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Fig. 1 The interface of our system demonstrating the linked display functionality — the highlighted parts are linked with the chosen area.

ABSTRACT

Contextual layouts preserveetisontext of the data with tleessocié
ed attributes (variables). However, their linear mapping causes er
in the layout— similar datgpointsand variablenodesmay not map to
similar regios and vice versa. In thigaper we first unify thevar-
i s oo e vy o S LBt Mercare Setings m i can i erst 1o Seth it
ond, we propose three algorithmsdistance spaced layout, iterativepo'nts in relationd thew_attnbutes. For examplgn |nvest(_)r might
error reductionand force directed adjustmento reduce the layout want to see companies in context of tire metrics of their stocks,

error of variableso variables, data to variables and data to ,datﬁucrll datshearn_lnlgihper si:arell(cptﬁotek?rntlrﬁsh_rance:lc T.h's |ntvestmc{>r t
respectivelyWe find that he combination of thestareealgarithms wou €n pIck ThoSe Stocks that best it Nis or her INVEstme stra

canyield large improvemestin the layout error and so achieve £9'es. Sgch_operatlons are not SPF’PO”‘?O' by MDSS0/H.
more comprehensive layout. Thirdve decribe an interfae, the Visualization can ba goodmediumto first assestheoverall daa,_
GBC Error Explorerwhich allows users to explore thegror using a here thestock marketandthe_n focus on the_m_arket segment_rn)f !
variety of visuaization schemesombinedwith some interactions. terest—_a class of stocks c!eflned by a cert_deslrapleconstellanon

) ) _ . ) of metrics. There are multiple ways to achieve this. In the method of
Keywords: Visual analytics, gneralizedbarycentric coordinates pagjlel coordinateg], the attributes define theertical axes and the
multivariate data, antextuallayout data pointsform piecewise linear lines going across these axes,
Index Terms: H.5.2 [Information Interfaces and Presentation]: called polylines The invegor would then filter the stocks along his
User Interfaces Graphical user interées (GUI), 1.3.6 [Computer  or her most salient metrics and so isolate the ohestablestocks.
Graphics]: Methodology and Techniqudsiteraction Techniques Anothermethodlays out the data points ihe context of the &
tributes, and we shall refer to them @mntextualdata layouts In
these methods, ¢hattributes form specialodeson the data canvas
where data points that argtronger in certain attributes also come to
rest more closely to these attributaki{oughthere can be significant
errors— see below). Examples dfiese typeof visualizationsare
RadViz[14], Star Coordinatefl0], and Gravi+H15]. In this case
the investor wuld focus on thattribute nodesof greater interest and
look at the data points thear neighborhood. Theinvestorwould
also be able to assess and recogoadlicts in hisor her set of dr
teria. There might be no stocks that éalfill two competing criteria
and so her she would have to make certain traufs.

1 INTRODUCTION
0

Ilgfyﬁerous methods have been described that allow the visualization
e datamatrix. Methods that solely support thgentification of
clusters and their outliers, such rasiltidimensional scalingMDS)

1] or SNE[8] are typically oblivious to thattributesof the data.
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While the contextual layouts acenvenienin that they do nota- to location ambiguities which can be reduced byomering the
quiremuchfiltering (as @posed to parallel coordinates), they requiranchor pointsnanually or algothmically. Gravi++[14] uses a d
other types of interaction, mostly to reduce the errors that result frégnent weighting formula but also spaces the attributes at uniform
the attracter/deflector spridike layout schemg Often data points distances onto an encompassing cirtte Generalized Barycentric
that are not related at all come to rest velgselyto one anothe  Coordinate§13] the enclosing primitive is a general convex polygon.
and moving the attribute points @minteractivefashioncan reduce, GBC was used in visualization research1g]. Finally, even more
but notcompletelyeliminatethis error, at least not igeneral general is the Dst & Magnet systerfil6] which allows one not only

