated by an intense
O+ peak, share node E. In the same node we also find 11% of

he AS particles. A 100% of the two sodium containing parti-
le types; SN and SC, are in node A. Nodes A and E represent
eneric cases of particles, whose mass spectra are dominated by
ommon intense peaks that greatly impact the classification. We
ill demonstrate an approach that can often resolve this type of
classification problem later in the paper.

The mass spectra of the particles in node I assigned as EC are
ominated by a progression of Cn

+ peaks, indicating the pres-
nce or the formation during the ablation process of soot-like
onic fragments. As seen from Fig. 3a node I contains besides the
eal soot particles two other particle types, composed of organic
olecules. The finding that a significant fraction of organic parti-

les are indistinguishable from soot particles is another common
eature of single particle mass spectroscopy. At its root is the
igh degree of fragmentation, often produced in ablation gener-
ted mass spectra, combined with a classification at coarse level.
blation is the multiphoton process that is used to evaporate and

reate ions out of individual particles. It is not uncommon to
nd that ablation of smaller particles that contain organic com-
ounds results in a high degree of fragmentation and produces
ass spectra that are dominated by the Cn

+ progression. Often
hese mass spectra contain other, lower intensity peaks that con-
ain the information that can be used to separate organic particles
rom soot, but get overlooked in a coarse classification.

In Fig. 3b we present the classification results from the parti-
le type perspective. First we point to the fact that the 11 nodes
ontain 97.5% of all the particles (here we have not included
lusters 3–6, 21 and 30). The first two particle types, with IPMS
ominated by the Na+ peak, not surprisingly are found in one
lass and assigned as sodium-containing particles. A similar sit-
ation is observed for the AN and AN/LA particle types with
ominant NO+ peak in their IPMS. The pattern produced by the
ther particle types provide a clear graphic display of the fact that
he complex fragmentation pattern of organic molecules tends
o spread their population into a number of nodes. LA and PY
articles are each spread into three major nodes and some of
heir mass spectra are indistinguishable from the IPMS of soot
articles.

In addition it is important to note that AS and internally mixed
S and SA particles are difficult to properly identify and segre-
ate at the major node level.

Figs. 2 and 3a and b provide a graphic summary of the clas-

ification results at the level of 11 nodes. Were we to end the
ata mining process at this point, and treat it as one would IPMS
f unknown ambient particles, our conclusions regarding the
article composition would be specified by the compositions

g
I
w
a
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ssigned to the nodes with their corresponding average mass
pectra and the relative particle populations as shown in Fig. 2.
e would be forced to conclude that while we captured some

f the properties of the sampled particles, we have missed too
any others.

.2.3. Intermediate comments on the results of the
xploration of the 11 nodes

The common notion in the field is that distinguishing ammo-
ium sulfate from ammonium nitrate particles on the basis of
heir positive ion mass spectra alone is very difficult. Our spec-
ra and classification process do not exhibit the same limits even
t the level of classification presented above. Instead we find in
his and other studies that ablation generated mass spectra of
articles containing organic compounds are the most difficult to
roperly classify.

The classification results thus far reveal that all the particle
ypes composed of organics exhibit complex fragmentation pat-
erns: LA populates nodes G, H, and I; SA inhabits nodes B–D,
nd F; and PY resides in nodes I–K. In addition, their fragmen-
ation patterns exhibit particle size dependence. We will use PY
s an example to illustrate some of the processes that create such
wide range of fragmentation patterns. We will also use it to

emonstrate the visual tools that help with the mass spectral
ssignment process that are at our disposal.

In Fig. 4 we show in three separate frames the mass spec-
ra of pyrene particles that reside in nodes I–K along with a
isting of the fraction of pyrene particles in the corresponding
ode and the average size of its particle population. Each frame
epresenting a node displays the three mass spectral views we
entioned earlier. Not surprisingly, we find that the mass spectra

f the largest particles exhibit the least amount of fragmentation
nd their mass spectra are dominated by the parent ion peak.
n contrast the smallest particles, with ∼10 times lower mass,
ragment to the point that their average mass spectrum is almost
ndistinguishable from that of elemental carbon. The observed
ependence of the mass spectrum on particle size is not surpris-
ng considering the complexity and non-linearity of the ablation
rocess. Examination of other particle types shows that the trend
bserved for pyrene is general: smaller particles typically exhibit
arger degree of fragmentation.

