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Abstract

Single particle mass spectrometers are sophisticated instruments designed to measure the sizes and compositions of a wide range of individual
particles in situ, in real-time. They characterize hundreds of thousands or millions of particles, generating vast amounts of rich and complex data,
the proper mining of which requires dedicated state of the art tools. The analysis of individual particle mass spectra is particularly difficult because
of their high dimensionality—each data point, representing a single particle, includes the 450 mass spectral peak intensities, particle size, and time
of detection. The first step is to organize the data; a process typically accomplished by grouping particles of similar attributes. Since the common
assumption is that the data should be reduced to become manageable, they are typically classified into a small number of clusters (~10), each of
which is represented by an average/representative spectrum. Our approach is quite different. We have developed a data mining and visualization
software package we call SpectraMiner that makes it possible to handle hundreds of clusters, limiting loss of information and thus overcoming
the boundaries set by traditional statistical data analysis approaches. Data, which often include over 1 million particle spectra, are organized using
K-mean clustering algorithm. The clusters are merged into nodes by sequentially combining similar clusters. The final structure is displayed in a
hierarchical dynamical tree or circular dendogram. This interactive dendogram is the visual interface that allows for real-time data exploration and
mining. Clicking on any of the clusters/nodes in the dendogram reveals the detailed information about the particles that reside at that position. At
each step the scientist is in control of the level of detail and the visualization format, rapidly switching between them while running the program
on a PC.

Here we present a study that puts the classification aspect of SpectraMiner to the test. Twelve types of laboratory generated particles are carefully
chosen to test some of the difficult aspects of single particle mass spectroscopy. We quantify the degree of particle identification and separation at
a number of levels and demonstrate how the visualization tools that SpectraMiner provides can be used to refine, steer and control the data mining
process.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Single particle mass spectrometers (SPMSs) are presently
widely used to provide real-time, in situ information on the
sizes and compositions of individual aerosol particles. The path
from instrument design and construction to data acquisition and
analysis is long and demanding. The goal is to use SPMSs to
generate high quality, reproducible, easy to assign individual
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particle mass spectra (IPMS). In reality IPMS that are gen-
erated by laser ablation tend to exhibit very large particle-to-
particle variations, making the data mining process a daunting
task. The steady drive to improve the instrumental aspects of
SPMSs represents great challenges and remains at the center
of a significant research and development effort in the field. It
is important to realize that the immensity and complexity of
the rich data that are produced by these sophisticated instru-
ments requires comparable, dedicated state of the art analytical
tools that afford the user the opportunity to extract as much
knowledge as the data can offer. The focus of this paper is on
the approach we have developed to analyze the vast amounts
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of complex and highly detailed data that are generated by
SPMS:s.

Analysis of IPMS, even if they are nearly reproducible, is dif-
ficult because of their high dimensionality—each data point, rep-
resenting a single particle, comprises a long vector of attributes,
which in the present applications include: the 450 mass spectral
peak intensities, particle size, and time of detection. In addi-
tion the analysis of IPMS requires means to account for the
large particle-to-particle variations, which are an integral part of
experimental data in general. In the case of IPMS it is important
to keep in mind that in laser ablation variability is often very
high and it takes on a number of forms. The simplest involves
an apparently consistent fragmentation pattern but with large
particle to particle variations in overall and/or in relative peak
intensities. Another common finding is that particles of a given
composition produce a number of different well-defined frag-
mentation patterns. Which pattern dominates may correlate, to
some degree, with particle size. And the cases that are the most
difficult to analyze are those in which particles of different com-
positions produce nearly identical mass spectra. Under most
applications of SPMSs the compositions of the individual parti-
cles exhibit a very wide range and they vary significantly from
one particle to the next. The probabilities of generating ions
from the different compounds in atmospheric particles can vary
by orders of magnitudes, worse yet, ion production varies not
only from one component to the next, but also on the basis of
what other compounds happen to be present in the same particle.
This partial list is intended to illustrate some of the complexity
inherent in the mining IPMS datasets.

The first step of mining datasets containing hundreds of thou-
sands of individual particle data points is to organize the datasets
into groups of particles of similar composition. This process of
classification is typically accomplished by grouping particles
with similar mass spectral attributes together using statistical
methods to define, compare and finally partition the IPMS into
a number of clusters. Several clustering algorithms have been
applied to the analysis of data produced by SPMSs [1-5]. Three
of these methods treat the IPMS as multidimensional vectors and
calculate their proximity in N-D space, which can be expressed
by Euclidean distances, dot products, correlation coefficients,
Mahanalobis distances, and other metrics. Two research groups
[1,4] are currently using an artificial neural network, ART-2A to
organize the IPMS into classes. This algorithm groups particles
according to the dot products of the normalized particle vec-
tors. Murphy et al. [2] utilize a hierarchical clustering analysis
to classify data acquired with their SMPS. They also use the dot
products of normalized individual particle vectors as a measure
of spectra similarity and compare it to a set threshold. This pro-
cess yields typically a large number of clusters, which are then
hierarchically combined until stopping conditions are met. What
is interesting is that in this approach there is an option for expert
knowledge input to play a role in determining the final outcome
of the classification. To account for the complex internal mix-
tures of individual atmospheric aerosol particles Trimbom et al.
[3] use a fuzzy classification algorithm, in which individual par-
ticles can belong to more than one class, with varying degree of
membership. Another method—an algorithm for discriminant

analysis of mass spectra (ADAMS) [5] classifies aerosol mass
spectra into predetermined classes and groups rare particles into
an outlier class. Each of the defined classes is characterized by
discriminant chemical markers that are assigned to it on the basis
of prior mass spectral knowledge.

‘While the methods, metrics and threshold distances used as
criteria for particles to belong to the same class can be different
for the different data classification methods, a common assump-
tion for all of them is that the data must be organized into a man-
ageable number of classes, where manageable refers to a number
that can be easily comprehended and handled by the scientist.
In most cases this means that the data are classified into a small
number of clusters (~10), each of which is then represented
by an average/representative spectrum. The results are typically
presented in pie charts, bar graphs, or 2D and 3D plots of time
and/or, size and class [1,6,7]. It is important to keep in mind that
once the data are organized and reduced there is no convenient
path back to the original data or to a higher level of details.