Our work focuses on contextual layout displaysl the errorthey  to move but also adjust the weights of esdepresenting the abii
commit. We find thatthat they are alspecialforms of theGener&  utes.None of these methodsin guarantee that nearby datal vai-
ized Barycentric Coordinatd&BC) plot [12][13]. In the GBC plot, ablespoints are actually nefidpors in highdimensional space
theattributes cortitute the vertices of B-sided polygor{whereD is
the numberof attributes)and thedatapoints are placed iits interior. 3 THEORETICAL CONSIDERATIONS
However, everthe GBC plot does not presengccurate relations [ et'0 () be thedata matrixwith & rows andt columns,
between the data antthe attributepoints and b address this prddm

we describe set of practical algorithms which automatically adjust . wé EE mé
the locations of both data and attribute points such that these rel Ov o E o

tions are bettepreservedFinally, we providean interface hat d-
lows usersto explore thevarious layait errors usingdifferentvisud-  wherethe rows denote the data pointegtcolumns denote thdata
ization schemeaugmenteaith interactions. attributesandc is the data value in tH@h row and@ column.
Our paper is structured as follows. Section 2 presents related wfkthout loss of generality, we assui@e) is normalized to [0, 1].
Section 3 provides theoretical aspects. Sections 4 and 5 describe thg,w et D be thedata points where D is a vector withm data

GBC plots and our variousayout improvementsSection 6 presents points (weshdl simply referto themasdatafrom now on):
an evaluation. Section 7 describesir diagnosticinterface for ja-

rameer tuning Section 8 endthe papewith conclusions. 0 hoMho Q pkiB b
Conversely, letobe thedata attributes (we shall refer to them as

2 RELATED WORK variables from now on).V is a vector witht variables:

The visualization of higldimensional datasets essergiaiollows o o Fo BB R 0 et i

three major paradigms parallel coordinates, scatterplots, and 2D
space embeddings. Since the visualization of-dighensional data whereT is the transpose function.

on a 2D canvas is inherently anglbsed problenthere is no methd  The methods weliscussechbovemapdata and variables into 2D
without drawbacks. Parallel coordinatesd its radial version, the layoutspace. Weshalldenoted andv as theidocations respectively
star plot[2], have the least ambiguity in the 2D mapping process and

the serialization of the high dimensiorsgdace into the parallelxis 3.1 The Space of Contextual Layout Methods

configuration allows all attributes to be seen at once. However, the

. . T Table 1. The features of different layout methods
overplotting of polylines can become a significant problem once the

number of data points grows even moderately large. Method VKU) MF(0)
Scatterplots suffer less from overplotting, but the projectipea- ] i . Q. .71 () .
tion can lead to ambiguities as points located damy in high Radviz |0 i m'z@“ CDEQ—I— B o °
dimensional space may project to similar 2D locations. Assembling U
all possible axisligned scatterplots into a scatterplot mafdk or Star @- | 0 i AT-Oh DEF o0
supporting the projections by an interactive view manipulatien sy | ordinates Or gther ¢
tem[12] can help but both require effort to naviga&milar to the . — o
star plot, he method of star coordinatfk)] arranges theattribute Gravit+ V] i AT-Oh DEF B 1 o
axes in a radial fashion but instead of constructing polylines it plots ¢ ¢ )
. L . . Or other free layout D
the data points as a vector sum of the iiligl axis coordinates. — —
Howeverthe locationsof the data pointgre not unique ando an Dust& | 0 i AT-OhH DEL S d W
interactive interdice is providedhat allows usersto manually rotate Magnet S G
L . Or other free layout
and scale axes to resolve ambigujteseast partially. — — -
Many of the ambiguityproblems can be overcome by embedding GBC ) i AT-Oh OB ) N
the highdimensional space onto a 2D canvas \&aigableoptimiza- Or oth G | G B
tion drategy (MDS, tSNE, etc.)which seeks topreservethe high r ofher convex po yg(:n -
— B — — ¢“ . i stands for the

dimensionaldistances- or the statistics- of all pointpairs in the 2D o SR i
layout. In this way the viewer can easily appreciate neighborhogd Remarks | strengthmultiplicator of 0 . ¢ is the attraction
relations and obtain a good overview of the space quickly. However between dustand magnej i is the circle adius
as mentionedthis method also has shortcomingthe mapped data
points no longer maintain anyiwtext with the attribute asthis in-

formation is typically not preserved in the mtmear mappingWe the outwardperipheryof the data poirg providing contextln order

also useoptimization for the 2D layout but retaihis context. - ; e ;
- to unify theminto acommon frameworkwe need a unified notation
Our methodgeneralizesystems that arrange the nodes repteser) : - )
. . .~ to.describe themie consider two factorg1) the layout methodor
ing the attributes along a convex shape and lay out the data pomtt%ln

