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Abstract—We describe a novel volumetric global illumination framework based on the Face-Centered Cubic (FCC) lattice. An FCC
lattice has important advantages over a Cartesian lattice. It has higher packing density in the frequency domain, which translates to
better sampling efficiency. Furthermore, it has the maximal possible kissing number (equivalent to the number of nearest neighbors of
each site), which provides optimal 3D angular discretization among all lattices. We employ a new two-pass (illumination and rendering)
global illumination scheme on an FCC lattice. This scheme exploits the angular discretization to greatly simplify the computation in
multiple scattering and to minimize illumination information storage. The GPU has been utilized to further accelerate the rendering
stage. We demonstrate our new framework with participating media and volume rendering with multiple scattering, where both are
significantly faster than traditional techniques with comparable quality.

Index Terms—Volume visualization, volume rendering, participating media, lattice, FCC lattice, sampling, multiple scattering, GPU.

F

1 INTRODUCTION

Direct volume rendering has been an important technique in the graph-
ics and visualization community for many years. Usually the vol-
ume to be rendered is a function defined on 3D (or higher dimension)
space and discretized into a set of cells or points. Here, a regular
discretization has a single generating matrix, which is called a lat-
tice [6]. Mathematically, a lattice in Rn is a discrete subgroup [9] of
Rn that can be generated from a vector basis by a linear combination
with integral coefficients. In other words, a lattice is the subgroup
a1v1 +a2v2 + . . .+anvn, where v1,v2, . . . ,vn is the vector basis, vi is
the generation vector, and ai are integers. The sites of a lattice are con-
nected with a set of lines (or links). A site is defined as a neighbor of
another site if they are connected by one lattice link. The lattice sites
result from the discretization of space or space-time, and the lattice
links discretize the angular space. The most frequently used lattice for
volume visualization is the Cubic Cartesian (CC) lattice with gener-
ation vectors of X = (1,0,0), Y = (0,1,0), and Z = (0,0,1). Other
grids such as Body-Centered Cubic (BCC) and Face-Centered Cubic
(FCC) lattices have also been investigated [22, 24, 29].

Direct volume rendering algorithms reconstruct a continuous func-
tion, which is projected to a 2D image. This procedure involves di-
mension reduction thus inevitably loses some information. To capture
more details, many lighting and illumination methods have been de-
veloped. Local illumination models omit sophisticated effects such as
multiple scattering and indirect illumination for the sake of rendering
speed. However, they are the dominant light-object interaction for par-
ticipating media (smoke, clouds) and many translucent materials. To
cope with these effects, volumetric global illumination techniques are
required in order to present important visual features [28].

Global illumination has not been widely employed in volume ren-
dering because of the computation complexity. When a photon en-
counters an object, it might be reflected, refracted, and scattered many
times before finally being absorbed or exiting the scene. It is closely
related to the radiative transfer problem that has been studied by physi-
cists for decades [5]. The simulation of all kinds of interaction is
time-consuming, and many simplified models have been proposed in
computer graphics. Max [21] has evaluated several optical models for
direct volume rendering and presented an integral equation for light
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transport in volumes, which includes multiple scattering. Blinn [2] has
analytically solved the transport equation for constant density medium
with single scattering. Kajiya and von Herzen [17] have proposed
tracing rays in inhomogeneous volumes. To calculate multiple scatter-
ing, spherical harmonics have been used. Radiosity uses finite element
methods to solve the transport equation. Rushmeier and Torrance [27]
have exploited the zonal method for isotropic scattering. Max [20] has
extended the discrete ordinates method to capture anisotropic multiple
scattering. Hegeman et al. [14] have proposed a two-pass approach for
strong forward scattering. Harris and Lastra [13] have used a similar
approach to render clouds. Kniss et al. [18] have introduced a volume
lighting model for GPU-accelerated volume rendering with forward
scattering using a single pass algorithm based on half angle slicing.
Riley et al. [26] have extended this method to render atmospheric phe-
nomena. Jensen [16] has presented the photon mapping method for
rendering participating media. Cerezo et al. [3] have provided a nice
survey on rendering participating media. Finally, Geist et al. [12] have
revised the Lattice-Boltzmann method to render participating media.