Our aim is to develop a software package that provides the
user with the option and tools to push data mining to the point
where the limits are determined by the data and not by the mining
process. Because the information content in these datasets is
often overwhelming, we provide the user ease and flexibility
to choose at any stage the depth and details of the data mining
process. In this study we show that even the very limited dataset,
containing only 12 particle types, cannot be properly represented
by a very small number of statistical classes.

At the root of our approach [8] is a requirement that the
statistical classification algorithm is used to order the data for
mining with a minimal loss of information. Thus, we classify
our data, which often include over 1 million IPMS, into hun-
dreds of groups, which we call clusters. The clusters are merged
into nodes by sequentially combining similar clusters and the
nodes are further merged into larger nodes. The final structure is
displayed in a hierarchical dynamical tree portrayed in a space
efficient polar format, or circular dendogram. Most importantly,
the dendogram serves as the visual interface that allows the user
to navigate through the complexities of the individual particle
mass spectral datasets with ease, taking advantage of the fact that
the human brain is capable of comprehending visual informa-
tion that is orders of magnitude more complex than text, speech,
or tabulated numbers. Hence, we have overcome the need to
reduce the data to ~10 clusters by providing novel visualiza-
tion and data mining tools. This task is accomplished with the
data mining and visualization software package we call Spec-
traMiner. With SpectraMiner the user can explore the data on
any level: from nodes that include hundreds of thousands of par-
ticles down to the individual particle level with speed and ease,
never having to permanently disregard even the smallest fraction
of details or data.

Here, we present a study that illustrates some aspects of
the data organization and identification part of SpectraMiner.
Although this study yields a detailed quantification of the parti-
cle identification process, our goal is not to tabulate the number
of particles that are correctly or incorrectly classified. Instead,
we use this study to identify some of the common difficulties of
analyzing IPMS and describe our approach to curtail information
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loss and illustrate specific solutions. To this end we generated
under controlled settings IPMS of 12 types of particles, whose
composition is specifically chosen to illustrate the problems we
face in atmospheric science, and demonstrated the contribution
that SpectraMiner makes to resolve them.

2. Experimental
2.1. PFarticle types and particle generation

The 12 types of particles used in this study are listed in Table 1
with their corresponding abbreviations. These compounds were
chosen to represent a very small sample of the types of particle
compositions we routinely encounter in the atmosphere. They
were selected in a manner that reasonably reproduces some of the
fundamental categories of complexities encountered in single
particle mass spectroscopy.

The two Na-containing particle types test our ability to dif-
ferentiate these very different particle types whose mass spectra
are dominated by the Na* ion peak. Similarly, distinguishing
between the pure ammonium nitrate particles and the internally
mixed particles that are composed of ammonium nitrate and
lauric acid is difficult since the IPMS for both of these particle
types are dominated by the NO* peak. Ammonium sulfate and
ammonium nitrate are some of the most common compounds
found in tropospheric aerosols. Yet in similar studies by other
researchers [2,4] it was found that these two particle types are
difficult to differentiate with SPMSs. It was important for us to
test our ability to detect ammonium sulfate and properly classify
these two particle types. Our experience sampling atmospheric
particles revealed that a large fraction of them are composed
of sulfates or nitrates, which are internally mixed with organ-
ics. The AN/LA and the three mixtures of AS with SA provide
an opportunity to test the performance of the instrument and
the software on these types of internally mixed particles. We
included three very different types of organic particles in this
study: SA is a small dicarboxylic acid of four carbon atoms, LA
is a 12 carbon long-chain fatty acid and PY is a four-ring poly-
aromatic-hydrocarbon (PAH). The soot data is a small subset of
our diesel exhaust emissions characterization research project

Table 1

Listing of the 12 particle compositions and their abbreviations

Abbreviation Composition®

SC Sodium chloride

SN Sodium nitrate

AN Ammonium nitrate

AN/LA Ammonium nitrate/lauric acid (1:1)
LA Lauric acid

PY Pyrene

AS Ammonium sulfate

0.8AS Ammonium sulfate/succinic acid (4:1)
AS/SA Ammonium sulfate/succinic acid (1:1)
0.8SA Ammonium sulfate/succinic acid (1:4)
SA Succinic acid

ST Soot

2 The compositions of all binary mixtures refer to the weight fraction ratios
of the corresponding components.

and was included in this study because soot is commonly found
in the atmosphere, where it plays an important climatic and pub-
lic health role. Moreover, for the present project it was important
to include soot since during laser ablation a fraction of organic
particles can fragment to the point at which they are difficult to
distinguish from soot.

All particle types, except soot, were generated by aerosolizing
them from solutions using an atomizer (TSI Inc., Model 3076).
Aerosol flow was first dried to remove solvent by two diffusion
dryers (TSI Inc., Model 3062), connected in series, and then
diluted and further dried by mixing with dry compressed air at
a ~50:1 ratio in a large volume mixing/drying chamber.

Soot particles were sampled from a Mercedes 1.7L A-Class
diesel engine during the deployment of our single particle
laser ablation time-of-flight mass spectrometer (SPLAT) at the
National Transportation Research Center at the Oak Ridge
National Laboratory. The raw exhaust was dried and diluted by
a factor of 2500 by mixing with dry air. For the present study we
have chosen exhaust particles sampled under engine operating
conditions when 96% of the particulate emission was determined
to be composed of pure soot.

The entire dataset presented here contains 36,000 IPMS and
was constructed by combining 3000 individual particle mass
spectra from each of the 12 particle types.

2.2. Individual particle mass spectra

Polydisperse aerosol particles were sampled by SPLAT, a
detailed description of which is given in [9]; here we give a
brief description only. Particles enter the instrument through a
100 pm orifice into an aerodynamic lens inlet. The lens is used to
focus entrained particles into a narrow, low divergence particle
beam and transmit the particles into the vacuum chamber with
high efficiency. Two stages of optical detection placed along
the well-defined particle path provide aerodynamic velocity and
size information for the individual particles in the particle beam.
Pulse from an excimer laser, operated at 193 nm, is timed to
arrive coincident with the particle at the ionization region of the
time-of-flight-mass spectrometer (TOF-MS) and generates ions
by ablation. IPMS are subsequently acquired by measuring the
ions time-of-flights in the reflectron TOF-MS.