S X ! . € variablesvertices ® "Pand (2) the datamapping functiord "Q
the interior of this shape. RadMid] uniformly spaces the attnbutesshown for all methods ifiable 1.

as dimensional anchorsalong the circumference of a circle. The For VE a circular layoutis most common and so, for this paper
| ion of th ints is then rmin ighting formul ’ . ; . o
ocation of the data points is then determined by a weighting formula only consider tls type of arrangemerfior thevariables Thet "O

where data point attributes with higher values receive a hig . . ) -
weight and so increase the attraction of the point to the cormspo nction, on the othe_r hand, useshghtly different forms of weghts_
0 computethe variablenode locations. The mapping concept is

ing anchor points. However, similar $tar coordinateghis canlead

We argued thaRadviz, Star CoordinateBust & Magnet and Gra-
vi++ are similarin thatthey all arrange the varides as verticesin



Cars dataset— 392 cars with7 attributes.

Sales ampaign dataset— 600 datdtemswith 10 attributes
Bike dataset— daily count of rental bikei a capital bike share
system with 1889 instances (data) and 16 attribuesmiables).

The GBC layouts for thestataset ae shownin Fig. 9 ().

identical — all apply a linear functior- just some methods perform 1.
normalizationand others do not. 2.

While the GBCas described ifiL2] is moreflexible in that it syp- 3.
ports generalized polygonse use it as the standaonfiguration—
a polygonembeddednto a circle-to describe the othéayout alg-
rithms The GBC ploton an equilateral polygon is essentidRgdviz

We beginwith this plot andgeneralize to dters. 5.2 Distance Spaced GBC Plot Layout (DGBC)

[ ]
Distance L
Layout

4 THE GENERALIZED BARYCENTRIC COORDINATES (GBC) PLoOT

The GBC plot is derived from GBC interpolatifi®] which extends
the method obarycentridnterpolation

from triangles to multvertex convex

polygons. The task is to interpolate the

value of an interior poinP from the P

values stored at the polygon vertiegs

Referring to Fig. 2, the interpolation

weightw; of vertexy; for P is: a

B
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Fig. 2 The GBC Plot.
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The interpolated valuBv atP is:
00 B

|

Fig. 3 Distance Spaced Layout Pipeline
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The GBC plot uses GBC interpolation in reverse fashion. It seeks to
compute the position d® in a convex polygon in which each vertex

is assigned to one of the attributes. This repl&wdsy the 2D vector

P, and they, by the 2D coordinates of the attribute vertices. We then
set the weights to be the values of thdimensional vectomorma-

Algorithm. 1 Distance Based Layout.

ize them to compute th®, andfinally use the 2D coordinates of the | Input; The distance matrix (V1)
attribute vertices to interpolate the 2D coordinat®.oThis mecla- Output: The variables locationsv
nism is somewhat similar to RadViz, but in place of springs it us 1: V=TSP(VV // Reorder the variablesg s the circle
the weightdo determine the point locations. 2: sumEB  "OGfy /1 layout neighbour of .
4.1 The Distance Matrix ij ;:))rs .,QQGQC?
The GBCplot canshow the distansof data to data, data to variable w8 e g x ws e a h-
and variable to variabl&@he combination of distance matrices is 50 we'QABE QNN
6 OO dw o 6: endfor

where’O'Q ‘O wandw astore the pairwise distance of data points 7: for"Q pc // Lay out the variables around the circle
data pontsto variablesand variablesespectively 8 U i a0EME QaQ

