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Fig. 1: Storyboarding and storytelling with the Sales dataset. (a) Original dimension network display laid out by data correlations, along with 
automatically computed optimal route. (b) Linked parallel coordinate display [17] with axis order determined by the route in (a). (c) The user 

zooms into the network (blue rectangle in (a)) and manually specifies a route that seems to best capture the story – the strategic model of win-

ning the most customers (see Section 5 for more detail), (d) Linked parallel coordinate display with updated axes ordering according to the 
route of (c).  
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ABSTRACT 

The navigation of high-dimensional data spaces remains challeng-
ing, making multivariate data exploration difficult. To be effective 
and appealing for mainstream application, navigation should use 
paradigms and metaphors that users are already familiar with. One 
such intuitive navigation paradigm is interactive route planning on 
a connected network. We have employed such an interface and 
have paired it with a prominent high-dimensional visualization 
paradigm showing the N-D data in undistorted raw form: parallel 
coordinates. In our network interface, the dimensions form nodes 
that are connected by a network of edges representing the strength 
of association between dimensions. A user then interactively spec-
ifies nodes/edges to visit, and the system computes an optimal 
route, which can be further edited and manipulated. In our inter-
face, this route is captured by a parallel coordinate data display in 
which the dimension ordering is configured by the specified route. 
Our framework serves both as a data exploration environment and 
as an interactive presentation platform to demonstrate, explain, 
and justify any identified relationships to others. We demonstrate 
our interface within a business scenario and other applications.  
Keywords: Visual analytics, parallel coordinates, multivariate 
data, correlation, network-based, linked displays 

Index Terms: H.5.2 [Information Interfaces and Presentation]: 
User Interfaces - Graphical user interfaces (GUI), I.3.6 [Computer 
Graphics]: Methodology and Techniques - Interaction Techniques 

1 INTRODUCTION 

In the era of information explosion, the ultimate goal for data 

analysts and researchers is to understand the data collected and 
make useful decisions from them. More often than not, the most 
valuable insight comes from intricate inter-relationships among 
data attributes, and extracting these relationships requires skills in 
high-dimensional data understanding. Unfortunately, high-
dimensional space exceeds human comprehension, and so, effec-
tive tools are needed to boost these capabilities. It is well known 
that graphical displays and visualization can show data patterns 
more clearly than can plain text and numbers. However, because 
there is no simple mapping of the multiple dimensions to a two-
dimensional screen, more sophisticated visualization techniques 
than the arsenal of standard plots are needed. 

One display that is often used for high-dimensional data visual-
ization is the method of parallel coordinates [12]. It shows the raw 
data attributes on parallel axes in a sequential fashion. Parallel 
coordinates are good for presenting overviews of the whole, raw 
data set, as well as for showing relationships among the dimen-
sions. However, the ordering of the dimensions in the parallel 
coordinate display has a great impact on the visual relationship 
analysis because the serialization of the data attributes makes it 
difficult to discern inter-dependencies among non-neighboring 
axes. As a result, a good dimension ordering can express inter-
relationships clearly to the users, while poor dimension orderings 
can hide relationships potentially of interest. This has already 
been shown in early work by Bertin [4]. 

In the worst case, users are faced with the task of trying every 
possible axis ordering and remembering their findings along the 
way. Given n dimensions, there are a total of n! possible dimen-
sion orderings. But the situation is probably not as dire as that – if 
we assume that a user can get a good sense of local relationships 
across 4 parallel axes, then we get n!/((n-4)!4!) which for n=10 
amounts to 210 orderings – still a daunting number. 

Hence, what is sorely needed is an effective interface that can 
guide users in the selection of promising dimension orderings. 
Here it is important to note that a number of researchers have 
proposed possibly tunable metrics computed on the data that can 
suggest good dimension orderings a priori [1][8][14][28][29]. 
While this alleviates some of these problems, it does not com-
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pletely eliminate them because there is rarely just one perfect 
dimension ordering. Especially in interactive data exploration 
tasks, which are the core of visual analytics, users should be able 
to freely navigate the space of promising dimension orderings, 
and for this they need a suitable “map” of the data landscape.   

To address these needs, we describe a network-based interface 
coupled with an interactive parallel coordinates view for exploring 
inter-dimensional relationships. It implements the dimension or-
dering interface as an interactive route planner, operating in a 
data-informed network where vertices represent dimensions and 
edges connecting two vertices represent promising dimension 
pairings. Users can change the route via mouse clicks, and the 
interface then computes a new optimized route that includes the 
changed route portion. Other capabilities include multi-resolution 
navigation and zooming of the network display. 

In our paper, Section 2 presents related work. Section 3 gives a 
system overview. Section 4 provides a detailed description of our 
framework illustrated by examples. Section 5 shows its applica-
tion as a platform for interactive story telling with data. Section 6 
has an evaluation. Section 7 offers conclusions and future work.  