The signal from the TOF-MS microchannel plates is dig-
itized at a rate of S0 MHz using 8-bit A/D card for PCI bus
(Gage Applied Technologies, Inc., Model CompuScope 8500).
The digitized IPMS are paired with the corresponding parti-
cle size information, bundled to form files, each containing five
IPMS to match Windows allocation unit size, compressed on the
fly and written to the hard drive. At present the sampling rate of
~20 particles per second is limited by the rate with which the
data could be transferred and written to the computer hard drive.

To prepare the IPMS for classification the raw data are first
processed and reduced: spectra are decompressed, a baseline is
subtracted, ions’ time-of-flights are converted to the correspond-
ing mass-to-charge (m/z) ratios, and the integrated area of each
of the IPMS and the areas under each of the peaks are calculated
by integrating the intensities within 0.5 Da of each of the 450
m/z values. “Hits” are separated from “misses” on the basis of a
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comparison between the total integrated mass spectral intensity
and a preset threshold, which is set to be slightly larger than
the average integrated area of the particle-free background mass
spectrum. At the conclusion of this process two files are gener-
ated: one contains the measured aerodynamic diameter and the
time of detection for each of the detected particles and the sec-
ond file lists for each particle that was classified as a “hit” the
aerodynamic diameter, time of detection, total integrated mass
spectrum area and the 450 mass spectral peak intensities, one
for each of the m/z values.

2.3. Data classification

To assure fast response by SpectraMiner to the user com-
mands during the data mining process we have taken a two-tier
approach: an off-line data clustering process and a real-time data
mining and visualization.

We first run an off-line process based on K-means cluster-
ing that organizes the data into hundreds or a few thousands of
representative groups we call clusters, by combining together
particles with very similar mass spectra. We treat each of the
IPMS as vectors in 450-D space and group them into clusters
based on their proximity in the 450-D space. The first, randomly
selected particle mass spectrum serves as the first seed and the
distance between each of the subsequently picked mass spectra
and that seed is calculated. If the calculated distance is less than
a threshold distance, the particle is placed into that cluster, if the
distance is greater than the threshold; that mass spectrum is set
to be an additional seed. Each of the IPMS is added to the cluster
that it is nearest to. Once the entire data has been clustered, the
average mass spectrum for each of the clusters is calculated and
the distance between each of the IPMS and these average mass
spectra are recalculated and compared and particles are placed in
the clusters they are nearest to. This iterative process is designed
to take into account the fact that the cluster center shifts during
the classification and drive the process to convergence.

As ameasure of the distance between mass spectra we use the
value of (1 — r), where ris the Pearson correlation coefficient. In
this study the IPMS are not normalized, but the distance between
two proportional mass spectra is very small and therefore they
are always grouped together.

At the end of this off-line procedure an output file with the
calculated statistical properties of each cluster, like the cluster
mean mass spectrum and the covariance matrix, is created. In
addition the information about each particle size, time of detec-
tion and the mass spectral peak intensities are included. The final
listing of “particles” and the clusters they belong to is later uti-
lized by the interactive data mining and visualization program
described in the sections below.

The dataset presented in this study consists of 36,000
IPMS-3000 IPMS of each particle type. Classification of this
dataset, i.e., the off-line portion of the data analysis, takes
~2min on an office PC. For a distance threshold of 0.3 the
classification produces a total of 583 clusters, 62 of which con-
tain more than 20 particles each, accounting for 98% of all the
particles. It is important to note that although our analysis from
this step forward will be focused on the 62 clusters, the infor-

mation on the remaining 2% of particles will not be lost and can
be instantaneously visualized. Even though this feature of the
software is not very important for the present study, it is crucial
for measurements that depend on the ability to identify and track
a few “gold nuggets”.

K-mean clustering is only one out of a number of available
classification methods that can be applied to our data. We have
tested a number of them on our SPLAT data and have come to the
conclusion that as long as the IPMS are organized in areasonable
manner the classification algorithm plays only a minor role. The
critical point is the ability to visualize and explore the data in an
efficient manner.

2.4. The interactive dendogram: design and construction

Dendograms are an effective and established way to con-
vey results of a hierarchical clustering or classification process.
Here we describe an advanced incarnation of the dendogram
paradigm, which combines a more space-efficient polar or cir-
cular layout with a number of interactive features to facilitate
the exploration of large data hierarchies. Hence, we call our
approach the interactive dendogram. In our polar dendogram
layout we have chosen the equispaced arrangement of clusters
on the outer-most circle. This is the most appropriate place-
ment since each cluster stands for a partition of the original
(large, preprocessed) dataset, and all partitions (or clusters) have
been chosen in such a way that their similarities are equal or
smaller to a preset distance or similarity threshold, max Sim.
As the requirement on the similarity between IPMS is sequen-
tially relaxed, similar clusters are merged together to form larger
groups, we call nodes, until eventually all IPMS in the dataset
are merged together, forming the root node. In our polar den-
dogram layout the radius R of a concentric circle onto which a
node with similarity node Sim is placed is given by

min Sim — node Sim
= — - max Rad (D)

( min Sim — max Sim >

max Sim is the partitioning threshold of the K-means pre-
processing algorithm (or some other metric), min Sim is the
similarity of the root node, and max Rad is the radius of the
outer-most circle.

In this configuration, however, when the number of nodes in
a sub-tree is large, or the tree is highly imbalanced (as is the
case in our application), sub-tree edges that connect a cluster or
node on circle R to a node on circle Ry, which is smaller than
R1, may pass through the circle with R3, which is smaller than
R, which could lead to a cluttered display. To avoid this we
use curved arcs instead of edges to connect the tree branches.
In addition edges and curved arcs on the dendogram are colored
using a rainbow colormap to indicate the number, or percentage
of particles they carry.