As mentimed, there are various measuvesich aresuitable to 9: 0 id ade QaQ
express distancéVe would like to choose thEuclidean Distance 10: endfor

for DD. For DV, it is good to use the value at this dimensionwHo —— - )
ever, we shouldise 1-value since distance andalue haveopposite We begin withthe’O . The variables are arranged around the circle
meaning For VV, we wouldpick 1- correlation Let "Obe the set of — this type of layout mapshe data from high dimension @edi-
DistanceMetrics, then mension.One way to achieve this sy projectingthe distance &
5 5 5 trix into 1D usng MDS. However we cannot guarantehis method
'O 06 wa " 0MOinE @t olddp wei i Qa wE)JQEgrovides a good orderingince MDS becomesincreasinglyerror
prone as thdistance matrix increases.
4.2 GBC Layout Error Another andnore direct way tabtainalinear ordering of the ve
The GBC plot can show thdistance of data to data, data to variabletices on the polygmal hullis by arranging the verticethrough an
and variable to variable, thus the error also combines thiese t approximate Travelin@alesman ProblenfTSP)solverthatopeates

types. We denot®as the errgrwhereO ,'O andO represent
the error of data toala, data to variable andgariable to variable
respectivelyiO is the overall error of the GBC mappingor more
detailsabout the definitionsee ®ction6. In addition,there isalso
the error resultingfrom the GBClayout itself We will discuss how
to deal withthis kind of error irSection?7.

5 Our GBC EXTENSIONS FOR MORE ACCURATE LAYOUTS
As discussedthe GBC plothaserros—O ,'O andO . To reduce

the errorwe firstanalye each typ of errorreduce them separately,

andthen combinghese reduction effectsgether to reduc® .

5.1 Test Datasets
We chose the following datsetsto demonstrateur algorithms:

on the matrix of pairwis correlationdistance among the variables

It would choo® the minmum lengthedge as the start edge and keep
adding thenearest variables to the endpoirfiSP has been succes

fully employed to determine a good axis ordering for parallel doord
nates[18]. The application for the current casesimilar — it also
usesthe similarity of variables (expressed as correlationptovide

an ordering (on the convex hull), but now we also space them apart
according to this similarityalue.

We place all attribute vertices on a circle, ordered by the distance
based TSP solver and spaced apart by the pairdigtances. The
process idllustratedin Fig. 3 and he algorithm isgiven in Algo-
rithm 1. Fig. 9 (secondcolumn)shows the outcome of this exper
mert for the three datasets we testéde observe a much improved
classseparatiorfor all of them.We alsoobserve from Table 2 that
the error of variable to variable is reduced



5.3 Iterative GBC Plot Error Reduction (IGBC)

Nextwe aim toreduceO . In the GBC plotadata points valuecan
be gaugedy its location- if it is locatedclose toa givenvariable
pointthenit has ahigh valuein the corresponding attributand vice

5.4 Force Directed GBC Plot Adjustment (FGBC)

What emairs is the’'O . We can adjust the locations tife data
points viatraditional MDS to reducethis error. A popular MDS
schemeis force directed layouf7][5][18]. It iteratively displaces

versa.Hence,eachvariable pointhas a set of isaontous where a
dat points valueis constantIn this paper, weestrict ourstudyto

Algorithm. 2. Iterative Error Reduction.

linear contous, but anextensiorto nonlinear contous wouldfollow
similar errorreduction principles.

Our methodseeks to reconstruct an error polygon for each data

point and iteratively redusethesizeof this polygon Fig. 4 provides
an illustration and Algoritim 2 lists thepseudacode.

Input: the distance matrix (DY), the GBC plot £ V), the
error threshold (O ) and maximum iterations (O ).
Output: the data points locations.
1: while O <threshold || O > max-threshold
2: for each data pointP
3: for each variable vertexy;
4: Compute distance contour.
5: Compute error polygon vertexO 0.
6: endfor
7: Construct error polygorEPformed by all the O 0.
8: MovePto the center of ER
9: endfor
10: ComputéO and iterationsO .
11: endwhile

Algorithm. 3. Force Directed Adiustment

Input: the distance matrix (DD, the GBC plot 7, V), the
error threshold O and maximum iterations (O ).

