

Rapid Rabbit: Highly Optimized GPU

Accelerated Cone-Beam CT Reconstruction

Eric Papenhausen and Klaus Mueller. Senior Member, IEEE

Abstract – Graphical processing units (GPUs) have become

widely adopted in the medical imaging community. The

parallel SIMD nature of GPUs maps perfectly to many

reconstruction algorithms. Because of this, it is relatively

straightforward to parallelize common reconstruction

algorithms (e.g. FDK backprojection). This means that

significant performance improvements must come from careful

memory optimizations, exploiting ASICs and a few other tricks

to boost instruction throughput. We present optimizations that

build off of previous work to optimize a GPU accelerated FDK

backprojection implementation using the RabbitCT dataset.

Index Terms—High Performance, GPU, CT reconstruction
1

I. INTRODUCTION

Within the last ten years, GPUs have become widely

accepted in the medical imaging community. This is driven

by the relatively low cost of graphics hardware, as well as C

like APIs (i.e. CUDA and OpenCL) that were introduced to

make GPU programming simpler. GPU manufacturers have

embraced the scientific computing use of their graphics

cards and are constantly updating the architecture to provide

new avenues for optimization.

 We make use of the RabbitCT framework [3] which was

developed to provide a standardized test of the performance

of an FDK backprojection implementation. It comes with a

dataset and an executable that runs a backprojection

implementation, performs timing, and measures the

accuracy of the reconstruction. Since each implementation

will reconstruct the same dataset under the same conditions,

it becomes very simple to compare different

implementations. Recent work has used this framework to

help develop highly optimized backprojection

implementations. In this paper, we build off the work of [2]

to further improve the performance of a GPU accelerated

backprojection implementation.

II. RELATED WORK

The first set of major optimizations was presented in our

previous work reported in [2]. The parallelization strategy

was to launch 512
2
 threads and have each thread compute an

array of 512 voxels in the Z direction. We gained a

Eric Papenhausen and Klaus Mueller are with the Visual Analytics and
Imaging Lab, Computer Science Department, Stony Brook University,

Stony Brook, NY 11777 USA (phone: 631-632-1524; e-mail:

{epapenhausen, zizhen, mueller}@cs.sunysb.edu). Klaus Mueller is also
with SUNY Korea, Songdo, Incheon Korea.

significant performance improvement through memory

optimizations. We used texture memory to store the

projections. By storing the projections this way, we made

use of the GPUs ASIC for bilinear interpolation. In order to

reduce the total number of global memory accesses, we

backprojected multiple projections per GPU kernel call.

Figure 1 shows the pseudo-code of this implementation. We

have since extended this implementation to include CUDA

streams to hide CPU-GPU transfer latency.

III. OPTIMIZATIONS

In this section we provide a number of additional

optimizations that we implemented. We start with an

implementation that included the optimizations that were

presented in the previous section. This baseline

implementation is already quite fast. The optimizations that

we describe merely squeeze performance out of an already

highly optimized implementation.

A. RSQRT

The baseline implementation was highly optimized in its

memory accesses. This made it primarily bound by its

instruction throughput. The main source of this bottleneck

was the computation of homogeneous coordinates. Figure 2a

shows a pseudo-code of this computation. The main source

of this bottleneck was the division by w. The division

operator is extremely slow and in a highly optimized

implementation, there are simply not enough instructions to

hide the latency this operator. Fortunately, we discovered

that we can approximate the division operator by using a

technique known as the fast inverse square root [1].

The fast inverse square root works by exploiting the way

bits are formatted in a floating point number. By passing the

square of some variable, we can get the inverse of that

variable with the inverse square root function. Figure 2b

shows the homogeneous coordinate calculation with the

inverse square root. The CUDA API has an implementation

of the inverse square root function that we utilize.

FOR each voxel along z-axis

FOR each projection I

 Fetch interpolated value

 Add value to volume

END

END
Figure 1: Pseudo-code of optimizations presented in [2]

IEEE Medical Imaging Conference, Seoul, Korea, November 2013

mailto:mueller%7d@cs.sunysb.edu

TABLE I: RESULTS OF OPTIMIZATIONS PRESENTED (WALL CLOCK TIME)

Implementation Thumper Baseline +RSQRT +Transpose +Multi-Threaded +Atomics

Timing 0.993 s 2.2 s 1.01s 0.967 s 0.951 s 0.921 s

GUPS 67.7 30.3 65.9 68.8 70.2 72.3

B. Transpose

As our baseline implementation would execute, we noticed

that there was a performance dip between the third and

eighth kernel execution. Each kernel execution would last

approximately 50 milliseconds at the beginning. The kernel

executions would gradually get slower until it reached

around 65 milliseconds, and then get faster toward the end.

