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Abstract— Low-dose CT is becoming more popular in recent 

years due to growing concerns on radiation exposure in medical 

scans. Regularized iterative CT reconstruction is a promising way 

to overcome the resulting noise and streak artifacts. We have 

recently described an approach that uses non-local means (NLM) 

filters in the regularization step. Traditional NLM filters evaluate 

reference neighborhoods in the current image for filtering. This 

can lead to poor results when the image is severely contaminated 

under very low low-dose conditions. We introduce a method that 

instead uses reference regions in artifact-free priors, that is, 

reconstructions that contain no artifacts but have similar 

anatomical and pathological structures. This requires (i) a 

comprehensive database containing a representative sample of 

possible anatomical, pathological, noise and streak images, and (ii) 

a suitable search+match strategy to locate the contaminated 

micro-feature and links it to its clean counterpart. We find that our 

method performs much better than traditional NLM under these 

adverse conditions, while being computationally efficient. 

I. INTRODUCTION 

Low-dose CT has attracted more attention in recent years since it 

can reduce the radiation exposed to the scanned patients. To 

reconstruct a volume in low-dose CT, iterative methods are 

often applied to obtain a numerically optimized solution. 

However, severe noise or streak artifacts may still persist, 

making accurate diagnosis difficult. To suppress these artifacts, 

regularization is usually incorporated into the reconstruction 

process. One form of regularized CT reconstruction alternates 

the core reconstruction algorithm and the regularization step in 

each iteration step. In previous work [7], we have demonstrated 

the successful application of one neighborhood filter, the 

bilateral filter, as a regularization operator within an iterative 

algebraic reconstruction framework. In more recent work [6], 

we expanded on this idea by introducing (and comparing) a 

wider selection of neighborhood filters. Specifically, we found 

that the non-local means (NLM) filter [1] performs exceedingly 

better because it bases the filtering on redundant areas that exist 

in the image, using a patch-based similarity matching procedure 

to identify relevant pixels. In this context, a patch is a small 

adjacent area around a pixel. 

NLM replaces the value of each pixel px with the weighted 

sum of the values of neighborhood pixels py, whose weights are 

determined by the patch similarity between px and py: 
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Here x and y are pixel locations, Wx is the neighborhood of x, P is 

the patch size of each pixel, t is the index within a patch, Ga is a 

Gaussian kernel and h is the parameter of NLM to control the 

overall smoothness of the filtering. Although NLM works well 

for artifacts suppression in modestly contaminated images, for 

more severe artifacts arising from very few projections or 

extremely low SNR, the regularization effect can still be quite 

limited. This is due to the fact that NLM depends on a high 

degree of redundancy inside an image and takes advantage of 

this redundancy to eliminate noise. However, when the matched 

neighborhood regions are heavily corrupted, the redundancy is 

too poor to be reliable.  

In this paper, we modify the original NLM filter and introduce 

a reference-based NLM (RNLM) filter to take advantage of 

existing artifact-free patches that match the imaged original 

features. In this scheme, the reference images contain no 

artifacts but have similar anatomical and pathological structures 

than the image to be regularized. To find such reference regions, 

we propose (i) the construction of a comprehensive database 

containing all possible anatomical, pathological, noise and 

streak image regions, and (ii) a suitable search+match strategy 

that can locate the contaminated image regions in the database 

and link them to their clean counterparts. Our experiments 

indicate that the method allows even severe artifacts to be 

effectively reduced. 

The paper is organized as follows: Section 2 presents related 

work and background, Section 3 describes our reference-based 

NLM algorithm and its workflow, Section 4 presents results, and 

Section 5 ends with conclusions. 

II. RELATED WORK AND BACKGROUND 

Much work on reference-based filtering has appeared in 

computer graphics. Petschnigg et al used this type of approach 

in conjunction with a bilateral filtering module [3] for digital 

photography. Their work, called Joint Bilateral Filter, uses flash 

and non-flash image pairs to retain good aspects from both 

images for noise reduction, detail preservation and retention of 

ambient illumination. Another application is the colorization of 

grey-level images [4]. Here, a user provides the grey-level image 

to be colorized and a (color) reference image of a similar scene. 