In this paper, we describe a new volumetric global illumination
framework, which exploits both spatial and angular discretization on
lattices. In computer graphics, spatial discretization has been well-
studied to simplify the calculation of light-object interaction, but an-
gular discretization has not been fully exploited. Specifically, we
adopt the FCC lattice because it has better sampling efficiency com-
pared with the CC lattice and it provides optimal angular discretization
among all lattices. We further describe a new two-pass algorithm to
render participating media and volumes with multiple scattering. The
idea of this algorithm is that the traced photons only move along the
lattice links. We call these photons “diffuse photons”. Here, the phase
function is discretized on the lattice links to simplify the diffuse pho-
ton tracing and radiance estimation. The storage of diffuse photons
is minimized by storing the number of photons on lattice links. For
flexibility and extensibility, we also implemented tracing photons with
accurate direction, which are called “specular photons” in this paper.
The O-Buffer data structure proposed by Qu et al. [25] has been ex-
ploited to reduce the storage space of specular photons. Our volumet-
ric global illumination framework is capable of producing high quality
images and is significantly faster than traditional methods. This gen-
eral and flexible framework can be extended to render hybrid scenes
with both volumes and surface objects.

Our paper is structured as follows. The definition and mathematical
properties of FCC lattices are explained in Section 2. Section 3 ana-
lyzes the sampling scheme on FCC lattices. Section 4 and 5 present
the rendering methods and implementation details, respectively. The
rendering results are shown in Section 6. Finally, we conclude the
paper and describe future work.



2 FCC LATTICE

An FCC lattice consists of simple CC cubic cells with additional sam-
pling points located at the center of each cell face (see Fig. 1a). Ac-
cording to the lattice definition described in Section 1, any FCC lattice
site can be constructed via linear combination of the three basis vectors
X = (1,0,0), Y = (0,1,0) and Z = (0.5,0.5,

√
2/2), which can be ob-

tained by defining an appropriate rotated coordinate system (see Fig.
1b). This definition scheme is adopted in our paper due to its simplic-
ity, where the FCC lattice can be decomposed into two interleaved sub

cubic lattices with a deviation vector of v = (0.5,0.5,
√

2/2). This rep-
resentation provides a framework that enables quick indexing and ef-
ficient implementation of many basic lattice operations. For instance,
the mapping from an arbitrary FCC lattice site of index (i, j,k) to its
CC coordinates (x,y,z) can be defined by the following equations:

x = i+(k mod 2)/2,

y = j +(k mod 2)/2,

z =
√

2k/2. (1)

Finding the nearest FCC lattice site to a sample point can be imple-
mented by first looking for two neighbors having the shortest Euclid-
ean distance to the sample point in the two sub cubic lattices using
Eqn. 1, and then selecting the closer one between them.
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Fig. 1. An FCC lattice can be constructed by (a) adding (blue) sites at
the centers of the faces of cubic cells; (b) interleaving 2D square grids
(red and green semi-transparent slices), where slice 2i+1 is shifted from
slice 2i by v. The second form (b) can be constructed by rotating the first
one (a) π
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about the z axis.

The geometric layout of the FCC lattice also gives rise to its higher
angular discretization granularity than both CC and body-centered cu-
bic (BCC) lattices, which is important for our rendering framework.
Each site in the FCC lattice has direct links to a total of 12 nearest
neighbors, in contrast to 8 and 6 in the BCC and CC lattices, respec-
tively. This is the best angular discretization rate that any 3D regular
lattice can achieve, since in R3 the maximum number of sphere of ra-
dius 1 that can simultaneously touch the unit sphere (i.e., the kissing
number) is 12 [6]. This unique feature has important implications for
sampling and interpolation, as we will discuss further below. For ex-
ample, when a particle is scattered at an FCC lattice site, it has 12
possible moving directions, which is 50% more than a BCC lattice
and 100% more than a CC lattice. In addition, the 12 links of an FCC
lattice site are symmetric under rotation and reflection, which supports
a relatively simple computation framework. Fig. 2a shows the cuboc-
tahedron defined by the 12 closest neighbors of a FCC site, while Fig.
2b shows the Voronoi cell of an FCC lattice site, which is essentially a
rhombic dodecahedron.

