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ABSTRACT 

High-quality visual feedback plays a decisive role in the analysis 
of complex multivariate data. We present a framework that uses 
information abstraction to improve comprehensibility, reduce 
unnecessary complexity, and communicate data patterns more 
succinctly. Our framework uses scale-space filtering to create a 
multi-scale representation of the data, and then employs both data 
and user-driven illustrative abstraction within a level-of-detail 
design interface to help users in only visualizing those aspects and 
detail of the data they deem relevant at the current stage of the 
analysis.   
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1  INTRODUCTION 

There is a wealth of data available to derive insight, in many 
domains, small and large. While this opens tremendous 
opportunities, it also brings equally tremendous challenges to data 
analysis frameworks tasked to unravel the hidden secrets in the 
data. But not all data (and information derived from them) is 
likely to be relevant at the same time. To paraphrase E. Tufte: “A 
primary aim must be to only convey the relevant information and 
to do so with a minimal amount of ink” [1]. Then, B. 
Shneiderman’s Visual Information Seeking Mantra brings in the 
element of level of detail: “Overview first, (zoom and filter), then 
details on demand” [2]. To support these established principles, 
we need to integrate into our visual tools methods that can control 
the level of detail naturally, via the types of techniques often used 
by graphical illustrators and other like professionals. 

Since we cannot employ such a person for day-to-day analysis, 
we need to identify suitable algorithmic methods that can derive 
abstractions autonomously. We achieve this in our work by 
making use of the mathematical/biological notion of scale which 
can be automatically computed from the data. It allows us to 
design interactive tools by which users can control overview, 
relevance, and level of detail and design visualizations at multiple 
levels of abstraction.   

2  APPROACH 

The framework we propose to represent and visualize the data 
makes use of the well-established scale space theory, proposed by 
A. Witkin [3]. Concretely, our two main steps are:  

Scale-space analysis: From the multivariate data we first 
perform a dimension reduction into 2D using Multidimensional 
Scaling (MDS, other dimension reduction schemes would be 
equally well applicable). This is followed by a scale-space 
analysis which has also been applied to automated cluster analysis 
and detection with good success [4]. The result is a nested scale-
space hierarchy composed of the most significant clusters 
determined by the lifetime, compactness, and isolation metrics. 
This hierarchy is represented via an interactive dendrogram. 

Interactive information display generation: The user is now 
free to design desirable data illustration displays by interacting 
with the dendrogram. These interactions lead the system to apply 
embedded design rules and functions, driven by user-intent, the 
shape information derived from the scale-space hierarchy. 

2.1 Scale-Space Filtering and Hierarchy Construction 

In our current implementation we have chosen to analyze the 2D 
embedding of the data, created by MDS, The MDS projection 
yields our lowest scale-space level, composed of the original set 
of data points. Then we splat each original data point into a 
uniform grid. We choose the resolution of this grid by recursive 
subdivision to generate a partitioning that is sufficiently dense as 
to allow for a reasonably fast convergence of the scale-space 
hierarchy. The splatting kernel is a Gaussian with =log22=1. 
Once this image is obtained, we construct the scale-space pyramid 
by repeated convolutions with kernels of growing =log2i/0.5, for 
i=2,3,4,… Fig. 2 presents images with density fields at different 
levels of scale for a Gaussian Mixture Model (GMM) dataset. 

Having constructed the scale-space pyramid, we are now ready 

to create the scale-space hierarchy. We start with the original set 

of projected points and use these as the starting points for the 

gradient-based tracking for the second level of the scale-space 

pyramid. See, for example, the two blobs with two points (local 

maxima) each, in Fig. 2b, which have merged into one point (local 

maxima) each in Fig. 2c. Finally, Fig. 2e is the top level, with 

(a) (b) (c) 

Figure 1: Visualization of a file system dataset using an illustrative scatter plot visualization we derived from the scale-space analysis. (a) 
Simplified dendrogram; (b) illustrative plot with iso-contoured regions and points; (c) same plot with a reduced number of iso-contours. 
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only one local maximum. With each scale-space node we also 

note the number of points that fall into it, and its values of 

compactness, isolation, and outlierness.  