In the laboratory settings, in which particle composition and
ize can be limited and are often known, it might be possible
o reduce the ablation laser power and decrease the degree of
ragmentation for the specific particle type and size. However,
his sort of fine “tuning” is not applicable to the study of the
mbient particles, whose compositions and sizes are unknown
nd range widely. The common effect of low ablation laser power
s that important atmospheric particles like ammonium sulfate
ecome undetectable.

It is worth noting that a careful examination of the data in
ig. 4 shows that the parent ion peak and the typical PAH pro-
ression can be observed in the pixel-map of the IPMS and in the

reen cluster summary mass spectra of each of the three nodes.
n node I these peaks exhibit very low intensities in comparison
ith the three carbon ion peaks and are clearly insufficient to

chieve separation from soot at this classification level. But the
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ig. 4. The mass spectral information obtained for pyrene particles which wer
nd the mass spectral fragmentation pattern.

act that they can be observed in the majority of the pyrene IPMS
uggests that it should be possible to take them into account to
mprove the classification.

Before we proceed to examine the classification results on a
ore refined level we find it worthwhile to visualize the patterns

ormed by clusters, nodes and branches of each of the particle
ypes; the rudimentary structure of the classification output.

.3. The 12 underlying dendograms

In Fig. 5 we provide a graphic presentation of the results
f the classification separated according to the 12 particle types.
his figure shows 12 dendograms and the corresponding projec-

ions of their clusters’ populations, one for each of the particle
ypes. To help orient the reader with respect to the original, all
article dendogram that is shown in Fig. 1, we have noted the
luster’s numbers on the population projection and where rele-
ant, indicated the same alphabetical node labels we have used
hroughout the paper.

An examination of the 12 individual particle type dendograms
nd their relationship to each other is very insightful. These
endograms reveal the complexity of the hierarchical patterns
eparated by particle type and show which clusters are popu-
ated by what particle type. We chose not to provide a detailed
escription of each of the dendograms in Fig. 5; instead, we will
eave the reader to visually inspect the dendograms, use them
s an information source for the discussion presented below and
erive whatever specific information he/she finds to be useful.

.4. Data exploration at the cluster level

.4.1. Deconstructing node I into clusters 51 through 57

We chose to explore node I because it represents one the

ost important generic problems of ablation based single parti-
le mass spectroscopy. Moreover, from an atmospheric science
erspective, it is very important to be able to distinguish between

s
t
t

sified into the three labeled nodes. Note the relationship between particle size

articles composed of EC or soot and those containing the com-
lex range of organic compounds. In the present case node I,
hich has tentatively been assigned to EC on the basis of its

verage mass spectrum, contains in addition to soot 39% of the
A particles and 48% of the PY particles.

Fig. 6 displays the mass spectral information for clusters 51,
4, and 57, three of the six clusters that merge to form node
. What is common to all these clusters is that the most intense
eaks in the spectra are C1

+, C2
+ and C3

+. But, an examination of
he three mass spectral display formats makes it clearly appar-
nt that the mass spectra of the particles in these three nodes
re clearly quite different and that they can be unambiguously
ssigned as soot (cluster 57), PAH (cluster 54) and oxygenated
rganics (cluster 51) as annotated in the figure.

In Fig. 7 we return to the bar graph presentation of the nodes
nd their contents and extend it to include clusters 51 through 57.
n examination of the compositions of the particles in these clus-

ers shows that at the cluster level the only cluster that includes
ore than one particle type is cluster 56, in which 19% of the
A and 12% of the PY particles are indistinguishable from EC.

n all other clusters the particles have been properly identified.