Finally, the reciprocal lattice of FCC yields its representation in the
frequency domain, which is essentially a BCC lattice [29]. As it will
be described in the next section, this property gives rise to its near-
optimal sampling behavior that is capable of reconstructing original
signals with a minimum number of samples. It has been shown in
the literature [29] that the FCC sampling scheme requires 13.4% and
23% fewer samples in R2 and R3 domain compared to CC lattices,

(a) (b)

Fig. 2. (a) The 12 neighbors (red spheres) of an FCC lattice site (green
sphere) forms a cuboctahedron; (b) The voronoi cell of an FCC lattice
site (green sphere) is a rhombic dodecahedron.

respectively. Thus, the FCC lattice presents a much more efficient
spacial sampling scheme over the traditional CC lattice.

3 SAMPLING ON FCC

In any lattice used for volume visualization, the lattice sites are dis-
cretized or sampled from Rn, and an efficient, preferably optimal, sam-
pling scheme is paramount. An optimal lattice structure captures in-
formation in the hyper-volume Rn using the least number of sampling
points. Assuming an isotropic and band-limited sampling function, the
resulting frequency support of a sampling point is a hyper-sphere, sur-
rounded by a set of alias replicas. Hence, the most efficient sampling
scheme arranges the replicated (hyper-spherical) frequency response
as densely as possible in the frequency domain to avoid overlapping of
the aliased spectra. As demonstrated in multi-dimensional signal the-
ory [8] an optimal sampling scheme is obtained when the frequency
response of the sampling lattice is an optimal sphere packing lattice
[6]. Optimal sampling lattices can achieve up to 13.4%, 29.3%, and
50% of savings in 2, 3 and 4 dimensions, and they have been used in
volume visualization [10, 22, 29] with high quality image results.

In three dimensions there are infinite optimal sphere packings in-
cluding the FCC lattice and the HCP (hexagonal closed packing). The
spatial equivalent of the FCC lattice in the frequency domain is the
BCC lattice, which is the inverse Fourier transform of the FCC and
vice-versa. The FCC lattice in the spatial domain corresponds to the
BCC lattice in the frequency domain which is not an optimal sphere
packing, and the FCC lattice achieves about 23% of savings over the
CC lattice in terms of sampling efficiency. It was chosen for our global
illumination framework because it is the lattice that maximizes uni-
form angular discretization with its kissing number of 12. The HCP
is another candidate with an optimal kissing number of 12. In strict
mathematical definition, HCP is not a lattice but can be defined as the
union of the lattice L with generation vectors (1,0,0), (1/2,

√
3/2,0)

and (0,0,
√

8/3) and the translate L + (1/2,1/
√

12,
√

2/3). How-
ever, it has a bias towards the z-direction. For any link with direc-
tion d = (dx,dy,dz) such that dz 6= 0, the link of direction −d does
not exist. When a ray or photon moves from one of such links and is
not absorbed or scattered at the lattice site, it cannot continue straight
along its original direction. Therefore, HCP is not symmetric and thus
unsuitable for use in our framework.

Given the initial assumption that the represented function is hyper-
spherically band-limited, the ideal choice for the reconstruction func-
tion is also a radially symmetric kernel. We have studied a set
of Gaussian reconstruction filters and have found that the relatively

narrow Gaussian f (r) = e−2r2

, offers good frequency behavior and
reasonable overlap between neighboring sites. We have also tested
this experimentally by reconstructing a constant cubic volume (where
f (x,y,z) = 1) sampled on an FCC lattice and measuring the mean
squared error for varying reconstruction kernel extents.



4 RENDERING METHODS

There are three major processes for the interaction between light and
volumetric objects: emission, absorption and scattering. The differen-
tial equation [21] of light propagation in volumetric objects is

dI(x,ω)

ds
= −σt(x,ω)I(x,ω)+σe(x,ω)+

σs(x,ω)
∫

4π
f (x,ω,ω ′)I(x,ω ′)dω ′ (2)

where I(x,ω) is the light intensity at position x in direction ω , σt is
the extinction or attenuation coefficient (combination of absorption
and out-scattering, σt = σa + σs), σs is the scattering coefficient or
the scattering probability per unit distance. f (x,ω,ω ′) is the phase
function representing the conditional probability of a photon from di-
rection ω to be scattered in direction ω ′ assuming that the photon is
scattered, and it obeys

∫

4π f (x,ω,ω ′)dω = 4π . In most naturally oc-
curring media, σt and σs are independent of direction ω . Also, most
media is isotropic and the phase functions only depend on the cosine
of the angle θ between ω and ω ′. The solution of Eqn. 2 is:

I(x,ω) =
∫ D

0
R(x− sω,ω)exp

(

∫ D

0
σt(x− tω)dt

)

ds, (3)

R(x,ω) = σs(x,ω)
∫

4π
f (x,ω,ω ′)I(x,ω ′)dω ′ (4)

where D is the distance from x to the view point and R(x,ω) is the
radiance at position x from direction ω .

