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Abstract – Graphical processing units (GPUs) have become 

widely adopted in the medical imaging community. The 

parallel SIMD nature of GPUs maps perfectly to many 

reconstruction algorithms. Because of this, it is relatively 

straightforward to parallelize common reconstruction 

algorithms (e.g. FDK backprojection). This means that 

significant performance improvements must come from careful 

memory optimizations, exploiting ASICs and a few other tricks 

to boost instruction throughput. We present optimizations that 

build off of previous work to optimize a GPU accelerated FDK 

backprojection implementation using the RabbitCT dataset. 

Index Terms—High Performance, GPU, CT reconstruction 
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I. INTRODUCTION 

Within the last ten years, GPUs have become widely 

accepted in the medical imaging community. This is driven 

by the relatively low cost of graphics hardware, as well as C 

like APIs (i.e. CUDA and OpenCL) that were introduced to 

make GPU programming simpler. GPU manufacturers have 

embraced the scientific computing use of their graphics 

cards and are constantly updating the architecture to provide 

new avenues for optimization. 

 We make use of the RabbitCT framework [3] which was 

developed to provide a standardized test of the performance 

of an FDK backprojection implementation. It comes with a 

dataset and an executable that runs a backprojection 

implementation, performs timing, and measures the 

accuracy of the reconstruction. Since each implementation 

will reconstruct the same dataset under the same conditions, 

it becomes very simple to compare different 

implementations. Recent work has used this framework to 

help develop highly optimized backprojection 

implementations. In this paper, we build off the work of [2] 

to further improve the performance of a GPU accelerated 

backprojection implementation.  

II. RELATED WORK 

The first set of major optimizations was presented in our 

previous work reported in [2]. The parallelization strategy 

was to launch 512
2
 threads and have each thread compute an 

array of 512 voxels in the Z direction. We gained a 
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significant performance improvement through memory 

optimizations. We used texture memory to store the 

projections. By storing the projections this way, we made 

use of the GPUs ASIC for bilinear interpolation. In order to 

reduce the total number of global memory accesses, we 

backprojected multiple projections per GPU kernel call. 

Figure 1 shows the pseudo-code of this implementation. We 

have since extended this implementation to include CUDA 

streams to hide CPU-GPU transfer latency. 

 

 

 

 

 

 

III. OPTIMIZATIONS 

In this section we provide a number of additional 

optimizations that we implemented. We start with an 

implementation that included the optimizations that were 

presented in the previous section. This baseline 

implementation is already quite fast. The optimizations that 

we describe merely squeeze performance out of an already 

highly optimized implementation.  
 

A. RSQRT 

The baseline implementation was highly optimized in its 

memory accesses. This made it primarily bound by its 

instruction throughput. The main source of this bottleneck 

was the computation of homogeneous coordinates. Figure 2a 

shows a pseudo-code of this computation. The main source 

of this bottleneck was the division by w. The division 

operator is extremely slow and in a highly optimized 

implementation, there are simply not enough instructions to 

hide the latency this operator. Fortunately, we discovered 

that we can approximate the division operator by using a 

technique known as the fast inverse square root [1]. 

The fast inverse square root works by exploiting the way 

bits are formatted in a floating point number. By passing the 

square of some variable, we can get the inverse of that 

variable with the inverse square root function. Figure 2b 

shows the homogeneous coordinate calculation with the 

inverse square root. The CUDA API has an implementation 

of the inverse square root function that we utilize. 

FOR each voxel along z-axis 

FOR each projection I 

  Fetch interpolated value 

 Add value to volume 

END 

END 
Figure 1: Pseudo-code of optimizations presented in [2] 
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TABLE I: RESULTS OF OPTIMIZATIONS PRESENTED (WALL CLOCK TIME) 

Implementation Thumper Baseline +RSQRT +Transpose +Multi-Threaded +Atomics 

Timing 0.993 s 2.2 s 1.01s 0.967 s 0.951 s 0.921 s 

GUPS  67.7 30.3 65.9 68.8 70.2 72.3 

 
 

 

 

 

 

 

 
 

B. Transpose 

As our baseline implementation would execute, we noticed 

that there was a performance dip between the third and 

eighth kernel execution. Each kernel execution would last 

approximately 50 milliseconds at the beginning. The kernel 

executions would gradually get slower until it reached 

around 65 milliseconds, and then get faster toward the end. 