The clusters are placed along the circumference of the den-
dogram in such a way that no crossings between branches occur.
No other rules apply. It is for that reason that there is no unique
solution to the dendogram structure. But, since its construction
follows a specific and reproducible order, the end results tend to
be similar.
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Often, the classification of mass spectral data produces many
clusters which contain only few particles. To avoid the visual
clutter that they can create in SpectraMiner the user interactively
selects the minimum number of particles that clusters need to
have in order to be displayed. Modifying this threshold redraws
the dendogram with the full rainbow color spectrum mapped to
the active population interval. The user has the ability to expand
the node into its full sub-tree and expand or collapse the sub-tree.

From the perspective of data exploration and mining, setting
the dendogram to suit user preferences is only the beginning. The
most important features of this software are ease, speed, and ver-
satility with which data exploration can be performed. Some of
these features will be presented in the sections below describing
the data mining process in this paper. Other features, specifi-
cally designed to be used with ambient data that are acquired
as a function of time and make it possible to search for corre-
lations between particle types and their relationships to other
chronological observation, will be demonstrated in the another
publication.

3. Results and discussion
3.1. Setting-up the present dendogram

Fig. 1 shows one of SpectraMiner’s annotated visual displays.
At the center is the hierarchical tree, in which the classified
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and organized data are displayed. It is generated by loading the
output of the off-line data clustering process. What makes this
tree different from typical hierarchical trees is that it is trans-
formed into a polar format, called the circular dendogram. In
the table in the top left corner the scientist can select the time
period to be covered and the particles size range to be dis-
played. In the present dendogram we include particles with sizes
from 50 nm to 3 pm. Other dendogram display parameters are
defined in the tree type table below. The “# of levels” defines
the number of distinct concentric levels on the dendogram, on
which nodes are located. The radius is a true measure of sim-
ilarity: the further from the center a node is the more similar
the particles within it are. Hence, moving from the circum-
ference towards the center amounts to reducing the similarity
requirements for particles to be grouped together. The # of lev-
els can therefore be viewed as defining the resolution scale,
with which the tree branching are displayed. Here we have
chosen to divide the dendogram radius into 30 resolution ele-
ments and display them on logarithmic scale, to accommodate
the fact that many of the clusters in this dataset merge together
at high similarity levels. “Flat” defines the overall wrap angle
of the dendogram layout and “empty” sets the angle of the
white wedge, whose role is to help define beginning and end
clusters. “Min # particles”, in this case set to 20, defines the min-
imum size of visible clusters or nodes to be represented in the
dendogram.

# particles 386
percent 1.1% ] »14,200501010000010000 - 200501011000000000
S 200501010000010000 - 200501011000000000

Fig. 1. An annotated screen capture of a SpectraMiner visual display. At the center is the dendogram and above it is a linear projection of clusters populations. On
the top left is a table describing the dendogram input parameters and below is a graphic display of the mass spectral information of node J.
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At the circumference of the dendogram in Fig. 1 we find
62 numbered clusters, each of which contains more than 20
particles. Each of the edges and arcs on the dendogram, “tree
branches”, are colored using a rainbow colormap to indicate the
number, or percentage of particles they carry, with red being
high, blue being low and black (not present in Fig. 1) corre-
sponding to zero fraction of the particle population. Here we
use a log(log(population)) color scale, resulting in a display that
makes it easy to recognize the presence of even sparsely popu-
lated clusters.

The linear strip above the dendogram is the projection of
clusters’ populations. Each of the small colored rectangles rep-
resents, with identical color scale, the population of the corre-
sponding cluster at the circumference of the dendogram. For
this presentation we have labeled the projections of the clusters’
populations by the corresponding cluster number to make the
connection with the dendogram straightforward. The structure
above the projection was also added specifically for this study
and is intended to illustrate which clusters are merged to form the
nodes that are alphabetically labeled in the dendogram in Fig. 1.
Like the dendogram, the projection is interactively explorable.

The merged clusters form nodes, similar nodes merge
together to form larger nodes, and the colored lines mark the
merging pathways, with their colors representing particle pop-
ulation they carry. Clusters with similar particles merge rapidly
and clusters containing very different particles do not merge
until the center of the circle, root node, is reached.

An all encompassing view of the dendogram in Fig. 1 reveals
11 main branches. The nodes at which we chose to define the
important bifurcation points in each of the 11 branches are alpha-
betically labeled. These nodes were chosen on the basis of a brief
exploration and personal experience and preference, but can eas-
ily be changed to adapt to the questions at hand.

3.2. Exploring the dataset

3.2.1. Connecting dendogram points with particle mass
spectra

Our interactive dendogram is tightly coupled with what we
call the cluster/node content browser. It creates for the researcher
the connection between the clusters/nodes, in which particles
reside, and their mass spectra and hence the particle compo-
sitions. We begin data mining by examining the 11 key nodes
labeled alphabetically in Fig. 1. It is important to note that the
11 nodes, which we chose as examples in this study, represent
points on the classification tree that have a wide range of radii,
or similarity parameters. In other words the visual, interactive,
hierarchical classification tree guides the researcher in making
choices and provides the possibility to make them with a flexible
similarity requirement for each of the tree branches. If we had
instead attempted to force the entire dataset into less than 15
fixed clusters with a single similarity threshold we would need
to set that threshold at the level shown in Fig. 1 by the dashed
white ellipse. Instead we have the flexibility to explore nodes
that appear to be important branching points and have signifi-
cant particle population despite the fact that they happen to be
positioned at different radii.

To browse the content of a cluster/node one needs simply
click on the corresponding point on the dendogram and the pro-
gram generates the graphic and tabular information shown in
the lower left side of Fig. 1. Here we illustrate the outcome of
clicking the mouse on the node labeled J. Under the heading
“Cluster/Node Information” the program displays the average
mass spectrum of all the particles in this node. The J node mass
spectrum shown here is easily assigned to pyrene by making use
of the interactive display readout of the peaks positions.