We describe a new two-pass rendering algorithm on FCC lattices.
In the first pass, photons are emitted from light sources and the photon
energy is distributed in the scene, illuminating the media. In the sec-
ond pass, a ray tracing method is used to generate the final image. At
each sampling point x on the ray of direction −ω , the radiance R(x,ω)
is estimated by the photons in a small neighborhood of x for shading.

4.1 Diffuse Photon Tracing

For volumetric objects where the dominant effect is diffusion, we have
developed a new algorithm to trace photons on the lattice links. The
volumetric objects are sampled in a finite region of the FCC lattice.
As shown in Fig. 3 on a 2D FCC lattice, when a photon is emitted
from a light source, the nearest lattice site to the first hit point on the
lattice boundary is calculated and the moving direction of the photon is
discretized to one of the link directions. The photon will be traced on
the links between lattice sites and its path is composed of line segments
of lattice links.

(a) (b)

Fig. 3. Illustration of tracing photons on a 2D FCC lattice. (a) The photon
path in green color in the real medium. (b) The photon path on a 2D FCC
lattice. The circles represent lattice sites and the black line segments
represent lattice links. The red circle is the nearest lattice site to the
photon intersection point with the medium boundary. The photon path
is composed of the green lattice links.

A photon emitted from the light sources has an arbitrary direction
ω . We first convert the photon direction stochastically to one of the
lattice links. An FCC lattice site xi has 12 closest neighboring sites of
equal distance, which forms a cuboctahedron as shown in Fig. 2a. The

ray originated from site xi with direction ω intersects the cuboctahe-
dron at point v on one of its 14 faces. Denoting the vertices of the face
containing v as v0,v1, · · · ,vm (m = 2,3) in counterclockwise order and
letting ωk = vk − xi, the probability of the photon direction changing
to ωk is defined as the barycentric coordinates [11]:

pk =
wk

∑k wk

, wk = ∏
t 6=k−1,k

A(v,vt ,vt+1) (5)

where A(v,vt ,vt+1) is the area of triangle v,vt ,vt+1. The barycentric
coordinates of v are well defined with Eqn. 5 because all the faces of
the cuboctahedron are regular polygons.

When arriving at a lattice site xi from direction ω j the photon might
be absorbed, be scattered or continue moving along the extended link
of ω j . We use the absorption and the scattering coefficients, σa(xi,ω j)
and σs(xi,ω j), to represent the probabilities of such events. (Please
note that this approximation is only correct when the link length l is
small compared to 1/σt . The actual absorption probability should be

exp(−∫ l
0 σa(xi,ω j))ds. Because the links on an FCC lattice are of

identical length, we use σa, σs and σt here for convenience.) The
Russian roulette technique [23] is used to determine whether the pho-
ton is absorbed, scattered or transmitted. In detail, the program gener-
ates a random number ξ ∈ [0,1) and the photon:











is absorbed if ξ ∈ [0,σa(xi,ω j)),

is scattered if ξ ∈ [σa(xi,ω j),σa(xi,ω j)+σs(xi,ω j)),

is transmitted if ξ ∈ [σa(xi,ω j)+σs(xi,ω j),1).

(6)

In contrast to the deterministic procedures of absorption and trans-
mission, stochastic scattering requires further processing. In tradi-
tional methods, a phase function f (x,ω,ω ′) is utilized to describe
the probability of a photon being scattered at location x with an in-
put direction ω and an output direction ω ′. The computation of the
new direction is performed using importance sampling. In the widely
used models such as the Schlick model [1], the probability depends on
cos(θ) = ω ·ω ′ only, thus the importance sampling returns the value
of cos(θ). In order to compute ω ′, a local coordinate system at the
scattering position has to be constructed to convert spherical angles to
direction vectors, which is computationally expensive.