We realized that the dip in performance was because the 

cache locality was worse in the middle than it was at the 

beginning and end of the execution. Figure 3 illustrates this.  

In an attempt to increase the cache hit rate, we 

transpose the volume for the kernel executions with low 

texture cache locality. This is achieved by simply swapping 

the x and y indices of each thread. This led to a 50-80 

millisecond reduction in computation time. There is one 

caveat, however. We need to transpose it back to the proper 

orientation. We used a similar implementation to [4] for the 

transpose. This took approximately 20 milliseconds. We still 

have a net gain, however, of 30-50 milliseconds in 

performance.  
 

 
 

 

 

C. Atomics 

One unusual optimization that we exploited was using 

atomics. When programming on the GPU, a general rule of 

thumb is to avoid using atomics. Atomic operations interupt  

parallelism and so should only be used in cases where it is 

unavoidable. This line of thinking has changed with the 

NVIDIA Kepler architecture.  

With the Kepler architecture, atomics are implemented 

in an ASIC. Furthermore, atomic operations are executed 

asynchronously with the calling thread. Because of these 

features, we accumulate the results into the volume using 

atomic operations. We know that this will be a fast 

operation since there are no read/write collisions between 

threads. The asynchronous nature of atomics guarantees that 

each thread will not have to stall after a write to global 

memory. This optimization gave us a 3-5 millisecond speed 

up per kerenel execution. 
 

D. Multi-Threading 

In order for us to take advantage of CUDA streams, we have 

page-lock the projection memory. Page-locked memory, 

however, is a scarce resource. Therefore, we cannot simply 

page-lock all the projections at the beginning. In our 

implementation, we would backproject 64 projections 

before loading another 64 projections into the page-locked 

memory. Each memory copy costs approximatly 37 

milliseconds. By performing the memory copy in another 

thread, we could hide some of this latency. 

Our multi-threaded approach is to have two buffers. One 

buffer is the active buffer (i.e. the buffer containing the data 

that is copied to the device and backprojected). The second 

buffer is the copy buffer (i.e. the buffer that the second 

thread copies the next 64 projections to). Once the 

projections are backprojected, the copy buffer becomes the 

active buffer, and the current active buffer becomes the next 

iteration’s copy buffer.  

IV. RESULTS AND CONCLUSIONS 

Our experiments were performed on the NVIDIA GeForce 

GTX 680 GPU. In Table 1, we compare the results of our 

optimizations with the current best time (i.e. the algorithm 

named Thumper) on the RabbitCT rankings. Note that due 

to the asynchronous nature of CUDA the RabbitCT time is 

not fully accurate and so we report the wall clock time. 

These timings represent the reconstruction time for a 512
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voxel volume, reconstructed from 496 projections. The 

performance is measured in seconds and giga-updates per 

second (GUPS). We can see that the optimizations presented 

lead to nearly a 10% speed-up over the baseline. We 

observed a root mean squared error of 0.157 HU. This error 

is similar to the results measured in the RabbitCT rankings.  
Although the performance gains were not dramatic, we 

believe there is not a lot of room for improvement on the 
current generation of GPUs. As new GPU architectures are 
introduced, new features will be added that may be 
exploited to increase performance. The optimizations 
presented in this paper, however, are likely to remain 
relevant for future GPU architectures.   
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Figure 3: The footprint of the dotted rays is much larger than the footprint of 

the solid rays, leading to a lower cache locality. 
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w’ = rsqrt(w * w)  
Figure 2: (a) Homogeneous coordinate calculation with division and (b) 

using the inverse square root function. 