Underneath the average mass spectrum the program displays
a scrollable pixel-map of all the 386 mass spectra, one for each
of the particles in this node. It is constructed from 386 hor-
izontal lines, one for each of the IPMS, and the mass spectral
peaks intensities are indicated by color, again using rainbow col-
ormap, with red being high and blue being low. In this display
the color scheme uses a log(log(/)) scale to enhance the presence
of low intensity peaks and to make it easy to observe particle-to-
particle variations. Clicking on any horizontal line displays the
corresponding particle size and its time of detection. An overall
view of the “mosaic” in this panel reveals three distinct regions
that correspond to three different fragmentation patterns, one for
each of the three clusters, 58, 59 and 60. These clusters merge
to form node containing many of the are pyrene particles. The
program is presently set to display up to 500 IPMS at a time
and provides the option to scroll through the entire node/cluster
content.

The last, green mass spectrum is a dynamic cluster summary
view. By examining this mass spectrum the user can gain an
additional level of understanding that is not observable from the
average mass spectrum. The cluster summary mass spectrum is
generated by superimposing the 386 IPMS on top of each other
with an opacity that is determined by the slider bar below it.
Changing the opacity allows the user to gradually bring up and
observe the features that are present in fewer particles and learn
more about the mass spectral peak intensity distribution. This
display is a simplified version of parallel coordinates tuned to
work on very high dimensional data. Note that all three views
are aligned on the m/z scale, making it possible for the user to
directly compare the different views.

The table below the three graphically displayed mass spec-
tra summarizes the information about the node that is being
explored. The node name is originally assigned by the scientist
during dendogram exploration. Once assigned and saved, it can
be reloaded, such that it will reappear anytime this node, or any
unnamed node/cluster connected to it and positioned at larger
radii is clicked. The other two cells in the table display the num-
ber of particles in the node and its fraction of the total number
of particles represented in the dendogram.

In addition to the cluster/node information described above
SpectraMiner easily generates other informative visualization
formats of each cluster/node, which include, for example, 3D
plots of particle population as a function of size and time of
detection; individual particle mass spectra, linear plots of the
number of particles in any clusters/nodes as a function of time
or any other observable that was simultaneously measured, etc.
The use of these commonly utilized visualization tools will be
described in other publications.
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Fig. 2. Average mass spectra of the 11 major nodes (the m/z scale is 0-250),
their tentatively assigned compositions and the fraction of particles in each node.

3.2.2. Exploring the average mass spectra of the major
nodes

Shown in Fig. 2 are the average mass spectra, our tentative
assignments and the fraction of particles in each of the selected
11 major nodes. The tentative assignment was carried out by
examining all of the mass spectral information, while assuming
no prior knowledge of particle composition. Table 2 provides a
key to the shorthand notations used here and throughout the rest
of the paper.

In Fig. 3a and b we present in bar graph format the relation-
ship between the tentative assignments of the 11 nodes and the
true particle compositions. Fig. 3a shows which particle types
populate each of the 11 nodes. Note that even at this rather crude

Table 2
Listing of the tentative assignments of the 11 major nodes and their abbreviations
Abbreviation Assignment
Na Sodium
AS/o AS with minor amount of small organic acid
A/AS Small organic acid with AS
Alas Small organic acid with minor amount of AS
Nit Nitrate
O Small organic acid
OxOrgl Oxygenated organics
OxOrg2 Oxygenated organics
EC Elemental carbon
PAH1 Pyrene
PAH 2 Pyrene
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Fig. 3. (a) A bar graph display illustrating which particle types reside in which
of the 11 nodes; (b) a bar graph display illustrating which nodes contain which
of the 12 particle types.
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level of classification AS particles (red) and AN particles (dark
green) are for the most part distinguishable. In contrast, at this
classification level there is insufficient detail to properly distin-
guish AS particles from internally mixed particles, composed of
AS mixed with SA, or even from some of the pure SA particles.
But a careful view of nodes B-D and F reveals that as we move
from node B to C to D and to F the fraction of the particles with
high AS content in the nodes decreases, while that of particles
with high SA content increases. AN particles and AN/LA par-
ticles, the mass spectra of which are dominated by an intense
NO™" peak, share node E. In the same node we also find 11% of
the AS particles. A 100% of the two sodium containing parti-
cle types; SN and SC, are in node A. Nodes A and E represent
generic cases of particles, whose mass spectra are dominated by
common intense peaks that greatly impact the classification. We
will demonstrate an approach that can often resolve this type of
a classification problem later in the paper.

The mass spectra of the particles in node I assigned as EC are
dominated by a progression of C,* peaks, indicating the pres-
ence or the formation during the ablation process of soot-like
ionic fragments. As seen from Fig. 3anode I contains besides the
real soot particles two other particle types, composed of organic
molecules. The finding that a significant fraction of organic parti-
cles are indistinguishable from soot particles is another common
feature of single particle mass spectroscopy. At its root is the
high degree of fragmentation, often produced in ablation gener-
ated mass spectra, combined with a classification at coarse level.
Ablation is the multiphoton process that is used to evaporate and
create ions out of individual particles. It is not uncommon to
find that ablation of smaller particles that contain organic com-
pounds results in a high degree of fragmentation and produces
mass spectra that are dominated by the C,* progression. Often
these mass spectra contain other, lower intensity peaks that con-
tain the information that can be used to separate organic particles
from soot, but get overlooked in a coarse classification.

In Fig. 3b we present the classification results from the parti-
cle type perspective. First we point to the fact that the 11 nodes
contain 97.5% of all the particles (here we have not included
clusters 3-6, 21 and 30). The first two particle types, with IPMS
dominated by the Na* peak, not surprisingly are found in one
class and assigned as sodium-containing particles. A similar sit-
uation is observed for the AN and AN/LA particle types with
dominant NO* peak in their IPMS. The pattern produced by the
other particle types provide a clear graphic display of the fact that
the complex fragmentation pattern of organic molecules tends
to spread their population into a number of nodes. LA and PY
particles are each spread into three major nodes and some of
their mass spectra are indistinguishable from the IPMS of soot
particles.

In addition it is important to note that AS and internally mixed
AS and SA particles are difficult to properly identify and segre-
gate at the major node level.