2 RELATED WORK 

There are three main strategies to visualize high-dimensional data. 
One may embed the data into a lower dimensional space (1D-3D) 
using methods such as multi-dimensional scaling (MDS) [16][24], 
which is essentially a dimension reduction technique. MDS is 
widely used since it groups similar data items close together, giv-
en some distortion, and so provides a good overview onto the data. 
Its main drawback is that the dimension information is lost. Con-
versely, scatterplot matrices (SPLOM) [11] provide a simple, 
familiar, and clear view of the data distributions. However, due to 
their distributed 2D tiled layout, it can be difficult to discern rela-
tionships that extend across and involve more than two variables. 
Finally, parallel coordinates [12] show the raw high-dimensional 
data points as polylines spanning across a set of parallel vertical 
axes, each representing one dimension. Parallel coordinates unify 
the advantages of SPLOMs and MDS: they can convey all data 
dimensions in a single display, and they also preserve the original 
data dimensions. However, as mentioned, the information that can 
be visually extracted is highly dependent on the ordering of the 
dimensions. Further, clutter of the polyline display also presents 
problems for readability. A number of techniques have been pro-
posed to alleviate the clutter: using free-form curves in place of 
the polylines [10][17][25][30], performing clutter reduction via 
density analysis [18], or using illustrative rendering techniques to 
simplify the display with a more aesthetic appearance [17].  

 The various paradigms can also be integrated. Schmid and In-
terberger [21] combine scatterplot matrices, parallel coordinates, 
permutation matrices, and curve display together. Wong et al. [27] 
combine and link parallel coordinates with scatterplots matrices, 
and Yuan et al. [30] integrate parallel coordinates with scatterplots, 
using MDS to convert multiple axes into a single subplot. 

Dimension ordering in parallel coordinates has been studied for 
quite some time. Many methods do this fully automatically. Insel-
berg and Avidan [13] devise a classifier for both dimension selec-
tion and ordering. Ankerst et al. [1] define a similarity metric 
(either partial or global) that compares two dimensions by the 
RMS distance of all data points, and then optimize an ordering by 
ways of an approximate traveling salesman (TSP) solver – here an 
ant colony optimization. Conversely, Tatu et al. [23] propose a 
similarity-based function based on Hough Space transforms. Jo-
hansson and Johansson [14] define a weighted metric that rates 
dimensions by their importance with regards to correlation, outlier, 
and subspace cluster importance and use this rating to select rele-
vant parallel coordinate dimensions. Similar to Artero et al. [3] 
they then find correlation of dimension pairings to optimize this 

ordering. Dasgupta and Kosara [6] devise several metrics based 
on the appearance of the polyline display to find good dimension 
orderings. Peng at al. [18] determine an ordering that minimizes 
clutter and outliers between adjacent dimensions. Finally, Ferdosi 
and Roerdink [8] order the dimensions according to high-
dimensional structures identified by sub-space clustering.  

A framework that in sprit is more closely related to ours is that 
of Fua et al. and Yang et al. [9][28][29]. They first use hierar-
chical dimension filtering in conjunction with dimension cluster-
ing via Ankerst’s metric, but then allow users to interactively 
navigate the hierarchy to produce a preferred ordering. Likewise, 
we also aim for a framework that couples automated analysis with 
interaction, enabling users to make informed decisions in the or-
dering of the parallel coordinate dimensions. As such, our method 
also uses correlation as a metric to gauge dimension similarity, 
but it differs from existing work by our intuitive and interactive 
network-based framework that allows for easy navigation of the 
correlation matrix defined by the data dimensions. While Qu et al. 
[19] also visualize correlated dimensions in terms of a network 
layout, their system does not support a routing interface for di-
mension navigation, nor does it plot additional informative data 
characteristics on the network, as does our system. Elmquist et al. 
[7] apply Ankerst’s metric to arrange scatterplot matrix tiles into a 
2D gridded layout and then visualize the transition across tiles 
with 3D plots. As such, the grid functions as a map, where the 
routes travel along the horizontal and vertical grid lines.  

Finally, Brodbeck and Girardin introduce the parallel coordi-
nate tree [5] for presenting hierarchical and multidimensional data 
using a tree representation. Our framework also supports interac-
tive multi-scale dimension exploration, but the hierarchy is seam-
lessly integrated into the network display.  

3 SYSTEM OVERVIEW 

Our visual exploration framework uses two coordinated displays: 
a parallel coordinates display and a network display. Operations in 
either display are reflected in the other. The network display pro-
vides an overview of all the dimensions in terms of the pairwise 
correlations, whereas the parallel coordinates display shows the 
raw data with sequentially ordered dimensions.  