We realized that the dip in performance was because the

cache locality was worse in the middle than it was at the

beginning and end of the execution. Figure 3 illustrates this.

In an attempt to increase the cache hit rate, we

transpose the volume for the kernel executions with low

texture cache locality. This is achieved by simply swapping

the x and y indices of each thread. This led to a 50-80

millisecond reduction in computation time. There is one

caveat, however. We need to transpose it back to the proper

orientation. We used a similar implementation to [4] for the

transpose. This took approximately 20 milliseconds. We still

have a net gain, however, of 30-50 milliseconds in

performance.

C. Atomics

One unusual optimization that we exploited was using

atomics. When programming on the GPU, a general rule of

thumb is to avoid using atomics. Atomic operations interupt

parallelism and so should only be used in cases where it is

unavoidable. This line of thinking has changed with the

NVIDIA Kepler architecture.

With the Kepler architecture, atomics are implemented

in an ASIC. Furthermore, atomic operations are executed

asynchronously with the calling thread. Because of these

features, we accumulate the results into the volume using

atomic operations. We know that this will be a fast

operation since there are no read/write collisions between

threads. The asynchronous nature of atomics guarantees that

each thread will not have to stall after a write to global

memory. This optimization gave us a 3-5 millisecond speed

up per kerenel execution.

D. Multi-Threading

In order for us to take advantage of CUDA streams, we have

page-lock the projection memory. Page-locked memory,

however, is a scarce resource. Therefore, we cannot simply

page-lock all the projections at the beginning. In our

implementation, we would backproject 64 projections

before loading another 64 projections into the page-locked

memory. Each memory copy costs approximatly 37

milliseconds. By performing the memory copy in another

thread, we could hide some of this latency.

Our multi-threaded approach is to have two buffers. One

buffer is the active buffer (i.e. the buffer containing the data

that is copied to the device and backprojected). The second

buffer is the copy buffer (i.e. the buffer that the second

thread copies the next 64 projections to). Once the

projections are backprojected, the copy buffer becomes the

active buffer, and the current active buffer becomes the next

iteration’s copy buffer.

IV. RESULTS AND CONCLUSIONS

Our experiments were performed on the NVIDIA GeForce

GTX 680 GPU. In Table 1, we compare the results of our

optimizations with the current best time (i.e. the algorithm

named Thumper) on the RabbitCT rankings. Note that due

to the asynchronous nature of CUDA the RabbitCT time is

not fully accurate and so we report the wall clock time.

These timings represent the reconstruction time for a 512
3

voxel volume, reconstructed from 496 projections. The

performance is measured in seconds and giga-updates per

second (GUPS). We can see that the optimizations presented

lead to nearly a 10% speed-up over the baseline. We

observed a root mean squared error of 0.157 HU. This error

is similar to the results measured in the RabbitCT rankings.
Although the performance gains were not dramatic, we

believe there is not a lot of room for improvement on the
current generation of GPUs. As new GPU architectures are
introduced, new features will be added that may be
exploited to increase performance. The optimizations
presented in this paper, however, are likely to remain
relevant for future GPU architectures.

ACKNOWLEDGEMENTS

Partial funding was provided by NSF grant IIS 1117132 and the

Korean Ministry of Science, ICT and Future Planning and NIPA.

REFERENCES

[1] C. Lomont, "Fast inverse square root," Department of Mathematics,
Purdue University, Tech. Rep. Feb. 2003

[2] E. Papenhausen, et.al, “GPU-Accelerated Back-Projection Revisited:
Squeezing Performance by Careful Tuning,” Workshop on High
Performance Image Reconstruction, Potsdam, Germany, July 2011.

[3] C. Rohkohl, et. al, “RabbitCT---an open platform for benchmarking
3D cone-beam reconstruction algorithms,” Med. Phys., 36:3940,
2009.

[4] G. Ruetsch, P. Micikevicius, “Optimizing Matrix Transpose in
CUDA”, NVIDIA Technical Report, 2009

Figure 3: The footprint of the dotted rays is much larger than the footprint of

the solid rays, leading to a lower cache locality.

(a) u = (a
0
x + a

3
y + a

6
z + a

9
) / w

v = (a
1
x + a

4
y + a

7
z + a

10
) / w

w = a
2
x + a

5
y + a

8
z + a

11

(b) u = (a
0
x + a

3
y + a

6
z + a

9
) * w’

v = (a
1
x + a

4
y + a

7
z + a

10
) * w’

w = a
2
x + a

5
y + a

8
z + a

11

w’ = rsqrt(w * w)
Figure 2: (a) Homogeneous coordinate calculation with division and (b)

using the inverse square root function.