Figs. 2 and 3a and b provide a graphic summary of the clas-
sification results at the level of 11 nodes. Were we to end the
data mining process at this point, and treat it as one would IPMS
of unknown ambient particles, our conclusions regarding the
particle composition would be specified by the compositions

assigned to the nodes with their corresponding average mass
spectra and the relative particle populations as shown in Fig. 2.
We would be forced to conclude that while we captured some
of the properties of the sampled particles, we have missed too
many others.

3.2.3. Intermediate comments on the results of the
exploration of the 11 nodes

The common notion in the field is that distinguishing ammo-
nium sulfate from ammonium nitrate particles on the basis of
their positive ion mass spectra alone is very difficult. Our spec-
tra and classification process do not exhibit the same limits even
at the level of classification presented above. Instead we find in
this and other studies that ablation generated mass spectra of
particles containing organic compounds are the most difficult to
properly classify.

The classification results thus far reveal that all the particle
types composed of organics exhibit complex fragmentation pat-
terns: LA populates nodes G, H, and I; SA inhabits nodes B-D,
and F; and PY resides in nodes [-K. In addition, their fragmen-
tation patterns exhibit particle size dependence. We will use PY
as an example to illustrate some of the processes that create such
a wide range of fragmentation patterns. We will also use it to
demonstrate the visual tools that help with the mass spectral
assignment process that are at our disposal.

In Fig. 4 we show in three separate frames the mass spec-
tra of pyrene particles that reside in nodes I-K along with a
listing of the fraction of pyrene particles in the corresponding
node and the average size of its particle population. Each frame
representing a node displays the three mass spectral views we
mentioned earlier. Not surprisingly, we find that the mass spectra
of the largest particles exhibit the least amount of fragmentation
and their mass spectra are dominated by the parent ion peak.
In contrast the smallest particles, with ~10 times lower mass,
fragment to the point that their average mass spectrum is almost
indistinguishable from that of elemental carbon. The observed
dependence of the mass spectrum on particle size is not surpris-
ing considering the complexity and non-linearity of the ablation
process. Examination of other particle types shows that the trend
observed for pyrene is general: smaller particles typically exhibit
larger degree of fragmentation.

In the laboratory settings, in which particle composition and
size can be limited and are often known, it might be possible
to reduce the ablation laser power and decrease the degree of
fragmentation for the specific particle type and size. However,
this sort of fine “tuning” is not applicable to the study of the
ambient particles, whose compositions and sizes are unknown
and range widely. The common effect of low ablation laser power
is that important atmospheric particles like ammonium sulfate
become undetectable.

It is worth noting that a careful examination of the data in
Fig. 4 shows that the parent ion peak and the typical PAH pro-
gression can be observed in the pixel-map of the IPMS and in the
green cluster summary mass spectra of each of the three nodes.
In node I these peaks exhibit very low intensities in comparison
with the three carbon ion peaks and are clearly insufficient to
achieve separation from soot at this classification level. But the
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Fig. 4. The mass spectral information obtained for pyrene particles which were classified into the three labeled nodes. Note the relationship between particle size

and the mass spectral fragmentation pattern.

fact that they can be observed in the majority of the pyrene IPMS
suggests that it should be possible to take them into account to
improve the classification.

Before we proceed to examine the classification results on a
more refined level we find it worthwhile to visualize the patterns
formed by clusters, nodes and branches of each of the particle
types; the rudimentary structure of the classification output.

3.3. The 12 underlying dendograms

In Fig. 5 we provide a graphic presentation of the results
of the classification separated according to the 12 particle types.
This figure shows 12 dendograms and the corresponding projec-
tions of their clusters’ populations, one for each of the particle
types. To help orient the reader with respect to the original, all
particle dendogram that is shown in Fig. 1, we have noted the
cluster’s numbers on the population projection and where rele-
vant, indicated the same alphabetical node labels we have used
throughout the paper.

An examination of the 12 individual particle type dendograms
and their relationship to each other is very insightful. These
dendograms reveal the complexity of the hierarchical patterns
separated by particle type and show which clusters are popu-
lated by what particle type. We chose not to provide a detailed
description of each of the dendograms in Fig. 5; instead, we will
leave the reader to visually inspect the dendograms, use them
as an information source for the discussion presented below and
derive whatever specific information he/she finds to be useful.

3.4. Data exploration at the cluster level

3.4.1. Deconstructing node I into clusters 51 through 57

We chose to explore node I because it represents one the
most important generic problems of ablation based single parti-
cle mass spectroscopy. Moreover, from an atmospheric science
perspective, itis very important to be able to distinguish between

particles composed of EC or soot and those containing the com-
plex range of organic compounds. In the present case node I,
which has tentatively been assigned to EC on the basis of its
average mass spectrum, contains in addition to soot 39% of the
LA particles and 48% of the PY particles.

Fig. 6 displays the mass spectral information for clusters 51,
54, and 57, three of the six clusters that merge to form node
I. What is common to all these clusters is that the most intense
peaks in the spectraare C;*, C,* and C3*. But, an examination of
the three mass spectral display formats makes it clearly appar-
ent that the mass spectra of the particles in these three nodes
are clearly quite different and that they can be unambiguously
assigned as soot (cluster 57), PAH (cluster 54) and oxygenated
organics (cluster 51) as annotated in the figure.

In Fig. 7 we return to the bar graph presentation of the nodes
and their contents and extend it to include clusters 51 through 57.
An examination of the compositions of the particles in these clus-
ters shows that at the cluster level the only cluster that includes
more than one particle type is cluster 56, in which 19% of the
LA and 12% of the PY particles are indistinguishable from EC.
In all other clusters the particles have been properly identified.