Output: the data pointslocations.

Fig. 4 The error polygon

The first assumptioour algorithm makes is the existence of a set
of distance contours that encode the importance of a variable to
given data point. Suppose we have the variablestices

1: if O <threshold || 'O > maximum, return.

for each data pointD;
Compute the forcé&according to the error.
Compute the resultant fort® B "Q
Compute tteeceleration caused by the force.
Move this data point for some period.

endfor

Compute the erroi0  and iterations O .

2
3
4:
5:
6:
7
8
9: endif

v W and atestdataitem (& Feo fy oo feo ) with its map-
ping location asP. Fig. 4 examines the distance contsdor w.

Assumingthe data itemhas been normalized to a unit vector, the
maximum importance a variable can have is 1.0. This would mean
the case examined that=1.0 and sdP would coincide with) in
the plot. In contrast, if =0.0 which is the minimum importance,
then with the current vertex orderirgywould need to fall on the
edgeb U ,0 U or0 U . Any other value would lead to a placement
of P onto some contour in betweerkig. 4 shows the contour

0000 for®=0.6.1t is constructed by connecting with all
verticesv, and marking the point§ where 00 700 p
1. Connecting these points yields the desired contour.

Next we find0 on the error polygon (marked &s0) by inta-
seding the contour with the line that conneotswith P. Performing

EDV

0.45

0.4

= Car

0.35

= Bike
0.3

Campaign

13 17

1 iterations

this procedure for all variables yields all vertices of the grodygon
(marked as polygoi® VO VO LOVOUV). The iterative step B

Fig. 5 The change of the data to variable error.

cludes by movind® into the center of the error polygomarked as
P3 and then a new iteration begins.

In practice, we iterate about 20 times which completes in a couple
of seconls and so does not cause a significant performance drop. The
result of thisalgorithm for our data set is shownFig. 9 (third ca-
umn). We observe the IGBC schenadéso brings improvements in
terms of cluster separation, but not as strong as DGBC.

The change of error is shown Fig. 5. We observe thaD con-
vergesfor all threetestdata setsBut we also see here (amdTable
2) that ths optimization schemeields largeimprovementsonly for
the car and bike data but nédr the salescampaig data. Thisis
because the campaign datalieadywell distributed(seeFig. 1).

Epp ‘

0.45

0.4

0.35 —Car

= hike
0.3

Campaign
0.25

\

02 iterations

1 5 9 13 17

Fig. 6 The change of the data to data error.




data points until all paiwise distances ithe layout match those in vice versa. There is no clear intuition which order would be hette
high-dimensional space with minimal error. but for all the datasets we tried, the forneder gave better results.

In our particularimplementation, weconstruct a networkvhere We thereforeuse this orde— DGBC, IGBC,andFGBC - and refer
the vertices correspond to the data points thecedges are springs to it as DIFGBC.The final column ofFig. 9 showsthe outcome. We
We thenadjust the locationsf the data pointne by ongseeFig. observe that the layout hasherited improvements from all three
7). Since we haven points,we should fix the othem1 points and schemes, but the effects of DGBC are strongest.
take turns to move one data point. SuppdsB, G D, E arethe (5) Finally, the change atheerror is shown irFig. 8 andTable 2.We
fixed data points an#is thepointwhoselocationwe plan to adjust. can cledy see when DGBC runs, tf@ reduces sharply; then
P hastwo types of distance® thesefive points (1) the high Gc yieldsalarge improvement 60 ; andfinally, FGBC reduces
dimensionalspacedistanceand (2) the 2D laput distances. The theO . We can also observe that whBC and FGBCare run-
e ot OV n S eclonS ung, hey wi somenhatincrease 1N and© _ respecively

: 9 There exists &radeoff —we usually pay more attention to the —

force — either drag or psh-in each vertex direction. We uge, 0, run the IGBC first andthen runFGBC later for small adjustmest

