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Abstract

The order in which the projections are applied in the Algebraic Reconstruction Technique
(ART) has a great effect on speed of convergence, accuracy and the amount of noise-like arti-
facts in the reconstructed image. In this paper, a new projection ordering scheme for ART is
presented: the Weighted Distance Scheme (WDS). It heuristically optimizes the angular dis-
tance of a newly selected projection with respect to an extended sequence of previously applied
projections. This sequence of influential projections may incorporate the complete set of all
previously applied projections or any limited time interval subset thereof. The selection algo-
rithm results in uniform sampling of the projection access space, minimizing correlation in the
projection sequence. This produces more accurate images with less noise-like artifacts than
previously suggested projection ordering schemes.

1. Introduction
The Algebraic Reconstruction Technique (ART) is often preferred over Filtered Backproje
(FBP) methods for the 2D (3D) reconstruction from projections when the projections are sp
noisy, or non-uniformly distributed [1]. Routine clinical CT does not usually suffer from these c
ditions, and thus the faster FBP methods are used exclusively in this setting. However, thes
ditions do exist in other medical imaging applications. For instance, reconstruction from noisy
data has shown promising results [2]. In addition, ART, and other iterative methods, have en
great interest in recent years due to their ability to incorporate into the reconstruction proce
proper model of the projection process, as is needed in SPECT (see e.g. [3]). Certain cons
such as object shape and non-negativity, can also be imposed. This proves helpful in some
type CT applications such as 3D angiography [4].

In ART, the object to be reconstructed is embedded in a regular discrete 2D (3D) pixel grid
reconstruction problem can then be formulated as a system of linear equations:

(1)

whereN is the number of grid pixels andR is the total number of projection rays. WithM projec-
tions andRm rays per projection,R=Rm·M. Thevj are the sought after values of the grid pixels, th
ri are the magnitudes of the rays in the acquired projection images, and thewij are the weight factors
that determine the amount of influence that thejth grid pixel has on theith ray. The weight factors
depend on the way the grid pixels are modeled. While some researchers represent the pixel

wij vj⋅
j 1=

N

∑ r i= 1 i R≤ ≤
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a board of solid squares, others model the grid as a field of overlapping interpolation kernels
ing some functionh. In the former case, awij is simply given by the fractional overlap area of th
ith ray with thejth pixel. In the latter method, which is also the one we advocate, awij is computed
as the line or strip integral that is produced by the intersection of theith ray with the kernel placed
at the location of thejth pixel.

In the case of sparse projection data, equation system (1) may be underdetermined (i.e.,R<N); But
even ifR≥N, which is usually the case in PET, SPECT, and CT, the solution by inversion met
is hampered both by the size of the equation system and the inconsistencies caused by the i
noise in the acquired projection data and the approximate description of the weight factors.
a method devised by Gordon, Bender, and Herman [5] is commonly used: Iteratively, for eac
jection image ray (selected in a certain order), the grid is projected, the projection is compare
the corresponding ray value in the acquired projection image, and a correction term is com
and backprojected onto the grid. Ideally, each backprojection updates the grid to correspond
closely to the acquired projection data. The iterative process is terminated when some error o
vergence-rate threshold is reached. It was shown by Andersen and Kak [6] that noise-like ar
in the reconstruction can be reduced if the grid is corrected only once per projection image a
for every projection ray. This discovery gave rise to SART (Simultaneous ART), an algorithm
we have adopted for our implementation as well. The SART procedure of updating a pixelvj by the
weighted contribution of all raysri that are part of the current projection imagePϕ can be captured
by the following equation:

(2)

wherek is the number of the new state of the grid andλ is therelaxation factortypically chosen
within the interval (0,1]. A correction step can be made reasonably fast since efficient increm
table-based methods are available that reduce the terms being summed in equation (2) to
table-lookups [7]-[9]. Note, that for the remainder of this article, an iteration constitutes a sequ
of grid corrections in which all available projections are utilized exactly once.

