
1

Abstract— In recent years, GPUs have become an increasingly

popular tool in computed tomography (CT) reconstruction. In

this paper, we discuss performance optimization techniques for a

GPU-based filtered-backprojection reconstruction implementa-

tion. We explore the different optimization techniques we used

and explain how those techniques affected performance. Our

results show a nearly 50% increase in performance when com-

pared to the current top ranked GPU implementation.

Index Terms—GPU, FDK, CUDA, Computed Tomography

I. INTRODUCTION

GPU-accelerated CT reconstruction has been demonstrated as

a fast and practical solution for medical and industrial CT. One

of the most popular reconstruction methods is the FDK algo-

rithm [1] which can provide high-resolution reconstruction

results. The FDK algorithm consists of two stages, filtering

and backprojection, in which backprojection is the most time

consuming part. There has been widespread coverage of re-

search on high performance backprojection algorithms

[2][3][4][5][6][7]. However, until recently, there has not been

an effective way of comparing CT reconstruction implementa-

tion performance. Thanks to the great efforts made by Rohkohl

et al. [8] who created the RabbitCT platform [9] as a standard-

ized framework of comparing CT implementations, such un-

dertakings can now be easily accomplished. Using RabbitCT,

it is possible to evaluate the performance of different CT back-

projection implementations. In this paper, we focus our efforts

on GPU-optimization and we take advantage of the RabbitCT

platform to benchmark the performance. The experimental

results show that our fully optimized GPU implementation has

the fastest speed comparable to other implementation’s results

shown in the website ranking.

In this paper, we begin in Section II by discussing the relat-

ed work and giving a brief description of the GPU architecture.

In Section III, we describe how we approached the problem.

In Sections IV, V, and VI we present three major configura-

tions that we implemented. Section VII shows some of the

optimization techniques tried. Section VIII presents results

and Section IX concludes our paper.

II. RELATED WORK AND BACKGROUND

The first attempt to use graphics hardware for CT reconstruc-

tion has been by Cabral et al [10] using filtered backprojection.

Eric Papenhausen, Ziyi Zheng and Klaus Mueller are with the Computer

Science Department, Stony brook University, Stony Brook, NY 11777 USA

(phone: 631-632-1524; e-mail: {papenhausen, zizhen, mueller}@

cs.sunysb.edu).

Mueller and Yagel implemented [11] iterative reconstruction

algorithms on graphics hardware. Both of these two works

were based on the texture mapping suite resident in non-

programmable high-end SGI workstations. Later with the de-

velopment of a new generation of programmable GPUs, Xu

and Mueller [12][13] demonstrated GPU-accelerated CT re-

construction and had vast speedups, with respect to their CPU

counterparts. With the recent development of GPU architec-

tures into main stream multiprocessors, the GPU has unleashed

its computational power such that it is no longer restricted to

graphics applications (or applications that have to mimic

graphics applications), extending their use to general purpose

applications. Scherl et al [2] implemented CT reconstruction

with the new general purpose computing API, CUDA. CUDA

API helped researchers to notice that CT reconstruction on

GPU is a memory-bounded rather than computational-bounded

problem. Square-type [4] and line-type [5] decomposition have

been explored to optimize memory bandwith. Zheng and

Mueller [3] addressed the optimization of cache usage. Jia et al

[7] implement iterative reconstruction method based on solv-

ing minimization problem in CUDA.

Modern GPUs follow the “Single Instruction, Multiple

Thread” (SIMT) model of parallel execution. This method of

execution is ideal for the back-projection algorithm we imple-

ment. A C-like API called CUDA (Computer Unified Device

Architecture) is used to program the NVIDIA GPUs.

The GPU used in our experiments was the NVIDIA Ge-

Force GTX 480. This graphics card has 15 streaming multi-

processors; each containing 32 cores. Its theoretical computing

power is approximately 1.3 TFLOPS. This GPU, like all mod-

ern GPUs, has off-chip memory and on-chip caching mecha-

nisms. Off-chip memory, also known as device memory, in-

curs hundreds of cycles of memory latency and is often the

bottleneck of a GPU accelerated application. Off-chip memory

includes global, texture, and constant memory. However, tex-

ture and constant memory can be cached, replacing the hun-

dreds of cycles of latency with only a few cycles of latency for

the on-chip cache. The GTX 480 has a peak memory band-

width of 177.4 GB/s for its 1.5 GB DDR5 device memory.

