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Abstract— Computed tomography (CT) reconstruction methods 

are often unaware of the requirements of the subsequent 3D vol-

ume visualization stage. In this stage, a delicate and often-studied 

component is the interpolation of off-grid samples, where aliasing 

can lead to misleading artifacts and blurring, potentially hiding 

fine details of critical importance. The visualization-aware CT 

reconstruction framework we describe aims to account for these 

errors directly in the volume generation stage. Our framework 

informs the CT reconstruction process of the specific filter in-

tended for interpolation in the subsequent visualization process, 

and this in turn ensures an accurate interpolation there at a set 

tolerance. Here, we focus on fast trilinear interpolation in con-

junction with an octree-type mixed resolution volume representa-

tion without T-junctions. Efficient rendering is achieved by a 

space-efficient and locality-optimized representation, which can 

straightforwardly exploit fast fixed-function pipelines on GPUs. 

I. INTRODUCTION 

Medical routine frequently utilizes 3D visualization tools for 
diagnosis. Computed tomography (CT) acquires X-ray projec-
tion data of an object or patient from different vantage points 
and subsequently employs CT reconstruction to produce these 
volume data sets. Via direct volume rendering (DVR), users 
can then look for fine details such as hairline fractures, small 
pathological features such as tumors, and textures of diagnostic 
value. To be useful, the volume visualization tools must form a 
reliable basis for their judgment. Additionally, users also re-
quire interactive rendering speed to freely examine the data. 

Much research has focused on recovering fine details from 
volumetric data by designing and using interpolation filters of 
higher quality. These filters are mostly based on theoretical 
derivations and do not consider the origin of the data, in our 
case CT reconstruction, themselves. However, as is the case for 
CT, the volumetric data subject to interpolation in the rendering 
stage are not the actual raw data, but only derived from them. 
Thus, any quality-enhancing effort neglecting this transfor-
mation stage cannot guarantee verifiable results. Therefore 
visualization-aware CT reconstruction pipeline must integrate 
the rendering stages with the scalar field generation. 

In order to address these shortcomings into practice, we 
propose a framework we call visualization-aware CT, or 
VACT. Our procedure bridges the currently existing disconnect 
between the raw projection data and their visualization via vol-
ume rendering. Our framework can guarantee a pre-set error 
tolerance that is applied in the CT reconstruction step. The 
VACT framework is related to our VDVR system that address-
es these problems from a visualization perspective [1]. 

II. APPROACH 

Our pipeline is shown in Fig. 1. The inputs are the X-ray pro-

jections and an error threshold ε. We first determine the up-

sampling rate of the filtered projections by estimating the error 

bound. This analysis is based on the projections after ramp-

filtering. Then we run frequency domain upsampling according 

to the verified upsampling rate and ramp-filter the upsampled 

projections. Following, we perform a CT reconstruction at the 

Nyquist resolution (1× up-sampling), perform the error analysis 

and determine the ε-verified oversampling rate for the 3D vol-

ume. Then we perform back-projection again but now on a 

high-resolution grid which captures all possible details. We call 

this the gold-standard. To keep within the memory limit, we 

generate the gold standard in blocks of multiple cells. Within 

each such block, and from the gold-standard, we then build a 

mixed-resolution representation only keeping the detail needed. 

Starting from the typical base resolution commonly used, we 

classify those cells as subdivision cells which contain finer 

details. These cells are then represented with more data points. 

Finally, any potential T-junctions in the mixed-resolution data 

are removed.  

 Let us now investigate the reconstruction for a linear inter-

polation filter – the trilinear filter is an extension of this deriva-

tion. For the linear filter the largest error occurs at the local 

peak or valley where the maximum curvature is located [2]. 

Fig. 2 illustrates this scenario for a single frequency, where the 

largest error occurs around the sine function’s peak. Given the 
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Fig. 1. The visualization-aware CT reconstrruction pipeline 
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Fig. 3. Renderings of a carp dataset represented in the various grid resolution types. (a)(d)(f)  uniform (coarse) resolution, (c)(e)(h) mixed-

resolution, (b)(d) frequency-domain upsampled resolution using the same storage than the mixed resolution (magnified cuts only).    

 

sampling distance d, the max absolute error Ej for a specific 

wavelength with amplitude Ai  is: 
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where the maximum interpolation error Ei is a function of the 

sampling distance d and the signal period Ti. The distance d 

and period Ti are connected by the oversampling rate. If d=Ti/2, 

the sampling rate is just below the Nyquist sampling rate. In 

this case, the maximum error for linear interpolation could be 

100% of the sine peak value. If d=Ti/16 (equivalent to an 8× 

oversampling rate), this will guarantee that the error is less than 

1.92% of the maximum (peak) value. Fig. 2b illustrates the 

error as a function of oversampling rate and signal frequency. 

The error decreases with increasing oversampling rate and/or 

decreasing signal frequency.  

 Of course, a signal is a composite of multiple frequencies 

and therefore these errors would possibly compound. However, 

most likely these frequencies would be phase shifted which 

would reduce the local curvature and thus alleviate the error. 

 

III. RESULTS 

Fig. 3 shows volume renderings of a carp dataset, where 142 

projections of resolution 256×129 each were used for recon-

struction to obtain both the traditional volume dataset pictured 

on the top and the VACT representation pictured at the bottom. 

Using these simulated projections the dataset was reconstructed 

and then rendered using a standard trilinear interpolation filter. 

Fig. 3 panels (a), (d) and (f), were rendered from a uniform 

128
2
×256 volume (base) resolution, which is the resolution one 

would typically pick given the 256×129 projection data. We 

observe strong aliasing artifacts in these renderings. On the 

other hand, the renderings obtained from the mixed-resolution 

volume (3% error threshold, 2.4× more storage) and shown in 

panels (c), (e) and (h) can resolve small detail, such as the thin 

bones, rather well. We also took the base resolution volume of 

(d) and used frequency domain upsampling to generate a vol-

ume of the same storage than the mixed resolution of (e). Pan-

els (b) and (g) show magnified cuts of a rendering of this vol-

ume.  

IV. CONCLUSIONS 

We presented a framework that informs the CT reconstruction 

pipeline by the possible errors committed in a subsequent 3D 

volume visualization procedure. While we have demonstrated 

our pipeline not with a human medical CT dataset, similar ob-

servations apply. Future work will also adapt these concepts for 

more efficient grids, such as BCC [3][4], and we also plan to 

evaluate and incorporate other errors occurring in the rendering 

such as shading, gradient estimation, transfer functions, percep-

tion, and the like.  
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Fig. 2. Sine signal reconstructed with linear interpolation and error. 
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