.4.2. Deconstructing node B into clusters 7 through 15
Internally mixed particles composed of AS mixed with organ-

cs are some of the most common particle types found in the
tmosphere. Since many of the properties of these particles
trongly depend on the relative amounts of AS and the organ-
cs, it is clearly important to be able to accurately identify the
articles internal composition. Node B, which on the basis of
ts average mass spectrum we tentatively assigned to AS with

minor fraction of a small organic acid (AS/o), contains five
article types: AS, 0.8AS, AS/SA, 0.8SA and pure SA.
Returning to Fig. 7, where we present the results of decon-
tructing this node into its clusters 7 through 15, we note that on
he cluster level the picture for node B becomes significantly bet-
er resolved. The clusters that comprise node B can be separated
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ig. 5. A display of the particles distributions in the overall dendogram sepa
rojections of the particle cluster populations starting with the entire dataset (lab
nto three types: clusters 7–10 contain particles whose compo-
ition is dominated by AS but many contain small to medium
mounts of SA. Clusters 11–13 contain particles whose compo-
ition is dominated by SA and clusters 14 and 15 are dominated

b
a

c

into each of the 12 particle types. The 13 colored horizontal lines above are
) and proceeding with a projection for each of the 12 particle types as marked.
y mixed particles that contain significant fractions of both AS
nd SA.

While it is clear that the mass spectra of these particles do not
ontain sufficient details to unambiguously resolve node B into
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Fig. 6. The mass spectral information of the particles that
ll its particle types, we have demonstrated that at the cluster
evel we could separate the node into three types of internally

ixed AS/SA particles in accord with their variable composi-
ion. Similar refinement can be achieved for nodes C and D.

3

c
a

Fig. 7. A bar graph display illustrating the results of d
assified into clusters 51, 54 and 57 and their assignments.
.4.3. Deconstructing node A to the cluster level
The laser ablation generated mass spectra of particles that

ontain species with low ionization potentials like alkali metals
re often dominated by a few very intense mass spectral peaks of

econstructing nodes B and I into their clusters.
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Fig. 8. The mass spectral information of the particles that are cla

hese species. In a recent paper [10] we have demonstrated that
he presence of sodium atoms can even act to suppress other ions
hrough charge transfer processes. In cases where two or more
article types share very intense mass spectral peaks, a typical
lassification process groups these particles together.

In the present study we find that SC and SN particles are
lassified together in node A because of the intense Na+ peak
he two particle types share and the AN/LA and pure AN get
rouped together in node E because of the presence of the intense
O+ peak. Below we will explore two approaches to refine the

lassification and overcome some of these limitations using SC
nd SN particles as examples.

Fig. 8 shows the mass spectral information of SN and SC
articles that reside in clusters 1and 2. An examination of these
ass spectra shows that all of them exhibit an intense Na+ peak.
ut we also note that the mass spectra of the SN and SC particles
ave other than Na+ peaks, which are unique to each of the
article types. These weaker peaks are most easily observable
n their IPMS pixel maps. These additional mass spectral peaks
hat are not shared by the two particle types can provide the
nformation needed to sort these two particle types. To improve
he classification there is a need to refine it by brining these other
eaks to the forefront.

In the left part of Fig. 9, in bar graph format, we present the
econstruction of node A into its clusters 1 and 2. We note that
or these particle types even at the cluster level of classification
nly 17% of the SC particles are separated from the rest of the
a-containing particles.
A straightforward approach, which could refine the IPMS

lassification, is to decrease the distance threshold parameter. In
he right part of Fig. 9 we present the results of a classification
un on the particles in node A only, with a distance threshold set

o 0.1, showing that reducing the distance threshold, by a factor
f three somewhat improves the results. In this case node A is
econstructed into four clusters, in which 69% of the SN and
6% of the SC particles reside in separate clusters.

p
s
t
m

d into clusters 1 and 2 separated according to the particle types.

.5. Expert driven classification

.5.1. Deconstructing node A with expert input
It is possible to take advantage of the knowledge gained by

xamining the mass spectral information, at the node and cluster
evels, to refine the classification process and separate these mass
pectrally similar yet very different particle types. The approach
e adopt here is to apply our expert knowledge by inputting it

nto the classification to help in its refinement. We base our input
n the conclusions we arrived at on the basis of an examination
f the IPMS shown in Fig. 8. We have already noted above the
xistence of peaks, other than Na+, that uniquely identify the
wo particle types, and concluded that if we were to base the
lassification on all, but the Na+ peak, the two particle types
ould easily be separated.

There are a number of approaches one can take to sculpt the
ass spectral features and “help” the classification process. One

f them is to assign to peaks different “weights”, which would
llow the user to amplify certain mass spectrometric features.
ere we took the simplest approach by assigning zero weight to

he Na+ peak, i.e., eliminating this peak in the IPMS of all the Na-
ontaining particles altogether. Following the removal of the Na+

eak the mass spectra of the 6000 particles that belong to node
are reclassified with a distance threshold of 0.3. As the result,

side from 11 (0.37%) SC particles that share some of the SN
lusters, the two particle types have been successfully separated.