2.2  Cluster Decomposition and Shape Extraction 

Our goal is to allow users to control individual clusters at multiple 
levels of scale. However, the scale-space filtering at each level of 
scale only yields a single density field that is due to all blurred 
points (and their clusters), augmented with local maxima that get 
assigned to the various hierarchy nodes according to their nested 
memberships. The task is thus to disaggregate the points that fall 
within a given hierarchy node from this overall density field. We 
are able to do this since we know the point membership for each 
node. We can consider these points to form the basis for a new 
scale-space hierarchy, which again yields density fields at 
different levels of scale. We note that this scale-space hierarchy 
may need further levels of blurring to yield a single blob since the 
effects of points falling into other nodes have been removed. Fig. 
3 shows an isolated point set (colored red, from the OS dataset in 
which each data is a 33-D vector which characterizes a system 
operation) at a series of different levels of scale. 

For the illustrative data display, we are interested in showing a 

given cluster abstracted by its (shape) contour (in addition to other 

effects). More concretely, we wish to extract a family of shapes 

parameterized by the probability density function. Since this is 

equivalent to the Parzen kernel density, we simply need to find the 

density iso-contour to determine this shape. Upon specification of 

a probability iso-value, we run the Marching Squares algorithm to 

identify all 2×2 image cells that contain this iso-contour. These 

cells are those that have at least one vertex value equal or above 

the iso-value. Since there can be more than one such contour, we 

pick one cell from the list, track the iso-contour following 

adjacent contour cells, and then mark all interior cells as occupied. 

We repeat this process for any cell in the list that is not part of a 

contour (or its interior contours for different probability density 

levels. We found that the resulting list of contour points often 

yields a rather noisy contour. We therefore smooth this set of 

points by subsampling the contour and then applying an 

interpolating cubic spline.  

3  USER INTERFACE 

The dendrogram interface forms the link between the scale-space 

analysis suite and the visualization engine. It provides capabilities 

to explore the data and to design the information visualization 

display. The dendrogram interface and accompanying 

visualizations of a dataset at multiple levels of the scale-space 

hierarchy are pictured in Fig. 4. Assume we have 3 clusters in a 

scale level – then the clustering at this level has 3 clusters. And if 

any of them is merged into another cluster, then the clustering is 

changed. Each row of the dendrogram shows each clustering. 

When we look at a row, we know how many clusters are included 

in a clustering of the level. The number of levels is the lifetime of 

the clustering and it is shown along the right edge of the 

dendrogram with a histogram. When a clustering has a longer 

lifetime, the clustering is considered better and more stable 

because the clusters are bound to be very compact and isolated.  

In the dendrogram in Fig. 4 the clustering in the second row 

from the top has the longest lifetime compared to other clusterings 

shown from the histogram. The clustering contains blue and 

magenta clusters in Fig. 4c. Fig. 4c shows the best clustering from 

the red root node and the blue node as well. We can say that the 

best clustering from the root node is the best clustering in the data 

set. Each node in the dendrogram can be expanded or collapsed. 

4  RESULTS 

The teaser in Fig. 1 shows a file systems datasets a certain 
(interesting) level of details. In Fig. 1b the file system operation 
clusters inside the black box are READ_NODE and CREATE 
(red), TRUNCATE (purple) and LOOKUP (blue). READ_NODE 
and CREATE do not separate from each other in this level and are 
shown as a single, red cluster. This means that they are more 
closely related to each other than to the other clusters (blue and 
purple). We learn that those operations are merged into one big 
cluster with pink in a higher scale level through the iso-contour, 
enclosing them in pink faint background. From this, we know that 
these clusters have similar patterns, and so they can be merged 
together. As we travel down the hierarchy, we see many nested 
contours, as in Fig. 1b, which can clutter the view and confuse the 
viewer. By reducing the number of iso-contours, we can show a 
less cluttered layout, as in Fig. 1c. 

5  CONCLUSIONS  

We consider our system a first prototype – a proof of concept. 

Future work will extend the 2D scale space analysis to N-D. 
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Figure 3: (a) Splitting the points in a scale-space node into their 
children (red, blue). (b)-(e) Points blurred at different levels of scale. 

      (a)                     (b)                          (c)                    (d)                  

Figure 4: The file system dataset shown at different levels of detail; 
dendrogram and display window; Low detail (left), high detail (right). 
The leftmost image shows the dendrogram color-coded by cluster 
and histogram of lifetime encased in black box, and the other two 
images show the clusters themselves with the data points. 
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Figure 2: Scale-space density fields at different levels of scale, 
with density mapped to rainbow color. The points indicate the 
locations. The dataset is from a Gaussian Mixture Model (GMM) 