Due to the problems associated with the linear equation system (1), many solutions may exi
thus the goal of ART to converge to the solution that represents the closest approximation
object function from which the projection images were obtained. In this respect, it has been k
for quite some time (see e.g. [10]) that both the quality of the approximation and the rate of
vergence of the iterative reconstruction procedure depends, among other factors, on the o
which the projections are selected for grid correction.

A number of researchers have pointed out [11][12] that it is desirable to order the projectio
such a way that subsequently applied projections are largely uncorrelated. This means that c
utively applied projections must have significantly different angular orientations. Indeed, it is

v j
k( ) v j

k 1–( ) λ

r i w inv n
k 1–( )

n 1=

N

∑–

w in
n 1=

N

∑
----------------------------------------------

 
 
 
 
 
 
 

w ij
r i Pϕ∈
∑

w ij
r i Pϕ∈
∑

--------------------------------------------------------------------------+=



4

s, one
new

e the

utively
lobal

ion all,
n into

ring
d Dis-
d pro-
those
inally,

projec-

range,

other.
jection
n pre-
ted if

that a
le
d

ses a
he

osed by

van
gave
deter-

heme
so be
itive to recognize that if subsequently selected projections are chosen at similar orientation
tends to overly bias the reconstruction with respect to that viewing angle without adding much
information to the grid. Clearly, doing so prolongs the time for convergence and may also driv
approximate solution away from the desired solution.

While all previously proposed ordering schemes take great care to space far apart consec
chosen projections, they somewhat neglect the problem of optimizing the selection in a g
sense. It is the argument of this paper that in the process of selecting a newly applied project
or at least an extended history of, previously applied projection orientations must be take
account and weighted by their time of application.

In the following section, we give a brief overview of previous work on projection access orde
methods. Then, in Section 3, we present a novel projection ordering method, the Weighte
tance Scheme (WDS), which heuristically optimizes the angular distance of a newly selecte
jection with respect to the complete sequence of all previously applied projections (including
applied in the previous iteration) or any continuous, time-wise adjacent subset thereof. F
Section 4 gives a numerical comparison of our method with respect to previous methods.

2. Previous Work
In order to minimize correlation in projection access it seems advantageous to arrange the
tions such that (Postulate 1):

a. a series of subsequently applied projections is evenly distributed across a wide angular
b. at no time is there an angular range that is covered more densely than others.

All of the existing methods tend to be strong in one of the two aspects, but weaker in the
However, none of the previous methods comments on how one should proceed with the pro
selection at iteration boundaries. It is clearly necessary to also include projections applied i
vious iterations into the selection process. A smooth transition between iterations is warran
the selection scheme is continuous across iteration boundaries.

DenotingM as the total number of projections in the set and0≤j≤M-1 to be the number of projec-
tions already applied, Hamaker and Solmon [13] demonstrate in a fundamental treatment
“good” permutationτ of the ordering of theM projections is obtained when the minimum ang
among (τ(l)-τ(k))⋅180˚/M, 0≤l≤j, 0≤k≤j, l≠k is maximized for eachj. Postulate 1 could be regarde
as a more heuristic interpretation of this finding.

Many implementations have used a fixed angle for projection spacing: SART, for example, u
constant angle of 73.8˚ whenM=100. For mostM there is, however, no fixed angle that satisfies t
criterion of maximizing the minimum angle for all 1≤j≤M-1.

An alternative method that uses variable angles between subsequent projections was prop
Herman and Meyer [11]. It is based on the prime number decomposition (PND) ofM. This method,
however, requires thatM be non-prime. The same authors also refer to work performed by
Dijke [14] who concluded that, among all schemes he tried, a random projection permutation
the best results. However, we may prefer an ordering scheme that is more controllable and
ministic than a random number generator.