In our lattice illumination framework, the computation of the
scattering process is greatly simplified because photons only move
along discretized lattice links. Here, the continuous phase function
f (x,ω,ω ′) is discretized to f (i, j,k), which represents the probability
of a photon located at site xi being scattered from the input link ω j

to the new output link ωk. In practice, this discrete phase function is
constructed as a 2D table of n× n resolution to represent all possible
combinations of input/output links on a lattice site (n = 12 for FCC
lattices). The generation of the discrete phase function via sampling
and normalizing the continuous phase function is described by the fol-
lowing equation:

f (i, j,k) =
f (xi,ω j,ωk)

∑n−1
t=0 f (xi,ω j,ωt)

. (7)

A more accurate method is to calculate the integral over the angular
space Ω defined in Eqn. 8, which can be solved numerically for arbi-
trary continuous phase function:

f (i, j,k) =
∫

Ω
closest(ω,ωk) f (xi,ω j,ω)dω

closest(ω,ωk) =

{

1 if the closest link to ~d is ωk,

0 otherwise.
(8)

Importance sampling of discrete phase functions is simply a binary

search for a given random number ξ such that ∑k
t=0 f (i,ω j,ωt) ≤ ξ

and ∑k+1
t=0 f (i,ω j,ωt) > ξ . The complexity of this binary search is



O(log(n)), which is very efficient because n is usually very small (n =
12 for FCC lattices).

After determining the photon behavior of each encounter, we record
their activity information on the lattice sites. Basically, a stored photon
represents a possible light path from the light sources to its location.
This information is used in the following rendering pass, where the ir-
radiance of sampling positions is estimated with the stored light paths
within a small neighborhood. The lattice-based framework enables us
to store photons in a 3D array and the position of the photons is im-
plicitly defined by their index in the array. Moreover, the quantized
directions are encoded in a byte using the link index. Since the link
vectors are known a-priori, we adopt an optimized solution for photon
direction storage, where photons with the same direction are grouped
together. Here, a 1D array E(ω j) of n elements is used for a lattice
site xi, such that E(ω j) is the total energy of the photons at xi with
direction ω j . Due to the employed Russian roulette technique [23],
the photon energy does not change until it is absorbed. Therefore, the
stored photons all have the same energy and only the integral num-
ber of photons need to be stored at link (i, j). Given the maximum
possible number of photons stored on the links, the unsigned byte or
short format can be used to represent the actual photon counts instead
of storing individual floating point energy values. In other words, we
store all photons in a 4D integer array E(i,ω j) with three dimensions
of site position and one dimension for link direction.

After the recording of diffuse photons, rays are traced from the im-
age plane into the FCC lattice to collect irradiance values. At each
sampling point x, the radiance is estimated by the photons inside a
small spherical region centered at x. With our 4D array of photon
counts, the radiance in Eqn. 4 is calculated with the following simpli-
fied formula:

R(x,ω) = ∑
X

∑
j

σs(x,ω j) f (x,ω,ω j)g(x′− x)E(x′,ω j)dx′ (9)

where ω is the reverse ray direction, f is the continuous phase function
and X is the set of lattice sites in the search region. g is a normalized
smoothing filtering function used for removing high-frequency noise.
Because the lattice sites are positioned regularly, searching for the lat-
tice sites in a sphere is simple and efficient. In our experiments, the
medium is isotropic and the phase function only depends on the angle
between the ray direction and the lattice link ω j . The dot product of ω
and ω j can be pre-computed and reused for all the sampling points on
one ray in the rendering process, which yields an efficient implemen-
tation of the radiance estimation.

Our new algorithm greatly simplifies the computation of photon-
volume interaction and photon storage. Therefore, our program can
trace millions of photons in a short time, which is good for improving
image quality by removing the stochastic noise and variance without
excessive smoothing in the radiance estimation. Moreover, our method
is general and can use arbitrary phase functions including those of
strong backward scattering.

4.2 Specular Photon Tracing

The method described in Section 4.1 is capable of calculating multiple
scattering events for participating media and volumes where diffusion
is the dominant effect. However, specular reflection and refraction
may exhibit ray effects when discretized rays hit smooth specular sur-
faces. This effect has been discovered by the radiative heat transfer
community [4] and found to be caused by the discretization of scatter-
ing directions when accurate directions are needed for specularity.