It was important that any access to global memory be per-

formed in a coalesced fashion. A coalesced memory access

implies that multiple memory locations are returned in a single

access. A coalesced memory access will occur when all the

threads in a warp access consecutive memory locations.

Execution of a task by a CUDA kernel is organized into

thread blocks. Thread blocks are organized into a grid. The

GTX 480 can have a maximum of 1024 threads / thread block.

GPU-Accelerated Back-Projection Revisited:

Squeezing Performance by Careful Tuning

Eric Papenhausen, Ziyi Zheng and Klaus Mueller

2

III. OVERALL METHODOLOGY

Our implementation is loosely based on the work performed in

[4]. We use a voxel parallelism approach in which each thread

block would calculate a section of the three dimensional im-

age. More specifically, each thread computes an array of

voxels in the Z direction as shown in figure 1. After experi-

menting with different thread block dimensions, we found that

a dimension of 16 × 16 × 4 yielded the best performance.

We quickly realized, however, that memory bandwidth was

the bottleneck. We turned our focus to reducing the total num-

ber of global memory accesses. Access to global memory can

take 400 to 600 clock cycles of memory latency. In the naïve

GPU implementation, we have 15 global memory accesses per

kernel invocation. Our fully optimized configuration, however,

only has two global memory accesses per kernel invocation.

We experimented with un-coalesced memory accesses and

found that it reduced performance by up to 60 percent.

IV. NAÏVE CONFIGURATION

The RabbitCT website [9] provided us with a simple CPU im-

plementation of the backprojection algorithm and a dataset

containing 496 projections. We decided to develop a naïve

GPU based implementation so we could see the effects of fur-

ther optimizations. For each kernel invocation, this configura-

tion involved storing both the projection image I, and its corre-

sponding projection matrix A, in global memory.

Figure 2 shows pseudo code for this method. This imple-

mentation has many global memory accesses. There are ap-

proximately four floating-point operations per memory access.

Increasing the number of operations per memory access is crit-

ical in memory intensive applications such is this. In this con-

figuration, we do not fully use all the capabilities the GPU has

to offer. We explicitly wrote code to perform bilinear interpo-

lation. The GPU has a hardware mechanism dedicated to per-

forming interpolation. By performing interpolation explicitly,

we increase the number of registers needed by the kernel. This

led to a decrease in occupancy.

Occupancy is very important when it comes to performance.

The number of threads that can run on a streaming multipro-

cessor determines occupancy. Occupancy is critical in latency

hiding. A high occupancy indicates that many warps fit into a

single streaming multiprocessor. This allows the GPU to hide

latency incurred by memory accesses of one warp, by allowing

another warp to execute. Occupancy has a number of limiting

factors. In our experience, the most common limiting factor is

register usage. Although a high occupancy does not always

lead to an increase in performance, its role in memory inten-

sive programs is critical.

row = blockIdx.y * blockDim.y + threadIdx.y

col = blockIdx.x * blockDim.x + threadIdx.x
FOR k = 0 to L

 x = O_L +col * R_L

 y = O_L + row * R_L
 z = O_L + k * R_L

 w = A[2] * x + A[5] * y + A[8] * z + A[11]
 u = (A[0] * x + A[3] * y + A[6] * z +A[9]) / w

 v = (A[1] * x + A[4] * y + A[7] * z + A[10]) / w

 result = interpolate (u, v)

 result = result / w2

 f_L[k * L2 + row * L + col] += result
END

Figure 2: Pseudo-code for the naïve configuration. The call to “interpo-

late” is the implemented interpolation algorithm from [8].

V. APPLICATION SPECIFIC INTEGRATED CIRCUITS

This configuration addresses some of the issues presented in

Section IV. Our implementation utilizes Application Specific

Integrated Circuits (ASICs) on the GPU for fast 2D texture

interpolation. This is done through the use of texture memory

and constant memory. ASICs are special circuits that are de-

signed for a specific task. In this configuration, we store the

projection image I, in texture memory. Texture memory is

cached, and allows us to take advantage of the GPU’s hard-

ware interpolation mechanism.