To find the RGB color of a grey-level (target) pixel, the 

algorithm then searches the grey-level converted reference 

image for pixels with similar grey-level neighborhoods than the 

target pixel and then chooses the original color of the best 

matching reference pixel. In our proposed scheme, the reference 

images are a set of artifact-free medical images and the 

converted images used for patch matching which are these same 

images but degraded by some measurable artifact model. The 

artifact-free feature counterparts are then retrieved and used for 
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Fig. 1.  Matching procedure (only one 

patch is shown in each image for ease of 

illustration).  The red dot is the central 

(target) pixel of the yellow dashed 

window, which is the neighborhood 

area the filter operates on; the other dots 

and squares (purple, green, cyan) 

denote a pixel and its patch in the 

(original, converted reference, 

artifact-free reference) image. 

 

regularization. 

In the CT reconstruction literature, Yu et al. [9] proposed the 

PSRR method which replaces regions in a low-dose CT 

reconstruction with their embodiments in a normal-dose CT 

reconstruction, when unchanged. The NLM filter relaxes the 

need for registration as it (i) performs the registration on the fly 

via its patch-based search mechanism and (ii) utilizes features at 

a much smaller scale, exploiting the potentially large number of 

redundancies that might exist there. On the other hand, Kelm et 

al. [2] describe an approach that reconstructs volumes at two 

different thicknesses, from the same acquired projection data. 

They reconstruct the thicker slices at higher SNR, while the 

thinner slices have lower SNR. We extend this method to 

high-quality imagery not necessarily acquired simultaneously.   

III. METHODOLOGY 

Our method uses a set of artifact-free reference images R and 

their converted images C containing similar artifact types and 

distribution than the input image I. We call a reference image 

and its converted image a reference image pair. To obtain the 

reference image, a comprehensive population of common CT 

anatomical and pathological images is required. Further, to 

obtain the corresponding converted image a simulation must be 

performed to generate in the reference image every possible 

artifact type that may appear in the input image. This imagery 

then forms a comprehensive database D comprising both the 

clean reference images and every artifact-corrupted image.  

A. The Reference-Based NLM (RNLM) Filter 

Like the NLM, the RNLM works within a local neighborhood 

and computes the individual weight for each pixel inside this 

neighborhood as this pixel’s contribution to the central pixel. 

However, there are two modifications (see Fig. 1). First, for 

NLM, the weight computation is based on the similarity between 

patches from the same input image I (comparing the red and the 

purple patches), while for RNLM, the central patch is still from 

input image I but the other patches are from the converted 

reference images C (comparing the red and the green patches). 

Second, the RNLM is a weighted sum of neighborhood pixels 

inside the reference image R (cyan dot in the reference image) 

and not from the input image I. Finally, the RNLM could have 

several reference image pairs to increase the effective 

patch-searching range. Formally: 
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where x and y are pixel positions, Wx is the neighborhood of x, P 

is the patch size of each pixel, RP is the set of reference image 

pairs, i and t are index of corresponding set, Ga is a Gaussian 

smoothing kernel and h is the parameter to control the overall 

smoothness of the filtering.  

We choose the converted image instead of the clean reference 

image for patch matching since the latter would increase the 

patch difference, resulting in a much smaller weight after the 

exponential function is applied. By simulating the artifacts in the 

reference image we obtain a much more realistic comparison in 

the matching stage. Our results indicate that this strategy is well 

chosen. 

We note that in our scheme RP also includes the input image, 

but only when the denominator of (2) is very close to zero. This 

occurs when the neighborhood size is not big enough to contain 

similar patches than the central patch, which is quite rare. In that 

case, RNLM degenerates to normal NLM.  

In (2), the pixel and neighborhood positions are directly taken 

from the input image. Therefore, image alignment or registration 

should be performed in advance. For now, we have employed 

image slices that were adjacent to the target image and so this 

step has been omitted. In fact, when the neighborhood is big 

enough, a rough alignment is sufficient to perform the patch 

matching. Future work will extend our current 

(proof-of-concept) framework in this direction.  

B.  The Database 

First, suitable reference image pairs must be identified by 

matching the input image in the database D. A typical database is 

shown in Fig. 2. In this paper, we consider only two artifact 

types commonly appearing in low-dose CT – streak artifacts due 

to too few projections in a full viewing range (180˚) and noise 

due to low-dose projections. Therefore, the corresponding 

database is three-dimensional with each of anatomic feature, 

streak and noise taking up one axis. More artifact types could 

also be added according to the specific configuration of the data 

generation.  