More recently, Guan and Gordon [12] presented, what they termed, the Multilevel Access Sc
(MLS). This method works best when the number of projections is a power of 2, but can al
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used, with minor modifications, in the general case. The following description is for the simple
of M being a power of 2: First, for level one and two, the method chooses the projections at 0
45˚, and 135˚. All subsequent levelsL=3, ..,log2M contain2L views. The projection order at leve
L is computed by simply going through the list of all applied projections at levelsl<L and adding
M/2L to their projection index. This method clearly covers all angular regions evenly over time
may not always maximize the angle between subsequent projections.

Fig. 1a shows, forM=30, the obtained permutation of the first 15 selected projection views w
the scheme of PND is applied. Fig. 1b shows the permutation for the MLS method under the
conditions. We observe that PND tends to cluster the projections around certain viewing direc
This may not be advantageous in light of our earlier comments with regards to an even spr
the applied projections around the reconstruction cycle. As expected, the MLS method gene
permutation that conforms more closely to this criterion.

3. The Weighted Distance Projection Ordering Method
We now introduce a permutation scheme that seeks to enforce both parts of Postulate
designed to maintain a large angular distance among the whole set of used projections wh
venting clustering of projections around a set of main view orientations. The method selects
the pool of unused projections, that projection that optimizes both the angular spacing an
spread with respect to the complete set or a recent subset of all previously applied projec
views. Hereby it takes into account that more recent applied projections should have a st
influence in the selection process than projections that have been applied earlier in the reco
tion procedure.

The algorithm implements the permutation of the projection ordering as a circular queueΘ. The
lengthSof Θ depends on how much of the projection access history is to influence the sele
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Fig. 1. Projection order permutationτ for M=30 projections. For illustrative purposes only the first
15 ordered views are shown. The height of a bar corresponds to a view’s place in the order
sequenceτ (For instance, in (a) projection 5 is applied as the third projection after view 0 and view
15). The graphs shown are for: (a) Prime number decomposition (PND), (b) Multilevel acces
scheme (MLS).
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process. Since due to the decaying weighting function the influence of early projections dimin
to insignificance over time, early projections can be replaced by later ones inΘ as time evolves. In
our implementation, we choseS=M: A projection’s influential power fades to zero afterM more
projections have been selected. Note, however, that the number of influential projections
sented byS can be chosen arbitrary large.

The projectionsPi, 0≤i≤M-1, are assumed to be equally spaced by an angleϕ=180˚/M in the inter-
val 0≤i⋅ϕ<180˚. The first projection inserted intoΘ (at positionΘ[0]) and applied in the reconstruc
tion procedure is always the projection at orientation angleϕ=0˚, i.e.P0. A list Λ is maintained that
holds theL projections not yet used in the current iteration. At the beginning of each iteration,Λ is
filled with all M projections. When a projectionPi is selected fromΛ by our selection criterion, it
is removed fromΛ and inserted intoΘ. Insertion can occur within two phases: the initial fillin
phase ofΘ and the update phase ofΘ. Let Q denote the number of projections currently inΘ. In
the filling phase,Q<Sand subsequently used projections are added to consecutive positionsΘ.
In the update phase,Q=SandΘ now functions as a circular queue: The oldest projection inΘ is
overwritten by the newly selected projection and ceases to influence the selection process. S
2 for an illustration of the algorithm in pseudo-code.

We now describe the objective function used to select the next projection fromΛ (i.e., the routine
SelectProjection() in Fig. 2): First, for eachPl in Λ, 0≤l<L-1, the weighted meanµl of the “repulsive
forces” exerted ontoPl by the projectionsPq in Θ, 0≤q≤Q-1,Θ[q]≠Λ[l], is computed. Therepulsive
force is considered a measure of how close one projection is to another, it decays linearly
increasing distance between two projections. A smaller repulsive force results from a larger
ing of two projections. The minimal distance of two projectionsPl andPq is given by:

. (3)

The weighted mean of the repulsive forces acting on a projectionPl, denoted byµl, is given by:

(4)