3.4.2. Deconstructing node B into clusters 7 through 15
Internally mixed particles composed of AS mixed with organ-
ics are some of the most common particle types found in the
atmosphere. Since many of the properties of these particles
strongly depend on the relative amounts of AS and the organ-
ics, it is clearly important to be able to accurately identify the
particles internal composition. Node B, which on the basis of
its average mass spectrum we tentatively assigned to AS with
a minor fraction of a small organic acid (AS/o0), contains five
particle types: AS, 0.8AS, AS/SA, 0.8SA and pure SA.
Returning to Fig. 7, where we present the results of decon-
structing this node into its clusters 7 through 15, we note that on
the cluster level the picture for node B becomes significantly bet-
ter resolved. The clusters that comprise node B can be separated
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Fig. 5. A display of the particles distributions in the overall dendogram separated into each of the 12 particle types. The 13 colored horizontal lines above are
projections of the particle cluster populations starting with the entire dataset (labeled X) and proceeding with a projection for each of the 12 particle types as marked.

into three types: clusters 7-10 contain particles whose compo- by mixed particles that contain significant fractions of both AS
sition is dominated by AS but many contain small to medium  and SA.
amounts of SA. Clusters 11-13 contain particles whose compo- While it is clear that the mass spectra of these particles do not

sition is dominated by SA and clusters 14 and 15 are dominated contain sufficient details to unambiguously resolve node B into
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Fig. 6. The mass spectral information of the particles that are classified into clusters 51, 54 and 57 and their assignments.

all its particle types, we have demonstrated that at the cluster  3.4.3. Deconstructing node A to the cluster level

level we could separate the node into three types of internally The laser ablation generated mass spectra of particles that
mixed AS/SA particles in accord with their variable composi- contain species with low ionization potentials like alkali metals
tion. Similar refinement can be achieved for nodes C and D. are often dominated by a few very intense mass spectral peaks of
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Fig. 8. The mass spectral information of the particles that are classified into clusters 1 and 2 separated according to the particle types.

these species. In a recent paper [10] we have demonstrated that
the presence of sodium atoms can even act to suppress other ions
through charge transfer processes. In cases where two or more
particle types share very intense mass spectral peaks, a typical
classification process groups these particles together.

In the present study we find that SC and SN particles are
classified together in node A because of the intense Na* peak
the two particle types share and the AN/LA and pure AN get
grouped together in node E because of the presence of the intense
NO* peak. Below we will explore two approaches to refine the
classification and overcome some of these limitations using SC
and SN particles as examples.

Fig. 8 shows the mass spectral information of SN and SC
particles that reside in clusters land 2. An examination of these
mass spectra shows that all of them exhibit an intense Na* peak.
But we also note that the mass spectra of the SN and SC particles
have other than Na* peaks, which are unique to each of the
particle types. These weaker peaks are most easily observable
on their IPMS pixel maps. These additional mass spectral peaks
that are not shared by the two particle types can provide the
information needed to sort these two particle types. To improve
the classification there is a need to refine it by brining these other
peaks to the forefront.

In the left part of Fig. 9, in bar graph format, we present the
deconstruction of node A into its clusters 1 and 2. We note that
for these particle types even at the cluster level of classification
only 17% of the SC particles are separated from the rest of the
Na-containing particles.

A straightforward approach, which could refine the IPMS
classification, is to decrease the distance threshold parameter. In
the right part of Fig. 9 we present the results of a classification
run on the particles in node A only, with a distance threshold set
to 0.1, showing that reducing the distance threshold, by a factor
of three somewhat improves the results. In this case node A is
deconstructed into four clusters, in which 69% of the SN and
26% of the SC particles reside in separate clusters.

3.5. Expert driven classification

3.5.1. Deconstructing node A with expert input

It is possible to take advantage of the knowledge gained by
examining the mass spectral information, at the node and cluster
levels, to refine the classification process and separate these mass
spectrally similar yet very different particle types. The approach
we adopt here is to apply our expert knowledge by inputting it
into the classification to help in its refinement. We base our input
on the conclusions we arrived at on the basis of an examination
of the IPMS shown in Fig. 8. We have already noted above the
existence of peaks, other than Na*, that uniquely identify the
two particle types, and concluded that if we were to base the
classification on all, but the Na* peak, the two particle types
could easily be separated.

There are a number of approaches one can take to sculpt the
mass spectral features and “help” the classification process. One
of them is to assign to peaks different “weights”, which would
allow the user to amplify certain mass spectrometric features.
Here we took the simplest approach by assigning zero weight to
the Na* peak, i.e., eliminating this peak in the IPMS of all the Na-
containing particles altogether. Following the removal of the Na*
peak the mass spectra of the 6000 particles that belong to node
A are reclassified with a distance threshold of 0.3. As the result,
aside from 11 (0.37%) SC particles that share some of the SN
clusters, the two particle types have been successfully separated.

3.5.2. Expert driven classification of inorganic/organic
particles

We have already mentioned above that the AN and AN/LA
particles present a case similar to the SC and SN particles. A pro-
cedure, comparable to that used to separate the Na-containing
particles can be applied to refine the classification of node E to
separate the AN and the AN/LA particles, whose mass spec-
tra are dominated by an intense NO* peak. Fig. 10 shows the
mass spectral information of the three particle types in node E:
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100% of AN, 89% of AN/LA and 11% of AS. An examination
of these mass spectra shows that it should be possible to separate
the three particle types in this node by assigning lower weight to
the dominant NO* peak. Note, however, that the mass spectra of
the AS particles that reside in node E, are contaminated by the
presence of a small amount of organics, which would make it
difficult to completely resolve them from the AN/LA particles.
The appearance of organic compounds in the mass spectra of
“pure” AS has been reported by others [4]. It has been inter-
preted to be a result of the low ionization probability of pure
ammonium sulfate [11,12] that makes it possible to detect even
minute quantities of organic contaminants.

In the case of mixed AS/organics particles we can use a
slightly different approach and enhance the importance of small
but characteristic key mass spectral peaks that signify AS and
specific organic compounds of interest. In some sense identi-
fying key peaks and increasing their weights is similar to the
approach used by the ADAMS [5] classification in which dis-
criminant chemical markers are used to guide the classification.
By assigning higher weights to key peaks we can decrease the
importance that weak, background and/or impurity peaks play
and guide the classification to more precisely identify all the
particles containing AS and internally mixed AS particles with
organics.