To mitigate this ray effect, we describe an enhanced algorithm
called specular photon tracing, where every photon is associated with
its accurate direction ω and start position x. In each time step, the pho-
ton moves on the FCC lattice and the new sampling position is calcu-
lated by x = d×ω where d is the step size. The lighting properties σa

and σs are sampled to decide whether the photon is absorbed, scattered
or transmitted at x (Eqn. 6). If the photon is scattered, the new direc-
tion ω is computed with the continuous phase function. The Russian
roulette technique is again used to avoid photon energy change.

The O-Buffer data structure [25] is used to store the photon infor-
mation compactly, where each lattice site stores a sequence of photons
in its Voronoi cell (Fig. 2b). For each stored photon at position x, the
nearest lattice site xi is computed and only the offset o from x to xi is
stored. The offset o is quantized into 256 levels in each axis so that
o can be compactly represented in 3 bytes. This 3-byte representation
increases the photon position accuracy by 256 times of the lattice res-
olution, while it only needs 25% of the storage space of the traditional
floating point representation. Because the search radius for the radi-
ance estimation is usually much larger than the link length, it is good
enough for most rendering applications. The Voronoi cell (Fig. 2b) of
an FCC lattice site is a rhombic dodecahedron. Assuming a unit dis-
tance between neighboring sites, the distance from the lattice site to

the vertices of its Voronoi cell is
√

2
2 . The maximum error introduced

by this offset quantization scheme is
√

3
2 · 1

255 ·
√

2
2 .

For photon direction encoding, vectors ω are converted to spherical
coordinates and represented with 2 bytes [15]. Because the photon en-
ergy does not change, only one byte is used to record the color channel
of the photon. In total, the storage space of one photon is just 6 bytes.

In the rendering pass, the radiance at each sampling point is esti-
mated with the photons stored in the lattice photon O-Buffer. For a
spherical search neighborhood S with radius r, the lattice sites in the

sphere S′ of radius r+
√

2
2 are retrieved because the maximum distance

from a lattice site to the photons stored in it is
√

2
2 . Then, the photons

stored in these lattice sites are visited. If the distance to the sampling
point x is larger than r, the photon is discarded. The radiance at x is
summed over all the photons inside S with

R(x,ω) = E ∑
p

σs(ωp,x) f (x,ω,ωp)g(xp − x) (10)

where xp and ωp are the photon position and direction, respectively.
The term E is the energy of the photon, which is the same for all
photons since the Russian Roulette scheme is used.

Our diffuse photon tracing algorithm is capable of tracing multi-
million photons in seconds. With the FCC lattice, the photons move
on the lattice links and are scattered only on the lattice sites. There-
fore, the most time consuming steps in traditional methods such as
sampling the lighting properties, calculating scattered directions with
phase functions are greatly simplified. Its major disadvantage is the
ray effect, which cannot be neglected in certain cases, for example,
in reflection, refraction or scattering on specular surfaces, and hard
shadows. The specular photon tracing solves this problem but is much
slower.

5 IMPLEMENTATION

We have implemented the algorithms described in Section 4 to render
participating media and volumetric datasets. Since the reconstruction
process in the current scanning modalities such as MRI and CT only
produce rectilinear data, the FCC data we used are generated by re-
sampling existing rectilinear volumes or voxelizing geometric objects.
In the resampling process, a windowed sinc filter has been used to
obtain optimal signal reconstruction quality.

We use the incremental triangle voxelization method [7] to vox-
elize polygonal models to the FCC lattice. The original method was
proposed for volumes of CC lattices, but the employed distance-based
method enables its direct application to the FCC lattice.

For surface voxelization, the volume density of a lattice site p is
determined by the distance between p and its closest triangle. Each
triangle is processed in the following manner. For each lattice site p
in the neighborhood of the triangle, the distance d between p and the
triangle is computed. The distance d is positive if p is in the normal
direction of the triangle, or negative if p is in the reverse direction. If
|d| is smaller than the previously stored absolute value of the distance,
|d| replaces the previous stored value and the density of p is updated



with the following equation:

density =







1 if d < −W,
0 if d > W,

0.5× (1− d
W ) otherwise,

(11)

where W is the width of the oriented box filter. While for a CC lat-
tice the optimized width was estimated to be 2

√
3 voxel units [7], we

estimate that for an FCC lattice, the optimized width of the filter is
decreased to 2 lattice units. Based on the surface voxelization result,
the interior of the solid is voxelized using seed growing.