InitCircularQueue(Θ);   /* circular queueΘ is initially empty */

while not converged
FillProjectionPool(Λ);   /* all projections are available (again) */

for i = 1 ... M
P=SelectProjection(Λ,Θ);    /* select a projectionP from Λ based on the distance to all

previous applied projections in queueΘ */
RemoveFromList(P,Λ); /* P is removed fromΛ and no longer available for this iteration */

AddToEndOfCircularQueue(P,Θ);    /*P goes at the end ofΘ, the oldest item in
Θ falls out ifΘ is full (Q = S) */

ApplyProjection(P);    /* perform grid projection and backprojection forP */

Fig. 2. Pseudo-code to illustrate insertion/removal of projections into/from circular queueΘ and
list Λ within the basic framework of ART.

dlq Min l q– S l q––,( )=

µl wq S 2⁄ dlq–( )⋅
q 0=

Q 1–

∑ wq
q 0=

Q 1–

∑⁄=
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where a weight factor . The weighting ensures that projections applied m
recently have a stronger repulsive effect than projections applied earlier in the reconstructio
cedure.

However, using the distance criterion alone does not achieve the goals of Postulate 1.
observed that a newly selected projection could minimize the distance criterion by being ver
tant to some projections inΛ, but at the expense of being very close to others. This circumsta
lead to a situation where projections were selected from one of several clusters in a cyclic fa
a condition we strived to avoid. In order to eliminate the large distance fluctuations that gav
to this behavior we added a second measure to be minimized: the weighted standard devia
the distancesdlq, :

(5)

Here is the average distance ofPl to thePq. Maintaining a small of the projec-
tion distances prevents projections from clustering into groups of angular viewing ranges.

We then normalize theµl to a range of [0,1]:

(6)

The normalized standard deviations  are computed from the  in a similar fashion.

Finally, we select that projection Pl∈Λ to be applied next that minimizes the weighted L2-norm:

. (7)

Experiments indicated that a factor of 0.5 to weigh seemed to yield the best results for a
range ofM.

4. Results
Table 1 gives the projection access orders for all six ordering schemes discussed in the pr
sections (M=30): Sequential Access (SAS), Fixed Angle at 66.0˚ (FAS), Prime Number Decom
sition (PND) [11], Random Access (RAS) [14], Multilevel (MLS) [12], and Weighted Distan
(WDS).

In order to compare all presented methods with regards to Postulate 1, we define a discr
space that is spanned by the projection index number and the projection access time instanc
space, called the Projection Access Space (PAS), is “sampled” by the projection ordering me
in a N-rooks fashion, i.e., no line and column can be sampled twice since the tuple (proje
index, access time) is one-to-one and onto. Fig. 3 shows the sampling patterns for the six pro
ordering schemes forM=30.

wq q 1+( ) Q⁄=

σl

σl wq dlq dl–( )
2

⋅
q 0=

Q 1–

∑ wq
q 0=

Q 1–

∑⁄=

dl dlq Q⁄∑= σl

µ̃l

µl M– in µk( )
Max µk( ) Min µk( )–
-------------------------------------------------=

0≤k<L-1 0≤k<L-1

0≤k<L-1

σ̃l σl

Dl µ̃l
2

0.5 σ̃l
2⋅+=

σl
2
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By visual inspection, FAS, PND, MLS and WDS all seem to have a fairly uniform sample di
bution. However, to capture the quality of the distributions in light of Postulate 1 in a more q
titative way, a descriptive metric is needed. Part a) of this postulate calls for a uniform distrib
of the sample points in PAS. We measure this property by sliding a square box across the
counting the number of sample points inside the box at each box position, and computing the
dard deviation of all counts. If all areas are equally sampled then the standard deviation sho
small. We performed this analysis forM=30, 80, and 100, respectively. The sliding square box w
dimensioned to capture about 10% of the samples on the average. Thus the box sizes were×10
for M=30, 25×25 forM=80, and 30×30 forM=100. Part b) of the postulate was designed to prev
the clustering of projections around a few angular ranges. We evaluate this property after h
the projections (i.e.M/2) have been applied. For this purpose, we slide aM/2×4 sized box along
the vertical direction of the PAS, aligned to the left PAS border. Ideally, all boxes should hav
equal number of applied projections in them (i.e., 2). Again, we count the number of incide
within each box and compute the standard deviation of all counts. A larger standard devia
evidence for an uneven distribution caused by clustering.