In the network display, vertices correspond to dimensions and 
are rendered as filled circles. A vertex’s size is initially deter-
mined by the corresponding dimension’s coefficient of variance, 
but users may interactively resize vertices as desired. The vertices 
are laid out via a mass-spring model in which spring rest length is 
a function of the pairwise Pearson’s correlation coefficient. As 
such, the layout can help users to gain a quick understanding of 
the correlations existing in the data by comparing the distances of 
the nodes representing the variables. On the other hand, the 
placement of the vertices and the edges drawn between them then 
provide the guidance for navigation and exploration. 

An optimal route through the network is computed via an ap-
proximate TSP solver – we use a genetic algorithm – and this 
route determines the order of the dimensions given in the parallel 
coordinates display. It seeks to place strongly correlated dimen-
sions next to each other. This route is set as the default, but users 
can re-route using simple interactive mechanisms for specifying 
which dimensions should be put adjacent. The parallel coordinate 
display changes the dimension ordering in response to user inter-
action in the network. Finally, multi-resolution viewing will only 
show networks involving large vertices. 

The default route computed by the TSP solver is particular use-
ful for novice users not familiar with the overall data scenario. 
They often do not have a clear understanding of all the dimen-
sions and the variables they represent, and thus, given a data set, 
do not know where and how to start the exploration. The automat-
ic ordering seeks to maximize the correlation that the sequential 
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   (a)                                 (b)                                (c) 

Fig. 3: Dimension layout in the Cars dataset via a mass-spring mod-

el. Higher color saturation on edges represents high correlation val-
ues. Green represents positive correlation, while red represents 

negative. (a) Layout with absolute correlation strength; (b) layout 

with positive correlation; (c) layout with negative correlation prefer-
ence.   

 

Fig. 2: The network generation pipeline.  

ordering in the parallel coordinate display could provide. Then 
based on this ordering, users can interactively assign some con-
straints in the network display or directly drag and drop axes to 
change the ordering in the parallel coordinates display manually.  

Finally, we note that the contribution of our work is not the use 
of TSP for automated dimension ordering in parallel coordinates – 
this is a fairly standard solution (see e.g. the early work of [1]). 
Rather, the novel aspect of our work is the network-based route 
planning framework that allows an informed, interactive, and 
user-driven dimension ordering in a visual analytics context.    

4 APPROACH 

In the following we describe the various components of our 
framework and the user interactions they allow. We illustrate each 
facet with examples derived with the following three datasets:  

 Cars dataset [31] – 392 cars and 7 attributes: MPG, #cylinders, 
horsepower, weight, acceleration time, year and origin.  

 Global Seawater Oxygen-18 dataset [22] Error! Reference 
source not found. – 25,476 data points and 8 attributes: longi-
tude, latitude, month, year, depth, temp, salinity, and d18O.  

 Synthetic dataset – 1,000 data points and 25 attributes with 
several attributes that behave very similarly. 

We make use of Pearson’s correlation coefficient in a number of 
ways in our work. Correlation is a statistical technique that can 
show whether and how strongly pairs of variables (dimensions) 
are related. Pearson's correlation coefficient between two varia-
bles x and y is defined as follows:  
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Here, μx and μy are the means, and σx and σy are the standard de-
viations. r ranges from -1.0 to +1.0. The closer r is to +1 or -1, the 
more closely the two variables are linearly related, while r close to 
0 means there is no linear relationship between the two variables. 

The network is then built as follows (see Fig. 2):  

1. Compute Pearson’s correlation for each pair of dimensions.  
2. Layout the points using a mass-spring model. The forces be-

tween dimensions are computed from the correlations – highly 
correlated dimensions will be placed close to one another.  

3. Determine a default route that covers all vertices by solving 
TSP approximately.  

4.1 Network Construction 

The vertices � in the network are positioned using a force-directed 
layout scheme. Vertices correspond to mass points, and graph 
edges are springs. The rest length of a spring is determined by the 
correlation coefficient of the two dimensions represented by the 
spring (i.e., a strong correlation corresponds to a short rest length).  

In the interest of simplicity and efficiency, we employ an ex-
plicit integration method to drive the simulation. The new state of 
the system is determined based on the immediately preceding 
state of the mass-spring network. The accelerations �̈ of the verti-

ces are calculated by �̈ = �/�, where the force �  is computed 
using Hooke’s Law (� = −��), with � being the spring constant 
and � being the displacement of the spring’s end from its equilib-
rium position). The vertices are then moved to their new positions 
by �̇��� = �̇� + �̈���  and ���� = �� + �̇��� , where �̇  denotes a 
vertex’s velocity, subscripts denote time, and �� is the time-step. 
The mass (�) of the points, spring stiffness values, time-step and 
other simulation parameters can be easily determined experimen-
tally so that the simulation remains stable and converges quickly. 
The simulation is allowed to run until the maximal displacement 
of any vertex from one time-step to the next is less than a small 
constant – we chose 0.001% of the rest length of a spring repre-
senting a correlation coefficient of 0 (i.e., the maximum possible 
rest length of any spring). 