"Q,"Q and"Q to denotethe force vectorsfrom each vertexand the Clearly. th d f th diust ¢ be altered if th
five force vectordogether fom an aggregatdorce in directioiQto early, the order o ree adjustments can be aftered 1t the user
has different priorities odistanceaccuracy.

move 2. The direction of forcéQis sameas the direction ofthe
v rect I rect The'© has higler error thanO and’O since the layout of

error reduction gradienthealgorithmis given in Algrithm 3 ) g ’
variable to variable maps the variables to 1D but the other two maps

The resul of this algorithm for our dataetsare shownin Fig. 9, ) g ]
fourth column, andhe change of error listedin Fig. 6. Weobserve (0 2D. ButO andO are also important they canpreservethe

thatthe data to data error converggable 2 revealthat ths optini-  accuratedata distribution etc
zation schemgields largeimprovements in the data to data error for

the car andthe campaign data but nédr thebike data 6 EVALUATION
To gauge the quality of a layouewisethe normalized stress mniet
8 between), the matrix of lowdimensional distanceds , andd, the
A ; matrix of highdimensonal distance$ :
B
fo ol O ———— (2)
fe We use thisstressmetricto gaugeO ,'0 handO . Each, howe-
P  f er, uses a different distance metric fiset byF in equation (1).
E el
E D 6.1 Datato Data Error
The data to datarroris due to thalifference between the distances
Fig. 7 The force directed adjustment in high-dimensional spacé.) and 2D layout space(C). For L, we
use Euclidian in practice andfor C we useEuclideanas well since
55 Comprehensive Layout (DIFGBC) it is a good measure fothe human perception of distancétow

) . s ) supposethe location ofdata itemO is 0, and&Zis the Euclidean
The previoussectionsdescribed thehree algorithmsD, I, F} GBC  gjistanceWe compute the normalizefdrm of eachdistanceas below
we designedo reducethe three types of erroMow, to reduce the .

overall error, weneed tocombine theninto a single algorithm, {DIF} 6 ~ 'O0HO B "O0HO O 0 0 B A 04

GBC. The problemis to determine the order in which to apply the

three algorithms since they can affect each otinepractice wefix g2 Data to Variable Error

e Y os b 12 The GRC pltusesk = (1 -Valug for € =G, s e coornae
ppIng value of thei™ data point which we write a8OOhc — anda Eu-

duced firg. After running DGBC we have a choice betweentfirs * " . . .
moving the data pointsith respect tahevariable nodes (IGBC) and clidian (type) distance forL. However since the location of the data

then adjusting the data points with respect to each other (FGBC)P8int is defined by the contour it uses OO0 0 to represent

E —0
Error Error rror
I ' ] 1 ] ] ;
| | I i I I —0
L I 1 I 26 [ i (0]
06 11 i 19 1 I 1 1 )
1 \ 1 I 1 1 0
1 i 1 I 1 1
1 " 1 I ] 1
! 1 I | 2 i }
05 | i I 1 1
1 | i I | 1
1 i 13 L I 1 1
1 i | I 1 1
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] I I i
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Fig. 8 The error development over the course of the correction.
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Fig. 9 The GBC error reduction with car data matrix (first line), campaign data matrix (second line) and bike data matrix (third line). The color
shows the k-means clusters [9] in the high dimensional distances. The columns are GBC, DGBC, IGBC, FGBC, DIFGBC in order.

"O0h® , we need to usa scale ratip  for ‘O in the variableb.

| 00 0 "O0h® (3)
Then the real distance and mapped distance cabthamedas

6 | OOl 0 0 U
6.3 Variable to Variable Error

This error use§ = 1 - Correlationfor C. ForL, since he GBC pla-
es the variables arourtlde circle, we can use the arc length meas-
ure the distance between two variabl&@se sum of distance of
neighboing variables around the circlg its perimeter

B 0u ¢ i (4)

wherelr is the neighbor point in theoanterclockwiseof U .