SAS FAS PND RAS MLS       WDS

0 0 0 3 0 0
1 11 15 24 15 15
2 22 5 7 8 25
3 3 20 2 22 7
4 14 10 1 4 19
5 25 25 15 19 1
6 6 1 0 11 12
7 17 16 10 26 23
8 28 6 27 2 5
9 9 21 29 17 17

10 20 11 6 9 28
11 1 26 13 24 10
12 12 2 19 6 21
13 23 17 20 21 3
14 4 7 26 13 14
15 15 22 22 28 26
16 26 12 4 1 8
17 7 27 25 16 18
18 18 3 5 7 29
19 29 18 8 23 6
20 10 8 28 5 24
21 21 23 9 20 13
22 2 13 12 12 2
23 13 28 21 27 20
24 24 4 16 3 11
25 5 19 14 18 22
26 16 9 17 10 4
27 27 24 23 25 16
28 8 14 18 14 27
29 19 29 11 29 9

Table 1.   Projection access orders for all six ordering schemes (M=30).
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The results of this analysis are listed in Table 2. We see, while PND performs well with resp
projection access uniformity, it tends to cluster projections into angular groups. On the other
MLS tends less to clustering (except forM=80), but exhibits inferior projection access uniformit
Table 2 also shows that WDS behaves equally well in both categories, access uniformity an
ter-freeness, where it is better or at least as good as any other method investigated.

Finally, we tested all projection access schemes on the low-contrast Shepp-Logan phan
described in [15] and shown in Fig. 5. 80 projections of 128 rays each were computed analy
from the mathematical description of the ellipses that make up the phantom. In the reconstr
procedure,λ was set to a fixed value of 0.30 and an interpolation kernel based on the Bessel-K
function was used. Multidimensional Bessel-Kaiser functions have many desirable properties
as fast decay for higher frequencies, tunability, and radial symmetry, as is described in [16]
(Referring to the nomenclature of [17], our function kernel has a radius of 2 pixel lengths, an
m=2 to ensure a continuous derivative at the function borders, and a taper parameterα=10.80 to
force the kernel’s frequency spectrum to a minimum at the sampling frequency.)

For estimation of the reconstruction error we use the normalizedroot mean squared error measure
[10]:

(8)

Fig. 3. Sampling patterns in projection access space for the six projection ordering schem
(M=30). In all plots, the time coordinate runs from left to right, while the projection index runs from
bottom to top.

SAS FAS PND

RAS MLS WDS

error oi vi–( )2

i 1=

N

∑ oi o–( )2

i 1=

N

∑⁄

1
2
---

=
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Here,oi is the value of pixelvi in the original Shepp-Logan phantom. This error is plotted in F
4 for all six permutation schemes (M=80) for a) the entire head and b) the region around the
small tumors in the bottom half of the phantom (see Fig. 5). We would also like to compar
various methods in terms of the level of the noise-like reconstruction artifacts. For this purpos
compute the variance within the union of two circular regions to the right and left, respective
the two brain ventricles (i.e., the dark elliptical structures in the head center, see Fig. 5). The
cular regions are homogeneous in the original phantom. The variance is plotted in Fig. 4c
ordering methods.

The behavior of the selection process at iteration boundaries was as follows: While SAS,
PND, and MLS apply their previous access order anew (which is probably the strategy used
respective authors), RAS clears its list of used projections and chooses the next projection
dom, thus generating a different access order for each iteration. WDS by design generates a
ent access sequence in every iteration as well, however, with the additional constraint of o
fit with regards to the previous sequence. At this point it should also be mentioned that
authors (such as [18]) linearly increase the relaxation factorλ from a small value at initial projec-
tions to a larger fixed value for use in later grid corrections. To eliminate the effects of yet an
variable in the comparison process, we chose to use a fixed value ofλ throughout the reconstruction
procedure. Herebyλ=0.3 was found to have the best convergence properties for all access ord
schemes.