.5.2. Expert driven classification of inorganic/organic
articles

We have already mentioned above that the AN and AN/LA
articles present a case similar to the SC and SN particles. A pro-
edure, comparable to that used to separate the Na-containing

articles can be applied to refine the classification of node E to
eparate the AN and the AN/LA particles, whose mass spec-
ra are dominated by an intense NO+ peak. Fig. 10 shows the

ass spectral information of the three particle types in node E:
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Fig. 9. A bar graph display illustrating the results of deconstructing node A into clusters 1 and 2 with a distance threshold of 0.3 and into four clusters with a distance
threshold of 0.1.

Fig. 10. The mass spectral information of the particles that are classified into node E separated according to the three particle types that populate the node.
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00% of AN, 89% of AN/LA and 11% of AS. An examination
f these mass spectra shows that it should be possible to separate
he three particle types in this node by assigning lower weight to
he dominant NO+ peak. Note, however, that the mass spectra of
he AS particles that reside in node E, are contaminated by the
resence of a small amount of organics, which would make it
ifficult to completely resolve them from the AN/LA particles.
he appearance of organic compounds in the mass spectra of
pure” AS has been reported by others [4]. It has been inter-
reted to be a result of the low ionization probability of pure
mmonium sulfate [11,12] that makes it possible to detect even
inute quantities of organic contaminants.
In the case of mixed AS/organics particles we can use a

lightly different approach and enhance the importance of small
ut characteristic key mass spectral peaks that signify AS and
pecific organic compounds of interest. In some sense identi-
ying key peaks and increasing their weights is similar to the
pproach used by the ADAMS [5] classification in which dis-
riminant chemical markers are used to guide the classification.
y assigning higher weights to key peaks we can decrease the

mportance that weak, background and/or impurity peaks play
nd guide the classification to more precisely identify all the
articles containing AS and internally mixed AS particles with
rganics.

To test this approach, we have used peak with m/z = 48 as a
arker for AS and peaks with m/z = 43, 100, and 118 as mark-

rs for SA and increased their weight (intensities) by factor of
0. Rerunning this expert steered classification of the weighted

PMS shows that all the AS, SA and AS mixed with SA parti-
le types have been successfully separated from the rest of the
ataset. A 87% of these 15,000 particles were classified into 19
lusters, whose populations are illustrated in Fig. 11a with the

ig. 11. An illustration of the results of the expert steered classification of the
S, SA and their three internally mixed particle types: (a) projections of the

luster populations for the 5 particle types; (b) bar graph format.
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ve projections, one for each particle type, and in the bar graph
ormat in Fig. 11b. We note that this classification produced three
ain particle groups that can be assigned as mostly AS with a

mall amount of SA, AS mixed with SA and mostly SA with
ome AS. We find these results to be very encouraging and plan
o apply the approach to the ambient atmospheric data we have
cquired.

Another implication to ambient atmospheric data is an
mproved accuracy in the assignment of potassium-containing
articles. Potassium-containing particles are frequently detected
n the atmosphere and often present a case that is similar to the
a-containing particles discussed above. There are a number of
ell-known sources of atmospheric potassium, which can eas-

ly be distinguished from each other on the basis of the other
ompounds that are inevitably present and observed in the same
articles. Potassium, like all other alkali metal atoms, tends to
ominate the IPMS, making it difficult to identify and properly
lassify these often very different particles.

We have shown above that cluster visualization is a power-
ul strategy for the exploration of high-dimensional data in the
bsence of a-priori hypotheses or data classification models. But
ven though formal models may not exist, we have a vast amount
f knowledge and intuition that we can bring to bear in this effort.
he results of a non-supervised data classification rarely agree
ith this expert knowledge. SpectraMiner offers data visual-

zation and mining tools that make it possible for the user to
valuate the results of the classification with ease and inject sci-
ntific domain knowledge and intuition to steer the clustering
rocess. Moreover, SpectraMiner is structured in a manner that
akes it easy to focus on subsets of the data that are of particular

nterest. In the present study, sculpting the 6000 mass spectra
n node A or the 15,000 mass spectra of internally mixed AS
nd SA, particles using different expert driven approaches, was
erformed in less than a minute and significantly improved the
epresentation of the sampled particles.