4.2 Network Semantics  

The size of a network vertex encodes its significance. In statistics, 
if a dimension variable is more diverse, it is more interesting to 
drill down into. As such it potentially plays a more important role 
in the dataset. We use a diversity measure to encode the signifi-
cance of a dimension. There are several ways to encode diversity, 
such as range, standard deviation, or coefficient of variation. We 
chose the coefficient of variation as the default because it is a 
normalized and comparative measure of dispersion of the distribu-
tion. However, users may choose any of these metrics, build new 
metrics, or alter the significance manually according to expertise. 

The coefficient of variation is computed as: cv = σ / |μ|, where σ 
is the standard deviation and μ is the mean of the corresponding 
dimension. Significance is visually encoded as the vertex radius 
so that more significant dimensions are represented as larger ver-
tices, whereas less significant ones are encoded with smaller radii. 

Conversely, the edge significance is weighted by the correlation 
between the two dimensions linked by the edge. The correlation is 
encoded by color. Green encodes a correlation value of +1 while 
red encodes correlation value of -1, and 50% gray is used to en-
code 0. Linear interpolation computes the colors in between. We 
provide three correlation functions – correlation strength, and 
positive and negative correlation – to help users to comprehen-
sively understand various dimension relationships. Fig. 3 provides 
illustrations using the cars dataset as an example: 

(i) Correlation strength (see Fig 3a): Here the absolute value of 
the correlation is used to compute the rest length. Thus, high cor-
relations correspond to shorter rest lengths. In this way, highly 
correlated dimensions will be drawn towards each other, whereas 
weakly correlated dimensions will repel each other. In the parallel 
coordinate display, these strongly correlated dimensions will like-
ly be arranged next to each other by the TSP router. 
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(a)                  (b)                          (c) 

Figure 4: (a) A tour of the Cars dataset. In the network display, the dimension ordering is given as a series of directed edges color-coded by 

correlation value. (b) Parallel Coordinate display. The dimension triples (Horsepower, Cylinder, and Weight) and (Year, MPG, and Origin) 
are put next to each other in the parallel coordinate display because they are strongly correlated with each other. These strong positive cor-

relations can be seen on the network display also. (c) Correlation display colors the outlines of line bundles (see [17]) in terms of their corre-

lation strength (less saturation maps to lower correlation). We can also discern negative correlations by the characteristic bow-tie shapes.   

(ii) Positive correlation (see Fig. 3b): Here a simple linear 
transformation of the correlation value, (rXY + 1)/2, is used, where 
rXY represents the correlation between dimensions X and Y. Now, 
positively correlated dimensions will tend to be drawn towards 
each other, whereas negatively correlated dimensions will repel.  

 (iii) Negative correlation (see Fig 3c): This is the opposite case 
of the positive correlation preference. Now (-rXY + 1)/2 is used to 
compute the rest length. 

Thus, since the vertices are laid out by functions of correlation, 
depending on which function the user chooses, the user can learn 
quickly which dimension pairs have what type of correlation. For 
example, if vertices are laid out by strength of correlation (abso-
lute value of correlation), then close dimensions have strong cor-
relations while far-away dimensions have weak correlations. The 
edge’s color then reveals whether it represents a positive correla-
tion (green) or a negative one (red). Similar insight emerges from 
the positive/negative correlation-preferred layout. This display is 
helpful since the parallel coordinate display makes it difficult to 
discern correlation information if two dimensions are not adjacent 
to each other – the network view readily solves this problem.  

4.3 Network-Driven Dimension Ordering 

As mentioned, our approach conceives a ordering of the parallel 
coordinates dimension axes by specification of a path in the corre-
lation-based network display. The shortest path covering all verti-
ces is then one that maximizes the amount of correlation exposed 
by the parallel coordinate display. Finding such a path is the well-
known TSP problem. We have chosen a genetic-algorithm-based 
TSP solver since it defines a maximum time bound for computing 
the solutions. Users can modify this time bound to strike a balance 
between performance and accuracy. In our implementation, we set 
the time bound to 1s which makes the system sufficiently respon-
sive for interactive exploration. We found that when the number 
of dimensions n<30 the routing is reasonably accurate. Converse-
ly, although the performance is dependent both on the number of 
vertices and the vertex locations, for n>30 with the given time 
bound of 1s, the solution is sometimes not accurate. Here, accord-
ing to our experiments, an edge-length-based greedy algorithm 
typically produces better results at a much reduced time. We thus 
define a threshold d=30. When n<=30 we use a genetic algorithm 
while for n>30 we run the greedy algorithm.  

Fig. 4a shows a route within the network display of the Cars da-
taset and Fig. 4b shows the associated parallel coordinate display 
with the dimension ordering implied by the route. The experi-
enced reader will notice that the correlations revealed by the line 
structure of the parallel coordinate display are quite similar to 
those visualized by the vertex distances and edge colors in the 

network display. Of course, the latter is much easier to discern for 
less experienced users.  