However, in the variabléo variabledistance, we cannotugrantee
that the sum of the neighbor variables distansatisfes condition
(4), so wemustdefineascale rati@ :

I ¢ iB
Then the real and mapping distanesspectivelycan beobtainedas
"Qoho 0 ]

"06 ftb (5)

0 1 U (arc length)
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Fig. 10 The error distribution with (a) the car data, (b) the campaign data and (c) the bike data. Brighter red tones correspond to high value.



6.4 Overall Error

error Vis panel.Finally, the PC line mode enables users to pick the

As suggestedh Section 5.5, users may have different priorities in thiéhe mode of the parallel coordinates.

types ofdistance they try to optimize. Apart from algorithm orele
ing, we can also express these diying different weights to the
three distances. Thaverall erroris thendefined as follows:
O 0 ©O v ©O 0 O (6)
As was alssuggestedn Section 5.5, these priorities dikely O
thenO followed byO and sowesetd ) Car .

6.5 The Error Distribution Display

To give the user an overview tife error distribution we provide a

visualization of it (seeFig. 10). We color eachdata and variable
pointas a function ofts overall errorin this waythe features of the
error distributioncan be easily identifiedzrom Fig. 10, we can see
the data points cloge the center of the GBC plot V®a high error

Table 2. The error reduction table

Error Layout Car | Campaign| Bike

GBC 0.65 2.14 291

(0] DGBC 0.34 0.33 1.62
Reduce | 4% 85% 44%

GBC 0.39 0.44 0.49

(0] IGBC 0.29 0.43 0.35
Reduce | 25% 2% 2%

GBC 0.29 0.4 0.45

(0] FGBC 0.23 0.25 0.43
Reduce | 28% 62% 5%

GBC 0.53 1.41 1.87

(6] DIFGBC 0.3 0.31 1.09
Reduce | 44% 78% 41%

7 THE GBC ERROR EXPLORER
As mentioned before, these types of lagalt suffer from a can-

mon problem- the data overlap errddifferent points have the samet N 7 € e

7.2 The Heat Map Displays

The Distance Heatmap

The heatmapdisplays on the left visualizes the distance matrix-co
ored using the color bar. We providiee three distance matrices
discussed beforeDD, DVand V'V However, to lay them as a unit
block and maintain theymmetry, we would like to add one more
submatrix VD to store the distance of variables to datsame as
DV. Seethe iconon the leftin Fig. 1. We can find thathe data ae
tightly distributed into 3 groupssince we find the three blocks.

The Error Vis Panel

The heat map on the right is the erkis panel. Since the dataam
trix usually has many data items but less variables, it is nm+e i
portant to know the error in tesrof the variables. Thus, our error
Vis panelshows theD andO vertically with the averag€O
and’O ) on the rightborder Seethe icon in theFig. 1. We can
clealy find thedata has higher error with thariable P RO1 ”

7.3 The Parallel Coordinate Display

The parallel coordinate display shows the dataheir dimensions.
We have differentine modes- straight lines can give users a direct
way to see the datavhile curve lines are bettéor the cluttef17].

7.4 Interactions

Our interface provides several types of interactions that manipulate
the layout display. Some of these interactions allow users to &pprec
ate the layout errors directly in thdisplay. Others allow filtering
operations such as zoomin@onsidering the differ@rfeathers of the
data, we apply different technicgi® them

7.4.1 Verification coloring

DistanceColor

Fig. 11 a showsour systerts capability to visualize the true high
dimensional distances with respect to a «s&ected variable (green
box) by intensityshadingall pointsin terms of that distance. An
irregular or adverse shading pattern would point to problems, which
is not the case for the chosen example. can clearly see the car has

t y p efom thd différentrcolay levels

position) This kind of error, to the best of our knowledge, is hard 8,or color

reduce Springview [1] allows fr simultaneously viewing both | jkewise, Fig. 11b shows the poirwise layout error with respect to
Radviz and parallel coordinates for view optimization and clutt§he selected variableeenbox). Here we see that the points in the

reduction We extend this idea arallow users taliscover the error
by combining different visualization method#o a diagnosticpa-
ramete tuning interface we call theGBC Error Explorer(Fig. 1).