For the full head section, all five non-sequential ordering schemes reach their minimum er
about the same time, (i.e., at the end of the fourth iteration). However, this error is smalles
WDS. Hence, even though WDS does not provide a faster convergence to its minimum-erro
tion, the solution is more accurate compared to the solutions obtained with the competing me
at all iterations (at least until the overall error increases again). Although the difference in er
rather small for the full head section, it is considerably more significant for the isolated tumor
This could be viewed as evidence that by using WDS small object detail can be better reco

Table 2. Standard deviations of box counts for three projection set magnitudes (M=30, 80, and 100)
to measure projection access uniformity and clustering. (The fixed angle used in FAS forM=30, 80,
and 100 was 66.0˚, 69.75˚, and 73.8˚, respectively.)

Projection
access
scheme

Access uniformity Access clustering

M=30 M=80 M=100 M=30 M=80 M=100

SAS 3.251 8.224 9.859 0.333 0.216 0.195

FAS 0.650 0.808 0.905 0.133 0.075 0.066

PND 0.600 0.694 0.733 0.115 0.071 0.063

RAS 1.316 2.124 1.983 0.156 0.107 0.103

MLS 0.721 0.720 0.758 0.094 0.087 0.063

WDS 0.600 0.704 0.700 0.094 0.064 0.058
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It is also interesting to note that all ordering schemes reach their error minimum for the tumo
about one iteration later than for the full head section. We further observe that images produ
WDS have the least amount of noise-like reconstruction artifacts, with RAS being the closest
petitor.

Fig. 6 shows the reconstruction results obtained after three iterations using the various pro
ordering schemes. Even though the numerical results are to a great extent visible in the imag
would like to note that, for the human vision system, larger numerical error does not always
late to a more visible artifact. For instance, larger random noise is much more gracefully tole
by the human eye than a small but periodic noise pattern such as ringing. From Fig. 6 we o
that, apart from SAS, which after 3 iterations is far from reaching its minimal error, FAS and P
have considerably more reconstruction artifacts than MLS, RAS, and WDS. The artifacts are
noticeable with RAS and WDS, while the contrast for the small tumors is best with MLS and W

5. Future Plans
Even though the results for the simulated sparse datasets are promising, further research is

Fig. 4. Reconstruction errors for Shepp-
Logan phantom (80 projections of 128 pix-
els each, 128×128 grid): (a) Entire head seg-
ment, (b) Area with the three small tumors
only, (c) Reconstruction noise.

(a) (b)

(c)
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to investigate if the method and its principles offer the same advantages also for real-life da
such as noisy PET or SPECT data, projection sets that are distributed non-uniformly in
(including the limited-angle problem [18]), and very sparse datasets with 40 projections and

It would also be interesting to investigate the effect of incorporating knowledge about the s

Fig. 5. Original Shepp-Logan phan-
tom with circled areas indicating the
regions in which the error measure-
ments were performed: RegionsA
were used to evaluate the level of
noise artifacts,B is the region in
which the reconstruction error for the
three small tumors was measured.A

B

Fig. 6. Reconstruction of the Shepp-Logan phantom after 3 iterations on a 128×128 grid using 80
projections of 128 rays each andλ=0.3 for the six projection schemes.

SAS FAS PND

MLS RAS WDS
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and dimensions of the object into the selection process. Our test object was fairly circular in
which yielded a uniform correlation among the projections. Had the object been more elonga
shape, this would may not have been the case. Although in medical application most objects
as the heart or brain, are fairly spherical, in industrial settings this is far less the case.