To aid these inexperienced users in the visualization of correla-
tions also within the parallel coordinate display, we have devised 
mechanisms that add additional illustrative hints. These tech-
niques are inspired by earlier work of a subset of this article’s 
authors [17]. First, a bounding hull of the line bundles is comput-
ed based on the line centers and standard deviations. The differ-
ence now is the bounding hull we use for negative correlated di-
mensions. If two dimensions are negatively correlated, instead of 
using a band-shape, the characteristic bow-tie shape is employed. 
Then the bounding hull is colored in terms of their correlation 
strength where less saturation maps to lower correlation. Fig. 4c 
shows an example for this scheme. We observe that the coloring 
maps nicely to the vertex distances in the network display.     

4.4 Interactions with the Network 

To be effective and appealing for mainstream application, interac-
tions should use paradigms and metaphors that users are already 
familiar with. For this reason, we employ a route planning para-
digm that resembles those found in Web-based, interactive maps.  

Our interface allows users to interactively assign constraints to 
modify the route for data exploration by simple mouse interac-
tions. Such constraints include specifying edges that should to be 
maintained or avoided on the route, as well as vertices that should 
be avoided. If an edge is marked to be included in the path, then 
all paths that do not pass through the edge will be penalized. Con-
versely, if an edge is marked to be avoided, then all paths that 
pass through this edge will be penalized. If a vertex is marked to 
be avoided, then we remove the vertex from the TSP computation. 
Every time a user makes modifications of this nature the TSP 
algorithm is rerun to produce a new optimal ordering observing 
these constraints. Finally, users are also able to specify at which 
dimension the route starts. In this case, the TSP-generated paths 
will contain only those starting with the specified dimension.  

It can sometimes be useful to duplicate a dimension in the par-
allel coordinate display to visualize its interaction with two differ-
ent variable pairs at the same time. We support such orderings by 
allowing users to specify a loop constraint on the TSP path. For 
example, a user might be interested to examine variable 2 with 
variables 1 and 3 but also with variables 4 and 5. One of these 
pairs will then form a loop and the other will be part of the regular 
path. To identify the best configuration we run TSP multiple times. 
In our example, one possible outcome might be that variables 1, 2, 
and 3 are part of the path and variables 4 and 5 form the loop 
centered at variable 3, but the opposite can also be the result. This 
mechanism extends to multiple loop constraints.   
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(a)                      (b) 

Fig. 6: Zooming out in the Network Display of a 25-dimensional syn-

thetic dataset. Representative dimensions (F, P, S) are displayed by 
double lines in the parallel coordinates display (a) and double circles 

in the network display (b). Also, the number of dimensions hidden by 

each representative dimension is given by the small number in the 
upper left corner of its vertex in the network display.  

Finally, users can also modify the significance of the vertices 
via a significance slider. This slider controls the size of the verti-
ces that are taken into account for the routing. Extending the scale 
ignores smaller vertices both in the network and for the auto-
routing. The ignored dimensions will then be removed from the 
parallel coordinate display accordingly. A similar mechanism 
controls the inclusion of insignificant edges – edges with lower 
correlations strengths – into the TSP calculations.  

Fig. 5 shows some snapshots of such an interactive routing ses-
sion, again using the Cars dataset. First, the user enacts the signif-
icance slider to filter out the less significant attributes (the attrib-
ute Year in this case), as shown in Fig. 5a. The user then observes 
that Origin appears to be uncorrelated with (i.e., is distant from) 
the remaining attributes. So he removes it from the route (Fig. 5b) 
to yield a more compact parallel coordinate display (not shown). 
Further, he also observes that Horsepower is highly correlated 
with both #Cylinders, and Weight (but also negatively correlated 
with MPG and Acceleration). In order to see all of these relation-
ships conveniently in the parallel coordinate display he adds a 
loop to the route, interspersing Horsepower between both rela-
tionships and also visualizing the strong 3-way relationship in the 
loop (Figs. 5c and 5d).    

4.5 Multi-Scale Zooming in the Network Display 

As described thus far, our approach readily supports around 20 
dimensions without causing too much clutter in the network dis-
play. This is commonly referred to as multidimensional visualiza-
tion. In order to support a visualization of high-dimensional da-
tasets, both in the network display as well as in the parallel coor-
dinate display, we require a multi-scale framework. We provide 
this functionality via a zooming interface.  

We build a hierarchy of the dimensions for multi-scale zooming. 
This requires a similarity metric. Yang et al. [29] describe an ap-
proach that uses similarity-based metrics to decide whether simi-
lar dimensions should be merged or not. In our work, we use a 
correlation-related metric for this purpose. After mass-spring lay-
out, the distances between pair of dimensions provide a global 
indication of this correlation. Using these distances, we then pro-
vide a zooming experience similar to that offered in popular web-
based map exploration programs. As a user zooms out of the dis-
play, nearby dimensions will merge into one, and as he/she zooms 
back in, the merged dimensions split into the original dimensions.  