To test this approach, we have used peak with m/z=48 as a
marker for AS and peaks with m/z=43, 100, and 118 as mark-
ers for SA and increased their weight (intensities) by factor of
10. Rerunning this expert steered classification of the weighted
IPMS shows that all the AS, SA and AS mixed with SA parti-
cle types have been successfully separated from the rest of the
dataset. A 87% of these 15,000 particles were classified into 19
clusters, whose populations are illustrated in Fig. 11a with the
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Fig. 11. An illustration of the results of the expert steered classification of the
AS, SA and their three internally mixed particle types: (a) projections of the
cluster populations for the 5 particle types; (b) bar graph format.

five projections, one for each particle type, and in the bar graph
formatin Fig. 11b. We note that this classification produced three
main particle groups that can be assigned as mostly AS with a
small amount of SA, AS mixed with SA and mostly SA with
some AS. We find these results to be very encouraging and plan
to apply the approach to the ambient atmospheric data we have
acquired.

Another implication to ambient atmospheric data is an
improved accuracy in the assignment of potassium-containing
particles. Potassium-containing particles are frequently detected
in the atmosphere and often present a case that is similar to the
Na-containing particles discussed above. There are a number of
well-known sources of atmospheric potassium, which can eas-
ily be distinguished from each other on the basis of the other
compounds that are inevitably present and observed in the same
particles. Potassium, like all other alkali metal atoms, tends to
dominate the IPMS, making it difficult to identify and properly
classify these often very different particles.

We have shown above that cluster visualization is a power-
ful strategy for the exploration of high-dimensional data in the
absence of a-priori hypotheses or data classification models. But
even though formal models may not exist, we have a vast amount
of knowledge and intuition that we can bring to bear in this effort.
The results of a non-supervised data classification rarely agree
with this expert knowledge. SpectraMiner offers data visual-
ization and mining tools that make it possible for the user to
evaluate the results of the classification with ease and inject sci-
entific domain knowledge and intuition to steer the clustering
process. Moreover, SpectraMiner is structured in a manner that
makes it easy to focus on subsets of the data that are of particular
interest. In the present study, sculpting the 6000 mass spectra
in node A or the 15,000 mass spectra of internally mixed AS
and SA, particles using different expert driven approaches, was
performed in less than a minute and significantly improved the
representation of the sampled particles.

4. Conclusions

We presented a study, in which we put to test the classifi-
cation aspect of SpectraMiner using IPMS of 12 particle types
generated by SPLAT operated in the ablation mode only. These
particle types were chosen in a manner that represents some of
the generic problems that are often encountered by laser ablation
based single particle mass spectroscopy of atmospheric parti-
cles. In our analysis of the data we have illustrated the approaches
we have taken to bring about improvements and even solutions
to some of the common problems that we face in this field. We
have developed approaches that give the user the option to push
the data analysis process to the point where the limits are set by
the quality of the data. To accomplish this goal we developed
the tools that make it possible to explore the data on variable
levels of details with great ease.

The measurements of the organic content of ambient parti-
cles represent a particularly challenging and important aspect of
SPMS. In this study our data and its analysis illustrated that two
very different organic particle types can fragment to the point
that, at coarse classification level, nearly half of their particles
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are indistinguishable from EC. We showed that in these cases
it was possible to significantly improve particle identification
by simply exploring the results of classification at the cluster
level.

Particles composed of sulfates internally mixed with organics
represent a very significant fraction of atmospheric aerosols.
Here we looked at the internally mixed AS and SA particles and
concluded that at the major nodes level particle identification
is rather poor, whereas at the cluster level we noted significant
improvements.

We showed that the addition of expert input to sculpt the
mass spectral data can greatly improve the outcome of the clas-
sification. This approach was demonstrated for a case in which
two different particle types share a few dominant peaks. We
showed how to visually analyze the mass spectral information
and select and implement an expert driven classification proce-
dure that eliminates the overlap between the particle types. We
illustrated the application of expert steered classification to iso-
late and classify the AS, internally mixed AS and organics and
SA particles with significant success.

We must conclude that while there are ways to improve the
data analysis process the true limits we are presently facing stem
from the quality of the mass spectra that are generated by laser
ablation based SPMSs. To accomplish significant improvements
we must address this aspect. One approach that we and others
have deployed [9,13,14] is to use a two-laser, two-step process
forion generation: the first step relies on an infrared laser to evap-
orate the particles, and the second delivers a time-delayed UV
or VUV pulse to ionize the resultant plume [9,13,14]. Another
approach is to incorporate into classification additional mea-
surements for the same individual particles. Most commonly
this is accomplished by simultaneously measuring the positive
and negative ion mass spectra [15—17]. It might be possible to
improve the classification results by incorporating into it other
simultaneously measured single particle properties like density
[18-20].

We showed some of the features offered by SpectraMiner
and demonstrated that it yields a data mining platform that offers
great flexibility. This flexibility is apparent even at the node level,
where the number of nodes being examined is comparable to that
used by other data classification approaches. Except that we let
the structure of the data determine the “natural” distances, at
which clusters merged to form key junctions. Most importantly,
the more detailed information at larger radii is always only a
mouse-click away.

In the present study we pruned the dendogram data presen-
tation to 20 out of 36,000 particles, or 0.06%. In applications
that relate to global climate such detail may not be needed. In
contrast, in homeland security applications or in studies of spe-
cial atmospheric events or episodes we could be searching for
the extremely rare “nuggets” that represent a minute fraction of
all the sampled particles. SpectraMiner is designed to make the
transformation between these two limits easy.

An essential aspect of this software is the speed with which
the program responds. We felt that it was very important to
develop software, in which the transformations we described
here and all the other data manipulations involved in the data

mining process would be fast, even when the software is exe-
cuted on an office or laptop PC and the dataset contains ~1
million particles.

It is important to mention that in this study we presented
only a fraction of the SpectraMiner features. Many of the other
features were specifically designed to analyze ambient data as
function of time of their detection. SpectraMiner makes it pos-
sible to interactively view the time evolution of the particle
composition data in a number of visual formats and search for
correlations in the time evolution of particle clusters and nodes.
SpectraMiner is also set to load any other data that is acquired in
parallel, like gas phase pollutant concentrations, wind direction,
or engine performance characteristics and analyze the relation-
ship between these data and the particle composition. These
aspects of the software will be presented in separate publica-
tions.
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