6. Conclusions
We have presented a new projection ordering scheme for ART: the Weighted Distance S
(WDS). It heuristically optimizes the angular distance of a newly selected projection with res
to an arbitrary-length sequence of previously applied projections. WDS exhibits more uniform
jection access space sampling than existing methods and delivers more accurate reconstr
Especially, fine detail is more faithfully recovered and the degree of noise-like reconstruction
facts is smaller. Both of these features are important as they reduce the chance of ambigui
both the clinician and computerized image analysis systems.

Acknowledgments

The authors would like to thank the anonymous reviewers for their constructive comments
project was partially supported by the National Science Foundation under grants CCR-921
and by DARPA under grant BAA 92-36.

References

[1] A.C. Kak and M. Slaney,Principles of Computerized Tomographic Imaging. IEEE Press, 1988.

[2] S. Matej, G.T. Herman, T.K. Narayan, S.S. Furuie, R.M. Lewitt, and P.E. Kinahan, “Evaluation of task-orie
performance of several fully 3D PET reconstruction algorithms,”Phys. Med. Biol, Vol. 39, pp. 355-367, 1994.

[3] D. Ros, C. Falcon, I Juvells, and J. Pavia, “The influence of a relaxation parameter on SPECT iterative
struction algorithms,”Phys. Med. Biol., no. 41, pp. 925-937, 1996.

[4] D. Saint-Felix, Y. Trousset, C. Picard, C. Ponchut, R. Romeas, A. Rougee, “In vivo evaluation of a new s
for 3D computerized angiography,”Phys. Med. Biol, Vol. 39, pp. 583-595, 1994.

[5] R. Gordon, R. Bender, and G.T. Herman, “Algebraic reconstruction techniques (ART) for three-dimens
electron microscopy and X-ray photography,”J. Theoret. Biol., vol. 29, pp. 471-482, 1970.

[6] A.H. Andersen and A.C. Kak, “Simultaneous Algebraic Reconstruction Technique (SART): a superior im
mentation of the ART algorithm,”Ultrason. Img., vol. 6, pp. 81-94, 1984.

[7] K.M. Hanson and G.W. Wecksung, “Local basis-function approach to computed tomography,”Applied Optics,
Vol. 24, No. 23, pp. 4028-4039, 1985.

[8] K. Mueller, R. Yagel, and J.F. Cornhill, “Accelerating the anti-aliased Algebraic ReconstructionTechn
(ART) by table-based voxel backward projection,”Proceedings EMBS’95 (The Annual International Confe
ence of the IEEE Engineering in Medicine and Biology Society), pp. 579-580, 1995.

[9] S. Matej and R.M. Lewitt, “Practical considerations for 3-D image reconstruction using spherically symm
volume elements,” IEEE Trans. Med. Img., vol. 15, no. 1, pp. 68-78, 1996.

[10] G.T. Herman,Image Reconstruction from Projections: The Fundamentals of Computerized Tomography. New
York: Academic Press, 1980.

[11] G.T. Herman and L.B. Meyer, “Algebraic reconstruction can be made computationally efficient,”IEEE Trans.
Med. Img., vol. 12, no. 3, pp. 600-609, 1993.

[12] H. Guan and R. Gordon, “A projection access order for speedy convergence of ART: a multilevel schem
computed tomography,” Phys. Med. Biol., no. 39, pp. 1005-2022, 1994.

[13] C. Hamaker and D.C. Solmon, “The angles between the null spaces of X rays,”J. Math. Anal. Appl., vol. 62,
pp. 1-23, 1978.

[14] M.C. van Dijke, “Iterative methods in image reconstruction,”Ph.D. Dissertation, Rijksuniversiteit Utrecht, The



14

unc-
Netherlands, 1992.

[15] L.A. Shepp and B.F. Logan, “The Fourier reconstruction of a head section,”IEEE Trans. Nucl. Sci., vol. NS-
21, pp. 21-43, 1974.

[16] R.M. Lewitt, “Alternatives to voxels for image representation in iterative reconstruction algorithms,”Phys.
Med. Biol., vol. 37, no. 3, pp. 705-715, 1992.