When merging close dimensions, a representative dimension is 
needed to represent all of the merged dimensions. There are sev-
eral ways to choose a representative dimension, which is also 
discussed in [29]. In our system, we choose the most significant 
dimension as the representative one, using the mechanisms de-
scribed in Section 4.2. Users can always manually control whether 
to merge or collapse a representative vertex by mouse-clicks. 
Finally, the zooming extends to the parallel coordinate display as 
well – which will also only show the representative dimensions.  

When users zoom into the network display, some of the vertices 
may vanish from the screen, which practically means that users 
are now focusing on the dimensions remaining in sight. The paral-
lel coordinate display will then display only the dimensions re-
maining on the network display to show their neighborhoods at 
greater detail. The dimension order is determined by the TSP 
which considers only the vertices shown on the current display.  

To illustrate this function consider Fig. 6 which uses the syn-
thetic dataset. This dataset has 25 dimensions in total, but showing 
them all will lead to a cluttered network display and a fairly ex-
tended parallel coordinate display (both are not shown). Since 
several dimensions behave very similarly, we can simply use one 
of these as a representative. Hence, in our network display, as the 
user zooms out, similar dimensions merge into one which signifi-
cantly reduces the clutter (Fig. 6b). Likewise, the coupled parallel 
coordinate display shows only the remaining dimensions not ab-
stracted away in the network display (Fig. 6a).  

4.6 Effect of Parallel Coordinate Display Interactions 

Our parallel coordinate display follows the now fairly standard 
practice of allowing users to filter out undefined values in some 
dimension (e.g., the undefined values are set to -999) or only vis-
ualize a subset of the data falling within a certain range interval of 
a dimension. For this purpose, our interface provides brush han-
dles for each dimension (see the little triangle on top and bottom 
of each dimension axis in Fig. 5d) which can be used to bracket 
some portions of the corresponding dimension. This “bracketing” 
prompts the system to filter out the data points that lie outside the 
handles and only display the remaining data points with proper 

            
        (a)              (b)                    (c)               (d) 

Fig. 5: User interaction and constraint imposition for the Cars dataset. (a) Network Display with Year being filtered out by multi-scale zooming. 

(b) The route is edited to avoid unrelated dimensions Year and Origin. (c) Routing with a cyclical constraint. Dimension Horsepower is visited 

more than once, which makes it adjacent to 4 dimensions (MPG, Weight, Cylinders, and Acceleration). The corresponding parallel coordinate 
display is shown in (d), where we can see that Horsepower has been duplicated.  
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(a)                          (b)                 (c)                   (d) 

Fig. 7: The effect of dimension bracketing, using the global seawater oxygen-18 dataset. (a), (b) Parallel coordinate and network display of the 

original dataset with undefined values in dimension depth, temp, salinity and d180. (c), (d) After filtering out the undefined values and bracket-

ing the dimensions. We can now see a strong positive correlation between salinity and d18O (green arrow in (d)), while in the original, unfil-
tered dataset with undefined values, d18O is incorrectly shown not to be strongly correlated with any other dimensions (green arrow in (b)).  

normalization. All data attributes (e.g., correlation, variance) are 
then re-computed based on the remaining data.  

Let us now demonstrate the effect of parallel-coordinate brack-
eting and filtering on the co-linked network display. As shown in 
Fig. 7a for the Global Seawater Oxygen-18 dataset, the original 
dataset contains undefined values (-100) for four dimensions: 
depth, temperature, salinity, and d18O. This significantly influ-
ences the correlation computation – we observe very weak corre-
lations among all dimensions in Fig. 7b. Following, Fig. 7c shows 
the parallel coordinate display after bracketing the four dimen-
sions, filtering out the undefined values and renormalizing their 
bottom axis brackets – they now show the true minimum values. 
We may also call this a zooming operation. We can now readily 
see in the network display (Fig, 7d) that there is in fact a strong 
correlation between dimension salinity and d18O.   

5 USING THE NETWORK FOR STORY TELLING WITH DATA  

The parallel coordinate display provides a sequential view of the 
data. Reading the plot from left to right is similar to reading a 
story from beginning to the end. Of course, just like in parallel 
coordinates, readers of a book or viewers of a movie may skip 
back and forth to recap what has already been seen or peek ahead 
what is yet to come. Directors of movies commonly use story 
boards to organize the shots into a suitable sequence. Here one 
typically aims to arrange a sequence that builds the story in a co-
herent manner, with some sort of climax in the end. With ‘coher-
ence’ one might define that subsequent scenes bear some degree 
of correlation (yet we admit that movies exist that have turned the 
lack of coherence into an art form).  

We propose to utilize our network display as a means for story 
boarding in information visualization with parallel coordinates. 
Our network display provides all needed information and func-
tionality to help visual analysts script insightful and informative 
‘movies’ in parallel coordinates. It reveals correlated shots (i.e. 
dimensions) and it allows automated and manual interactive ar-
rangement of these shots, using the network interaction facilities.  