Figure 3 shows the pseudo code for this implementation.

We can see that the interpolation method from figure 1 has

been replaced with a call to the tex2D method. This method

performs bilinear interpolation for us.

texture<float, 2> texRef

__constant__ float A[12]

row = blockIdx.y * blockDim.y + threadIdx.y

col = blockIdx.x * blockDim.x + threadIdx.x

FOR k = 0 to L
 result = f_L[k * L2 + row * L + col]

x = O_L +col * R_L
y = O_L + row * R_L

z = O_L + k * R_L

w = A[2] * x + A[5] * y + A[8] * z + A[11]

u = (A[0] * x + A[3] * y + A[6] * z +A[9]) / w

v = (A[1] * x + A[4] * y + A[7] * z + A[10]) / w

 result += tex2D (texRef, (u + 0.5), (v + 0.5)) / w2

 f_L[k * L2 + row * L + col] = result
END

Figure 3: Pseudocode for the ASIC implementation

The use of texture memory and its interpolation mechanism

gave us a large performance increase for a few reasons. First,

the hardware based bilinear interpolation is faster than the user

Figure 1. Voxel-driven method in back-projection.

CUDA

block

Z

XY

3

implemented interpolation from Section IV. Second, this al-

lowed us to free up registers, which led to an increase in occu-

pancy. Finally, since texture memory is cached, memory laten-

cy was only incurred on a cache miss. It is also important to

note that the CUDA based interpolation described in [14], is

slightly different from the method of interpolation of [8]. This

is why we add the coordinates in the tex2D method by 0.5.

We store the projection matrix A in constant memory. Con-

stant memory is also cached and works best when each thread

is accessing the same memory location. The use of constant

memory yielded a significant performance increase; even be-

fore texture memory was used. The use of constant and texture

memory allowed us to reduce the total number of global

memory accesses to two per kernel invocation. This is, howev-

er, a lower bound because each cache miss will incur a global

memory access.

VI. MULTIPLE PROJECTIONS

While examining our implementation from Section V, we real-

ized that for each kernel invocation, a given thread operated on

the same array of voxels. The only difference was in the data

provided by the projection image I, and the projection matrix

A. With this information, we saw an opportunity to further

increase performance by letting the GPU operate on multiple

projections for each kernel invocation.

After some experimentation, we found that passing 4 projec-

tions per kernel invocation yielded the best performance. The

benefits are that this reduces the total number of global

memory accesses as well as the total number of kernel invoca-

tions by a factor of 4. The pseudo code in Figure 4 shows that

there are still two global memory accesses per kernel invoca-

tion; however, each memory access is being used more effec-

tively because we are operating on 4 projections instead of 1.

texture<float, 2> tRef, tRef2, tRef3, tRef4

__constant__ float A[48]

row = blockIdx.y * blockDim.y + threadIdx.y

col = blockIdx.x * blockDim.x + threadIdx.x

FOR k = 0 to L
 result = f_L[k * L2 + row * L + col]

x = O_L +col * R_L

y = O_L + row * R_L

z = O_L + k * R_L

// mapping voxel (x,y,z) to projection 1 and backproject

w = A[2] * x + A[5] * y + A[8] * z + A[11]

u = (A[0] * x + A[3] * y + A[6] * z +A[9]) / w
v = (A[1] * x + A[4] * y + A[7] * z + A[10]) / w

 result += tex2D (tRef, (u + 0.5), (v + 0.5)) / w2.

 //repeat for projection 2 with A[12-23] and tRef2

 //repeat for projection 3 with A[24-35] and tRef3

// mapping voxel (x,y,z) to projection 4 and backproject

w = A[38] * x + A[41] * y + A[44] * z + A[47]
u = (A[36] * x + A[39] * y + A[42] * z +A[45]) / w

v = (A[37] * x + A[40] * y + A[43] * z + A[46]) / w

 result += tex2D (tRef4, (u + 0.5), (v + 0.5)) / w2

 f_L[k * L2 + row * L + col] = result
END

Figure 4: Pseudocode for the fully optimized configuration.