. Conclusions

We presented a study, in which we put to test the classifi-
ation aspect of SpectraMiner using IPMS of 12 particle types
enerated by SPLAT operated in the ablation mode only. These
article types were chosen in a manner that represents some of
he generic problems that are often encountered by laser ablation
ased single particle mass spectroscopy of atmospheric parti-
les. In our analysis of the data we have illustrated the approaches
e have taken to bring about improvements and even solutions

o some of the common problems that we face in this field. We
ave developed approaches that give the user the option to push
he data analysis process to the point where the limits are set by
he quality of the data. To accomplish this goal we developed
he tools that make it possible to explore the data on variable
evels of details with great ease.

The measurements of the organic content of ambient parti-

les represent a particularly challenging and important aspect of
PMS. In this study our data and its analysis illustrated that two
ery different organic particle types can fragment to the point
hat, at coarse classification level, nearly half of their particles
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re indistinguishable from EC. We showed that in these cases
t was possible to significantly improve particle identification
y simply exploring the results of classification at the cluster
evel.

Particles composed of sulfates internally mixed with organics
epresent a very significant fraction of atmospheric aerosols.
ere we looked at the internally mixed AS and SA particles and

oncluded that at the major nodes level particle identification
s rather poor, whereas at the cluster level we noted significant
mprovements.

We showed that the addition of expert input to sculpt the
ass spectral data can greatly improve the outcome of the clas-

ification. This approach was demonstrated for a case in which
wo different particle types share a few dominant peaks. We
howed how to visually analyze the mass spectral information
nd select and implement an expert driven classification proce-
ure that eliminates the overlap between the particle types. We
llustrated the application of expert steered classification to iso-
ate and classify the AS, internally mixed AS and organics and
A particles with significant success.

We must conclude that while there are ways to improve the
ata analysis process the true limits we are presently facing stem
rom the quality of the mass spectra that are generated by laser
blation based SPMSs. To accomplish significant improvements
e must address this aspect. One approach that we and others
ave deployed [9,13,14] is to use a two-laser, two-step process
or ion generation: the first step relies on an infrared laser to evap-
rate the particles, and the second delivers a time-delayed UV
r VUV pulse to ionize the resultant plume [9,13,14]. Another
pproach is to incorporate into classification additional mea-
urements for the same individual particles. Most commonly
his is accomplished by simultaneously measuring the positive
nd negative ion mass spectra [15–17]. It might be possible to
mprove the classification results by incorporating into it other
imultaneously measured single particle properties like density
18–20].

We showed some of the features offered by SpectraMiner
nd demonstrated that it yields a data mining platform that offers
reat flexibility. This flexibility is apparent even at the node level,
here the number of nodes being examined is comparable to that
sed by other data classification approaches. Except that we let
he structure of the data determine the “natural” distances, at
hich clusters merged to form key junctions. Most importantly,

he more detailed information at larger radii is always only a
ouse-click away.
In the present study we pruned the dendogram data presen-

ation to 20 out of 36,000 particles, or 0.06%. In applications
hat relate to global climate such detail may not be needed. In
ontrast, in homeland security applications or in studies of spe-
ial atmospheric events or episodes we could be searching for
he extremely rare “nuggets” that represent a minute fraction of
ll the sampled particles. SpectraMiner is designed to make the
ransformation between these two limits easy.
An essential aspect of this software is the speed with which
he program responds. We felt that it was very important to
evelop software, in which the transformations we described
ere and all the other data manipulations involved in the data

[

[
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ining process would be fast, even when the software is exe-
uted on an office or laptop PC and the dataset contains ∼1
illion particles.
It is important to mention that in this study we presented

nly a fraction of the SpectraMiner features. Many of the other
eatures were specifically designed to analyze ambient data as
unction of time of their detection. SpectraMiner makes it pos-
ible to interactively view the time evolution of the particle
omposition data in a number of visual formats and search for
orrelations in the time evolution of particle clusters and nodes.
pectraMiner is also set to load any other data that is acquired in
arallel, like gas phase pollutant concentrations, wind direction,
r engine performance characteristics and analyze the relation-
hip between these data and the particle composition. These
spects of the software will be presented in separate publica-
ions.
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