We shall demonstrate the use of this interface via our sales 
campaign dataset. It consists of 900 data points (one per sales 
person) and 10 attributes: %Completed,  #Leads, Leads Won, 
#Opportunity, Pipeline Revenue, Expected ROI (Return on In-
vestment), Actual Cost, Cost/WonLead, Planned Revenue, and 
Planned ROI. There are three pre-clustered sales teams.  

Before delving into this case we need to review some basics. 
The typical corporate sales pipeline begins with a lead generator 
yielding a number of prospective customers with some level of 
probability to actually close the deal. The leads are fed a low-cost 
stimulus to probe their interest. Upon a positive response these 
leads are called won leads and receive a stepped-up sales pitch, at 
a cost/won lead. If this pitch wins further positive response then 

these won leads turn into opportunities. In practice there are many 
more levels, but this may serve as a sufficient model here.  

As a practical scenario let us imagine a meeting of sales execu-
tives who would like to review the strategies of their various sales 
teams. The data contains three sales teams of a large corporation 
with a couple of hundred sales people in each team. Jim, one of 
the sales strategy analysts begins and constructs Fig. 1a (1st page). 
This display reveals that the #leads, #won leads, #opportunities, 
and cost/won lead are somewhat related. The TSP computes an 
initial route that gives rise to the parallel coordinate display in Fig. 
1b. Jim quickly notes that this route does not really represent the 
actual flow of a lead through the sales pipeline and changes the 
route to #leads → #won leads → #opportunities (not shown). 
Soon after, Kate, another sales analyst in the meeting room, real-
izes from looking at the network display that cost/won lead is 
nearby and has a strong positive correlation with #opportunities 
but also a negative correlation with #won leads. She suspects that 
some insight could possibly be gained from routing these two 
latter variables through the first. So she uses the mouse and de-
signs the route shown in Fig. 1c which gives rise to the parallel 
coordinate display of Fig. 1d. From the parallel coordinate plot it 
is now immediately obvious that the blue team employs a very 
different strategy than the green and the red teams. The blue team 
generates far fewer leads but spends much more resources on each 
which apparently gives it an advantage in the final outcome. It can 
also be observed that the blue team is much more consistent than 
the other teams, as indicated by the much narrower band.  

6 EVALUATION  

We tested two aspects: the accuracy of the dimension ordering 
and the utility and effectiveness of the linked interface. 

6.1 Dimension Ordering 

We have compared our correlation-based TSP-ordering with other 
automatic ordering methods proposed in the literature, and the 
results are presented in Fig. 8. Here we used the synthetic dataset. 
The dataset has 25 dimensions (A,B,C,…,Y) and 1,000 data points, 
and is made purposely to have two subspaces – a 9D subspace 
(A,C,E,F,G,H,R,U,V) with two clear clusters and a 6D subspace 
(D,I,J,L,M,P) with three clear clusters (as shown in Fig. 8d and 
8e). All others are noise dimensions. Fig. 8a shows the original 
ordering, and Fig. 8b uses the clutter-based ordering [18]. Though 
some of the structure can be observed (most noise dimensions 
tend to be next to each other and the presence of subspaces is 
apparent), the general structure is not clearly shown. Fig. 8c is 
using Ankerst’s method [1]. The two subspaces are well captured, 
but the noise dimensions are split into two parts.  The structure of 
the dataset is best represented in Fig. 8d, which is generated by 
Ferdosi’s SBF dimension ordering [8]. The two subspaces and the 
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noise dimension are well separated. Fig. 8e is obtained by our 
TSP-based approach. We observe in that the result is quite com-
petitive with the SBF method, although the dimension orderings 
within the subspaces are different for each of the two methods. It 
appears that the TSP-based approach leads to dimension orderings 
in which the cluster values of adjacent dimensions change in a 
more linear fashion – compare the paths of the center cluster in 
the second subspace (blue window) in Fig. 8d and e.  

But despite these positive observations, we wish to note that the 
work presented here is mainly about our interactive network-
based interface and not about the quality of the TSP-based dimen-
sion ordering. More comprehensive studies would be needed to 
validate the latter. But as the sales campaign example in Section 5 
has shown, an automated ordering might not always be useful and 
might require substantial edits to yield a possibly less optimal but 
more meaningful ordering, which our interface readily facilitates.  

6.2 Interface 

We aimed for a framework that can even be accessible to users 
with no significant prior training in high-dimensional data analy-
sis. So we performed a user study with members of this potential 
user group to get more insight into the effectiveness of our 
framework. We used the sales dataset because it contains some 
specific easy-to-grasp relationships. Our goal was to see whether 
and how quickly the test subjects could identify the relationships 
described in Section 5, i.e., why the blue team behaves differently 
from the others (using a fewer leads and won leads to generate 
more opportunities). Our hypotheses for the user study were:  

H1. With the help of our network-based display, users are able to 
find the relationship more accurately. 