For inhomogeneous participating media, such as clouds and smoke,
the absorption coefficient σa(x) and scattering coefficient σs(x) typi-
cally do not rely on the light direction, although our algorithm is ca-
pable of rendering anisotropic media. The volume data of the medium
usually defines the density field ρ(x) of particles. We assume that the
σa(x) and σs(x) are proportional to the local density ρ(x). For FCC
lattices where the lattice links have unit lengths, it implies:

σa(x,ω j) = σaρ(x), and σs(x,ω j) = σsρ(x). (12)

where σa and σs are user-defined scaling coefficients. In real world
phenomena, most practical participating media are isotropic and the
phase function f (x,ω,ω ′) does not vary upon position x. In our imple-
mentation, f (x,ω,ω ′) = f (ω ·ω ′) is described with the Schlick model
[1]. The participating medium is represented with an FCC lattice of
densities and all the coefficients are calculated by scaling ρ(x).

Our algorithms support chromatic participating media, where the
coefficients σa(x,λ ) and σs(x,λ ) are wavelength-dependent. We im-
plement it by defining scaling factors of absorption and scattering in
RGB channels. The photons emitted from the light sources can be
red, green or blue randomly. The photon tracing program calculates
σa(x,λ ) and σs(x,λ ) with proper scaling factors in the color channel
of the traced photons. In the rendering pass, the opacity value α of a
sampling point is the average extinction of those in three channels:

α =
1

3
(σt(x,λr)

d +σt(x,λg)
d +σt(x,λb)

d) (13)

where d is the step size.

For general volume datasets, transfer functions have been exploited
to define lighting properties from the density field. Some 2D transfer
functions might also use the gradient information. Our framework is
general and capable of integrating any transfer function as long as the
input data (density, gradient or any other data) of the transfer function
is defined on the lattice. In our current implementation, a 1D transfer
function is defined for σa and σs in each RGB channel. Eqn. 13 can
be used to compute the opacity α or a separate transfer function can
be defined for α .

Following the photon tracing computation, a single-pass ray-casting
approach is employed on the GPU to render the diffuse photon tracing
results. We used an algorithm similar to [19], except that the sampled
volume density is used for obtaining the scattered coefficient as well
as transparency values to composite the final radiance results. Here, in
addition to the density volume, an additional photon storage volume
that records the diffuse photon distribution on each lattice site is sam-
pled to composite ray values. Both the density and the diffuse photon
volumes are FCC lattices, stored and indexed as described in Section
2. The diffuse photon storage table is essentially a 12-element array,
each of which records the number of photons stored along 12 different
lattice links. A two-byte unsigned short is allocated for each such node
to provide a count of up to 65536. To compute the radiance estimation
at each sampling point, dot-products of each lattice link with the cur-
rent viewing ray are used to weight individual diffuse radiance value,
which is given by indexing the photon distribution previously com-
puted on the lattice. The 12 weighted values are then summed up to
yield the final contribution. Filtering on all lattices uses the Gaussian
kernel of size 2 and the sum is normalized at the end.

6 RESULTS

We have implemented our algorithms on a 3.4GHz PC with 3GB mem-
ory and a Geforce 8800 GTX graphics card. All the resulting images
are of 512×512 resolution and cropped in Figs. 4-8.

Fig. 4 demonstrates the rendering results of participating media
with our algorithms. We use a single light of white color placed on top
of the smoke dataset. Table 1 gives the times of different algorithms
used to render the corresponding images.

In Fig. 4b, the eccentricity coefficient k of the Schlick phase
function is set to 0.2. The absorption and scattering coefficients are
σa = 0.08 and σs = 0.2, respectively. Fig. 4c uses the same coef-
ficients except that the eccentricity k is −0.5 for strongly backward
scattering. The photon tracing of 1 million photons and subsequent
rendering passes cost about 11 and 48 seconds on the CPU, respec-
tively. With GPU acceleration, the time of the rendering stage is re-
duced to 2.4s. This performance is significantly faster than the orig-
inal photon mapping method [16], where the tracing 10K photons in
a cloud model of similar size takes 8 seconds on an HP computer of
16 180MHz PA-8000 processors, while rendering a 1024 pixel wide
image takes 92 seconds. Note that although a higher resolution is used
in Jensen and Christensen’s method [16], the complexity of the al-
gorithms is mainly determined by the number of photons, of which
our example generates 100 times more. A major further enhancement
of our implementation can be achieved by incorporating empty space
skipping or adaptive sampling techniques that are used by Jensen and
Christensen [16].