In this database, along the anatomic axis only ideal images 

which are artifact-free and generated with a full number (180) of 

projections are listed (green strip in Fig. 2). This axis contains 

every related anatomical image on hand. These ideal items are 
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Fig. 2. A three dimensional database D for matching the input image: The 

anatomic axis (green strip) contains only ideal images which are artifact-free, 

generated with the full number (180) of projections and is used as reference 

images; the anatomic-streak plane (orange area) contains only streak images 

which are noise-free, and along the streak axis the number of projections 

used for reconstruction decreases so that the streak artifacts increase; the 

remaining space beside the orange plane contains different anatomic images 

with every combination of artifacts; along the SNR axis, the noise level 

increases.  

 

Fig. 4. Pseudocode for the similarity metric for noisy items. 

Fig. 3. Pseudocode for database matching. 

1.  for each noisy item of a selected streak item S 
    Subtract the noisy item from S to get image D 
    for each line of D 
      Compute the absolute mean of the block  
               area around that line  
  A perturbation magnitude spectrum P is obtained 
2.  Subtract the input image from S to get image ID 
     for each line of ID 
    Compute the absolute mean of the block area  
          around that line 
   Obtain the perturbation magnitude IP 
3.  for each line of IP 
    if IP value is within spectrum P 

      Pick the noise level with the closest value  
  else  
      Set the line as ineffective 

4.  Pick the top 10% of the effective lines according to the closest value 
and return the most often selected noise level 

1. for each ideal item 
Compute similarity value VI with input image I 

  Insert into the ordered list according to VI 
    Pick top M items as reference images R 
2. for each reference image R 
  for each streak item of R 
   Compute similarity value VS with input image I 
   Update current largest value 
  Pick the streak item S with the largest VS 
3. for each selected streak item S 
  for each noisy item of S 
   Compute similarity value VN with input image I 
   Update current largest value 
  Pick the noisy item No with the largest VN 
4. Return M pairs of (R, No)  

the reference images used in the RNLM filter. Along the streak 

axis the number of projections decreases from 180 to 20, while 

along the SNR axis the noise level increases from noise-free 

(ideal) to SNR 5. The anatomic-streak plane (orange plane in 

Fig. 2) contains only noise-free images (we call streak items), 

while the remaining space contains noisy items, one for each 

ideal and streak item. Note that streak (noise) items with no 

streaks (noise) are items that apply in the regularization when 

only one of the two respective artifacts is present.  

C. Database Matching 

In our current work, we first find an appropriate reference image 

pair and then perform the regularization for the entirety of the 

target image. Given the (contaminated) input image, our 

reference image pair must satisfy two constraints: (i) the 

reference image must contain similar anatomical features than 

the input image and (ii) its converted counterpart must have 

similar artifact types than the input image. Finding such a 

matched reference image pair is equivalent to do 

high-dimensional space matching. The associated computations 

could be very complicated and time consuming. However, 

because of the special configuration of the database space, 

which is generated from items along the anatomy axis, it is 

sufficient to perform the search + match operation only along the 

yellow arrows in Fig. 2. We devise the search routine as shown 

in Fig. 3 to effectively reduce the computational complexity of 

the matching in terms of the number of loops from O(A∙S∙N) to 

O(A) + O(S) + O(N) to find each reference image pair, where A, 

S and N stand for the number of anatomic (we have not 

considered pathologies in the current work), streak and noise 

configurations, respectively. Thus, along each search direction 

(yellow arrow in Fig. 2) the candidate items only differ from 

each other in one aspect – the structural difference for ideal 

items, the streak difference for streak items and the noise level 

difference for noisy items. This allows for efficient similarity 

comparison. 

D. Similarity Metric 

The choice of similarity comparison metric varies with image 

type. For ideal item comparison, since the items are artifact-free, 

regardless of the type of input image, the structural differences 

dominate the similarity evaluation. Therefore, any common 

image evaluation metric (RMS, CC, etc.) works well. Similarly, 

for the comparison of streak items, which are noise-free and 

structurally similar to the input image, the streak level difference 

dominates the evaluation.  