H2. With the help of our network-based display, users are able to 
find the relationship faster.  

To test these hypotheses we invited 18 graduate students (none 
majored in business) to participate. First we spent about 20 
minutes to give them an introduction to our framework. We used 
the Cars dataset because this domain is the most generally familiar. 

We made sure that after this period all subjects knew the concepts 
of parallel coordinates and the network display and knew all the 
interactions supported by our framework. Then we randomly split 
the subjects into two equal-sized groups: one group only used the 
parallel coordinate display along with the raw data table (Group1), 
and the other group used both displays (Group2). We then asked 
each subject to select the attribute in the sales dataset that best 
explained the scenario elaborated on in Section 5.  

In Group1, 3 students found the correct answer, i.e. 
cost/wonLead. In Group2, 7 students picked cost/wonLead be-
cause this attribute is the closest one with a dark red edge to 
#leads and #leadsWon. 1 student picked 3 attributes 
(cost/wonLead, pipelineRev, and plannedROI) which are nearby 
and said the scenario might be caused by the combination of them 
(regarded as 1/3 correct). So in this case we observed 7.33 (7+1/3) 
students with the right answer, more than twice than in Group1. 
Therefore our network display clearly helped. The corresponding 
p-value is 0.039, which means Hypothesis 1 is confirmed.  

To test Hypothesis 2, we used an independent two-sample t-test 
based on equal sample sizes and equal variance. On average, par-
ticipants spent more time to find the answers in Group1 (Mean = 
20.22 seconds) than those in Group2 (Mean = 11.56 seconds).  
The corresponding t-value is 2.85 and p-value=0.018. For 18 par-
ticipants (degree of freedom = 16), t must be at least 2.12 to reach 
p < 0.05, so this difference was statistically significant. 

Also, among the 18 students, 11 of them claimed that it was the 
first time they had seen a parallel coordinate display. It was inter-
esting to notice that these 11 students asked more questions and 
spent more time on learning the parallel coordinate system than on 
the network display. They stated that the network display was 
quite easy to understand since they had seen similar displays be-
fore. Some mentioned that the network display reminded them of 
the “Get direction” feature in Google Maps. This insight suggests 
that our network-based navigation interface is quite accessible, 
even to novice users.  

     
                   (a)                             (b)                  (c) 

   
(d)                              (e) 

Fig. 8: Comparison of our automatic dimension ordering algorithm with other methods. (a) Original ordering. (b) The clutter-based ordering of 

Peng et al. [18] is unable to put the proper dimension order to show sub-clusters. (c) Ankerst’s method [1] can capture the two subspaces, but 

the other un-related dimensions are split into two parts. Figures 8b and 8c are generated by xmdvTool [26]. (d) Ferdosi’s subspace-based 
dimension ordering [8], which is able to capture the structure of the dataset (2 cluster subspace highlighted in red rectangle and 3 cluster sub-

space highlighted in blue rectangle). (e) Our method: the result is quite similar to (d). 
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7 CONCLUSIONS  

We have presented an interactive network-based interface coupled 
with a parallel coordinates display, offering users various interac-
tion tools to control the dimension ordering and assess correlation 
in the data. The framework can serve both as a data exploration 
environment and as an interactive presentation platform to 
demonstrate, explain, and justify identified relationships to others. 
We showed that the synergy of the network and parallel coordi-
nate display offers a great deal of analytical power to users and it 
also allows them to explore their datasets more efficiently. Due to 
its resemblance to popular routing tools used in online maps the 
interaction with our system is also intuitive and natural.  

For future efforts, we would like to implement animated axes 
transitions when the user changes the ordering with the routing 
interface. This will make it easier for users to understand the 
changing relationships. Further, our system could also be used for 
interactive dimension reduction via subspace clustering [15]. This 
would create islands in the landscape. However, a potential diffi-
culty is that dimensions may appear in more than one subspace, 
which is not fully captured in this isolated island paradigm.  

Correlation can be affected by outliers, non-linear relationships, 
multicollinearity, heteroskedasticity, and multicollinearity, none 
of which we currently address. To gain more robustness, it would 
be worthwhile to implement outlier detection and/or removal al-
gorithms, and also devise methodologies for detecting and visual-
izing non-linear relationships. Finally, both parallel coordinate 
and correlation do not work well for categorical data in general. 
One possible solution is the Distance-Quantification-Classing 
approach devised by Rosario et al. [20]. 

Our user-study suggests that the network interface might al-
ready represent a good stand-alone tool to visualize associations. 
But the many questions raised by the test subjects also suggest 
that parallel coordinate displays, although quite similar to line 
plots, still require a high level of visualization literacy – more than 
most people possess today. This inspires further research in adapt-
ing familiar graphic design methodologies towards this interface.  
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