We found that operating on more than four projections led

to significant performance degradation. This is because there is

a decrease in occupancy. We found that the more computations

the kernel was performing, the more registers the compiler was

using. At five projections, the occupancy fell below 0.5. This

offset any performance gains realized earlier in this section.

VII. OPTIMIZATIONS

Many of the optimization techniques we employed yielded

relatively small performance gains. Some optimization tech-

niques yielded no performance gains. The most effective tech-

niques were those that attempted to optimize memory band-

width. In fact, some of the most effective optimizations were

“common sense” optimizations. One such optimization was

simply copying the result from the GPU only after the last pro-

jection was operated on.

Pre-fetching was another important technique we used. The

pseudo code in figures 3 and 4 both employ pre-fetching. The

latency of the read at the top of the loop can be hidden by the

computation following it. The compiler is not sophisticated

enough to determine whether pre-fetching will be an effective

optimization, and so it is up to the developer to make it explic-

it. The naïve configuration of figure 2 does not employ pre-

fetching. With this configuration, there is a global memory

read followed by a memory write. We found that it is usually

best to try and separate memory accesses to give the GPU an

opportunity to hide the latency.

Another effective technique we used was to allocate the re-

sult array, f_L, as page-locked. Page locked memory forces the

operating system to store this data on one contiguous page of

memory. This has the benefit of eliminating the need for page

swaps by the operating system. By allocating memory as page-

locked, memory copies from the device to host, and host to

device, are faster. Page locked memory reduced the total

runtime by 0.8 seconds. It is important to note, however, that

excessive use of page-locked memory will reduce overall sys-

tem performance.

There were optimizations that we tried that gave us no per-

formance benefits. Techniques like loop unrolling and fast-

math were not effective. This is because these techniques focus

on reducing the total number of instructions. Since this is a

memory intensive application, there were not enough instruc-

tions to begin with to hide the memory latency. Any technique

that increases instruction throughput would see little to no per-

formance impact.

VIII. RESULTS

We reconstructed two volumes, 256
3
 and 512

3
. We will show

the runtimes of the various configurations presented through-

out this paper. We will also compare our results to the current

best known implementation from [5]. The experiments were

conducted on an NVIDIA GTX 480 GPU, programmed with

CUDA 3.0 runtime API and with an Intel Core 2 Duo CPU @

2.66GHz. We built the program in 32bit mode.

Table I shows the runtimes of the various configurations we

4

presented. We can clearly see the effectiveness of our ASIC

implementation. When compared to the naïve implementation,

we see a speed up of 2.19 for the 256
3
 volume and a speed up

of 3.9 for the 512
3

volume. The fully optimized configuration

yields a speed up of 1.3 for the 256
3
 volume and a speed up of

1.78 for the 512
3
 volume when compared to the ASIC imple-

mentation. Figure 5 presents an axial slice of the reconstructed

image. We can clearly see the image even though there is some

noise. The error column of table I is the mean squared error

measured in Hounsfield units squared. Our results are com-

pared with the “Gold Standard” results from the RabbitCT

website. The error shown in table I is due to floating point in-

accuracies. More information about how the error is calculated

can be found in [8].

TABLE I

RUN TIMES OF THE THREE CONFIGURATIONS

Configuration Volume
Total

(s)

Mean

(ms)

Error

(HU2)

Speed-

Up
GUPS

Naïve 2563 7.77 15.66 8.04 N/A 0.99

ASIC 2563 3.53 7.13 8.07 2.19 2.19

Fully Opt. 2563 2.71 5.47 8.07 1.3 2.86

Naive 5123 42.6 86.08 8.04 N/A 1.45

ASIC 5123 10.8 21.82 8.07 3.9 5.73

Fully Opt. 5123 6.07 12.25 8.07 1.78 10.2

Figure 5: Axial slice of the reconstructed image.

Figure 6 presents the global memory throughput of the three

implementations described in this paper. We can see that the

fully optimized configuration does not have the highest

throughput. We suspect that the occupancy is to blame for this.

The occupancy for the ASIC implementation is 1, whereas the

occupancy for the fully optimized implementation is 0.66.

However, the techniques presented in Section VI make up for

the decrease in bandwidth by decreasing the total number of

memory accesses.