[17] R.M. Lewitt, “Multidimensional digital image representation using generalized Kaiser-Bessel window f
tions,” J. Opt. Soc. Am. A, vol. 7, no. 10, pp. 1834-1845, 1990.

[18] A. H. Andersen, “Algebraic Reconstruction in CT from Limited Views,”IEEE Trans. Med. Img., vol. 8, no.1,
pp. 50-55, 1989.


	The Weighted Distance Scheme: A Globally Optimizing Projection Ordering Method for ART
	Klaus Mueller1, Roni Yagel1,2, and J. Fredrick Cornhill1,3
	1. Introduction
	(1)
	(2)

	2. Previous Work
	Fig. 1. Projection order permutation t for M=30 projections. For illustrative purposes only the f...

	3. The Weighted Distance Projection Ordering Method
	Fig. 2. Pseudo-code to illustrate insertion/removal of projections into/from circular queue Q and...
	. (3)
	(4)
	(5)
	(6)
	. (7)

	4. Results
	Fig. 3. Sampling patterns in projection access space for the six projection ordering schemes (M=3...
	Fig. 4. Reconstruction errors for Shepp- Logan phantom (80 projections of 128 pixels each, 128¥12...
	(8)
	Fig. 5. Original Shepp-Logan phantom with circled areas indicating the regions in which the error...
	Fig. 6. Reconstruction of the Shepp-Logan phantom after 3 iterations on a 128¥128 grid using 80 p...


	5. Future Plans
	6. Conclusions
	[1] A.C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging. IEEE Press, 1988.
	[2] S. Matej, G.T. Herman, T.K. Narayan, S.S. Furuie, R.M. Lewitt, and P.E. Kinahan, “Evaluation ...
	[3] D. Ros, C. Falcon, I Juvells, and J. Pavia, “The influence of a relaxation parameter on SPECT...
	[4] D. Saint-Felix, Y. Trousset, C. Picard, C. Ponchut, R. Romeas, A. Rougee, “In vivo evaluation...
	[5] R. Gordon, R. Bender, and G.T. Herman, “Algebraic reconstruction techniques (ART) for three-d...
	[6] A.H. Andersen and A.C. Kak, “Simultaneous Algebraic Reconstruction Technique (SART): a superi...
	[7] K.M. Hanson and G.W. Wecksung, “Local basis-function approach to computed tomography,” Applie...
	[8] K. Mueller, R. Yagel, and J.F. Cornhill, “Accelerating the anti-aliased Algebraic Reconstruct...
	[9] S. Matej and R.M. Lewitt, “Practical considerations for 3-D image reconstruction using spheri...
	[10] G.T. Herman, Image Reconstruction from Projections: The Fundamentals of Computerized Tomogra...
	[11] G.T. Herman and L.B. Meyer, “Algebraic reconstruction can be made computationally efficient,...
	[12] H. Guan and R. Gordon, “A projection access order for speedy convergence of ART: a multileve...
	[13] C. Hamaker and D.C. Solmon, “The angles between the null spaces of X rays,” J. Math. Anal. A...
	[14] M.C. van Dijke, “Iterative methods in image reconstruction,” Ph.D. Dissertation, Rijksuniver...
	[15] L.A. Shepp and B.F. Logan, “The Fourier reconstruction of a head section,” IEEE Trans. Nucl....
	[16] R.M. Lewitt, “Alternatives to voxels for image representation in iterative reconstruction al...
	[17] R.M. Lewitt, “Multidimensional digital image representation using generalized Kaiser-Bessel ...
	[18] A. H. Andersen, “Algebraic Reconstruction in CT from Limited Views,” IEEE Trans. Med. Img., ...



	The Weighted Distance Scheme: A Globally Optimizing Projection Ordering Method for ART
	Klaus Mueller1, Roni Yagel1,2, and J. Fredrick Cornhill1,3