However, using this same metric will make the comparison 

fail to find the similar noise level items. We expect a metric to 

evaluate the noise level as the magnitude of perturbation around 

the ideal image profile, while common metrics would boost such 

difference and end up suggesting noise-free items. To obtain the 

appropriate perturbation magnitude description, since we know 

the noise-free items of these noisy candidates, subtracting the 

noisy from the noise-free items will reveal the level of noise 

contained in each noisy item. So we perform the comparison as 

Fig. 4. For step 2, although the input image and the streak item 

are anatomically quite similar to one another, the subtraction not 

only reveals the noise level but also inevitably keeps the effect 

from structural difference. To eliminate such unwanted side 
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                       (a)                               (b) E-CC: 0.48                           (c) E-CC: 0.69                        (d) E-CC: 0.76                          (e) E-CC: 0.78                         

Fig. 7. Target images: (a) perfect, (b) low-dose reconstruction; Regularization results: (c) traditional NLM, (d) reference image-based using the perfect 

reference images for matching (e) reference image-based using the target artifact-matched reference images for matching. 

 

 

 
Fig. 5. One of two reference image pairs matched from the database (left: 

perfect, right: target artifact-matched low-dose reconstructions. 

 

    Ideal   30   25    20    15      10      5   Input Ideal    30   25     20    15    10     5   Input 

Fig. 6. The spectrum for mean magnitude of noise perturbation for the selected 

streak item under all noise levels: the left shows all lines of the images while 

the right shows only effective lines; from column 1 to 7 the noise level 

increases, while column 8 shows the mean magnitude of noise perturbation for 

the input image. 

effects, we discard (in step 3) the line out of the range of the 

magnitude spectrum as one dominated by structural differences, 

and right after that (in step 4), we pick only the top 10% 

suggested solutions. 

IV. RESULTS 

We tested our algorithm using the NIH Visible Human brain 

(size 256
3
). To generate the database D, we first picked 

representative image slices from the volume to represent various 

anatomical items. Then after simulating the projections of each 

slice, we chose different numbers of projections (180,120, 90, 

60, 45, 30, 20) and noise levels (noise-free, SNR 30, 25, 20, 15, 

10, 5) in the projections to generate a complete database of 

corrupted and uncorrupted CT reconstructions using the 

OS-SIRT 5 reconstruction algorithm [5]. A new slice was 

chosen from the brain volume, 30 X-ray projections were 

simulated, noise with SNR 12 was added, and an OS-SIRT 5 

reconstruction was performed. This (target) image is shown in 

Fig. 7b, along with its non-corrupted counterpart in Fig. 7a.  

Using the database matching we obtained 2 reference image 

pairs (SNR 10 with 30 projections and SNR 10 with 20 

projections, respectively). One of these pairs is shown in Fig. 5. 

To determine the noise level of these, the magnitude spectrum 

was evaluated (plotted in Fig. 6). Using the two reference image 

pairs, we regularized the target using traditional target 

image-based NLM (Fig. 7c), RNLM using the perfect reference 

images for matching (Fi. 7d), and RNLM using the target 

artifact-matched reference images for matching (Fig. 7e). All 

NLM use a 7×7 window and optimized parameter settings. We 

observe that RNLM is clearly superior to NLM, and that 

matching the target artifacts brings additional significant 

improvements (see for example, the locations pointed to by the 

three arrows). Each result is also evaluated by a perceptual 

quality metric E-CC (edge-based correlation coefficient) [8] in 

Fig. 7. In terms of computational performance, RNLM is similar 

to NLM, and with GPU acceleration its runtime is around 0.1s 

for a megapixel image. There is constant overhead for the 

indexing, while the database matching is a preprocessing step. 

V. CONCLUSIONS AND FUTURE WORK 

We have extended NLM-filtering for regularization in an 

iterative CT reconstruction framework to reference image-based 

NLM filtering, where the reference image is another artifact-free 

image with similar anatomical features than the target. Future 

work will generalize this procedure to a pixel- or region-based 

matching approach, involving more than two reference-image 

pairs for regularization. This affects mostly the anatomy and 

pathology dimension. For the latter, we also plan to enrich the 

database with specific pathologies. Finally, we also plan to 

incorporate rough registration for better window placement.  
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