Our GBC ErrorExplorer providesan interactive visuaanalytics
interface to provide the desired insighs interfaceandfeatures the
following components: grallel coordinatedisplay, distancéeaimap,
layoutdisplay, error Vis panel anatonfiguration control anel.

The parallel coordinateddisplay providesan overview of the data
to help usersinderstad the datavalues Thedistanceneatmap visu-
alizesthe distancematrix. The layoutdisplayis the main part of our
system- it showsthe layout of the distance matriXhe error Vis
panel visualizesthe error of thelayout. Finally, the configuration
control panel allows users toanipulatehevarious parameters

7.1 The Configuration Control P anel

This control panel containsfive major groups parameter configar
tion, layout node, layout color mode, errovisualizationpanelcolor
modeand PC line moel

Theparameter configuration group allows users tafsetistance
metric for each distance subatrix: Euclidean(E), correlation(C),
value (V). The lyoutmodegroup enables users to chooseldyut
stratey. The layout color moel definesthe color modefor errors

centerseem tchave a larger layout ar than the other points- simi-
lar conclusion we got froriig. 10 (a). But the error is not ovly
dramatic, giverthestill low intensity.

“Accel Accel

. .pf‘;i .Orlgm Origin
-.'.#'

L I 4

MPG

Hpower )Year QHpower Year

Weight Tweight
v,

(@) (b)

Fig. 11 Verification coloring of (a) distance and (b) error.

7.4.2 Linked displays

Our system also supports linked displaysers can select a subset
of the data in onéisplayand see these imther displaysWwhen we

and clustes. The error color mode provides two modes to color thgok at the campaign data matrix in the GBC layout, we find they



distributewell as three clear cluste®ut we might want t&know the

items anddata attributes. We first uméfd the different data layouts

details ofthem SeeFig. 1. We can confirm the yellow group pointsin this class ofvisualizationalgorithms, choosinghe GBC plot as

are close to each othaith similar error(from heatmaps) anthe
variancegfrom parallel coordinat@s

7.4.3 Local layout refinement
The layout can ofteimprove locally if one restricts ito just this

the standardormulation We thenproposé three algorithms- dis-
tance spaced layout, iterative error reductonl force directedca
justment— to reduce theerror. We also develod an irterfaceby
which users caexplore thesrror by combininghe differentvisuai-
zation schemes witimteractions.

region andts correspondindnigh-dimensional subspace. We support In this current work we have focused on contextual layouts in

two types of local refinementsdatacentric and variableentric.

Data-centric refinement
In the datecentric refinement the useiraws a box in the layout

display—such as the green boxHig. 12a— and then only these data

pointsareincluded into a focused layole saw in Fig. 9c thahe
bike datasethaddata points near theenterwith largeerror. We se-
lect this region and lay out only the points insideSieeFig. 13b.
Now theseclustersare muctcleaer andmoredefined.

) =

which the attributes (variables) are arranged at the periphery of the
datapoints. While separating the variables and data points makes for
a structured display, better optimizations might be achievable by
allowing the attribute points to mingle with the data points. This is
subject of current research efforts
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Fig. 12 Data-centric refinement with the bike data matrix. (a) DIFGBC
plot and (b) the new layout using just the points inside the green box.

Variable-centric refinement
Conversely, in the variableentric local refinementusers also draw [6]
a box (see the blue one) into the layout display but now only the
variables inside this box his is essentially a subspassection (see
Fig. 12b). Suppose we wish to know (ftine bike data) if the bikers (7]
areaffected by theemperatureasily Sowe choose a subspaaith
the related variables, suchtasperaturegount causal, etcSeeFig.
13. We find the variablesform three groupsepresentinghe tempe
ature the number of bikandcasual factors respectively

(8]

(9

casual

(10]

(11]

(12]

(13]

(14]

(15]

16
Fig. 13 The variable-centric refinement with the bike data matrix. [16]

8 CONCLUSION (17]
We have presenteda framework that canimprove the fidelity of [18]

contextual data layouts order to better convetherelationsof data

comments that greatly improved the presentation of the work
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