Table II compares the fully optimized configuration against

the best known implementation of [9]. The table shows that

our optimized configuration is 1.4 times faster for the 256
3

volume and 2.29 times faster for the 512
3
 volume. It is im-

portant to note, however, the difference in hardware. The GPU

we used is about 1.1 times faster than the GPU used by the top

ranked implementation. We estimate that if our implementa-

tions were run on the same hardware, our implementation

would still be about 2 times faster.

Figure 6: Global memory bandwidth for the naïve, ASIC, and fully optimized

implementations.

TABLE II

RUN TIMES OF THE BEST KNOWN AND FULLY OPTIMIZED CONFIGURATIONS

Configuration Volume
Total

(s)
Mean
(ms)

Error
(HU2)

Speed-
Up

Best Known 2563 3.843 7.75 8.071 N/A

Fully Opt. 2563 2.713 5.47 8.071 1.4

Best Known 5123 13.94 28.11 8.078 N/A

Fully Opt. 5123 6.076 12.25 8.078 2.29

IX. CONCLUSIONS

We presented a method and analysis of an FDK based back-

projection implementation. Many of our techniques can be

used in almost any GPU accelerated application. Experimenta-

tion to identify the bottlenecks and trying different methods to

address them was critical in finding the speed-ups.

REFERENCES

[1] L. Feldkamp L. Davis, J. Kress, “Practical cone beam algorithm,” J. Opt.
Soc. Am. A 1 pp. 612–9, 1984.

[2] H. Scherl, B. Keck, M. Kowarschik, J. Hornegger, “Fast GPU-based CT

reconstruction using the Common Unified Device Architecture(CUDA),”
IEEE Medical Imaging Conference, 6: 4464-4466, Honolulu, HI, 2007.

[3] Z. Zheng, K. Mueller “Cache-Aware GPU Memory Scheduling Scheme

for CT Back-Projection,” IEEE Medical Imaging Conference, Oct. 2010.
[4] Y. Okitsu, F. Ino and K. Hagihara. “High-Performance Cone Beam Re-

construction Using CUDA Compatible GPUs,” Parallel Computing,

36(2-3):129-141, 2010.
[5] P. Noël, A. Walczak, J. Xu, J. Corso, K. Hoffmann, S. Schafer, “GPU-

based cone beam computed tomography ,” Computer Methods and Pro-

grams in Biomedicine, 98(3):271-277, 2010.
[6] M. Kachelrieß, M. Knaup, and O. Bockenbach, “Hyperfast parallel-beam

and cone-beam backprojection using the Cell general purpose hardware,”

Med. Phys. 34(4):1474-1486, 2007.

[7] X. Jia, Y. Lou, R. Li , W.-Y. Song W, S.-B. Jiang, “GPU-based fast cone

beam CT reconstruction from undersampled and noisy projection data

via total variation,” Med. Phys. 37(4):1757-1760, 2010.
[8] C. Rohkohl, B. Keck, H. G. Hofmann and J. Hornegger, “RabbitCT---an

open platform for benchmarking 3D cone-beam reconstruction algo-
rithms,” Medical Physics, 36:3940, 2009.

[9] http://www5.informatik.uni-erlangen.de/research/projects/rabbitct/

[10] B. Cabral, N. Cam and J. Foran, “Accelerated volume rendering and
tomographic reconstruction using texture mapping hardware,” in Proc. of

Symp. on Volume Visualization, pp. 91-98, 1994.

[11] K. Mueller “Rapid 3D cone-beam reconstruction with the Simultaneous
Algebraic Reconstruction Technique (SART) using 2D texture mapping

hardware,” IEEE Trans. on Medical Imaging, 19(12):1227-1237, 2000

[12] F. Xu and K. Mueller, “Accelerating popular tomographic reconstruction
algorithms on commodity PC graphics hardware” IEEE Trans. on Nucle-

ar Science, 52(3):654-663, 2005

[13] F. Xu and K. Mueller, “Real-time 3D computed tomographic reconstruc-
tion using commodity graphics hardware,” Physics in Medicine and Bi-

ology, 52(12):3405-3420, 2007.

[14] http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/do
cs/CUDA_C_Programming_Guide.pdf