Fig. 4d has been rendered using specular photon tracing with the
same medium properties as Fig. 4b, and the rendering time is sim-
ilar to traditional photon mapping methods [16]. With our compact
FCC O-Buffer data structure, 5.8 million stored photons only consume
35MB of memory space. The search radius for radiance estimation is
changed from 2.0 to 3.0 to remove the stochastic variance. Given the
same number of photons, diffuse photon tracing is approximately 21
times faster than specular photon tracing and the corresponding ren-
dering pass is 15 times faster. We observed that the image produced
from our lattice-based framework using diffuse photon tracing (Fig.
4b) is comparable to the image using specular photon tracing (Fig.
4d), and has a similar quality and appearance of those computed with
traditional photon mapping methods (such as Figure 12.10 of [23]).
However, our framework has much better performance.

In Fig. 4e, the absorption coefficient has been made wavelength-
dependent and the values in RGB channels are σa = (0.08,0.15,0.3),
while the scattering coefficient is the same as in Fig. 4b. The time of
the rendering pass increases to 52.7 seconds mainly because the radi-
ance estimation is performed in 3 channels. In Fig. 4f, the scattering
coefficient in the blue channel has been changed to 0.4 and the eccen-
tricity coefficient k has been changed to 0.5. In Figs. 4e and 4f, the
upper part of the smoke is grey but the lower part under the shadow of
the upper part becomes orange because of the different absorption and
scattering coefficients in the RGB channels.

Fig. 5 demonstrates another example of participating media. The
eccentricity coefficient k of the Schlick phase function is 0.2. The
absorption and scattering coefficients are σa = 0.05 and σs = 0.1, re-
spectively. One million photons have been traced in 12.7 seconds and
the rendering pass amounted to 98.5 seconds on the CPU and 5.5 sec-
onds on the GPU.

Fig. 6 displays the foot of the visible human CT data. Fig. 6a
is rendered using a ray casting method with local illumination. Fig .
6b has been rendered using our diffuse photon tracing algorithm. The
bone appears semi-translucent and brighter and has soft self-shadows
due to multiple scattering. In Fig. 6c, the muscle and soft tissue are
displayed with red color with the absorption coefficient similar to 6a.

Fig. 7 and Fig. 8 are the rendering results of the engine and lobster
data, respectively. Fig. 7a has been rendered using ray casting with
local illumination and the other two images have been rendered with
our framework and indeed the objects appear substantially different.
In Fig. 7b, the material absorbs green and blue photons faster and
becomes more red gradually through the light direction. In Fig. 7c,
the high density region appears saturated red for emphasis and the sur-



(a) (b) (c)

(d) (e) (f)

Fig. 4. Inhomogeneous smoke rendered with global illumination (multiple scattering) and an anisotropic phase function. The original data is
100×100×40 and we sampled it into a 108×100×56 FCC lattice with a windowed sinc filter. The algorithms used are (a) ray casting; (b) our diffuse
photon tracing; (c) our diffuse photon tracing with strong backward scattering; (d) our specular photon tracing; (e) and (f) our multi-channel diffuse
photon tracing.

Table 1. Times used to render the smoke in Fig. 4. From left to right, the columns represent the algorithm used, the number of photon traced (in
millions), photon tracing time (in seconds), and rendering time (in seconds) on the CPU and the GPU.

Algorithm Photon count (M) Photon tracing (s) CPU rendering (s) GPU rendering (s)

Fig. 4a ray casting N/A N/A 20.6 1.0

Fig. 4b diffuse photon tracing 1.0 11.3 48.1 2.4

Fig. 4c diffuse photon tracing 1.0 11.7 48.1 2.4

Fig. 4d specular photon tracing 0.1 27.0 729.0 N/A

Fig. 4e multi-channel diffuse photon tracing 3.0 48.5 52.7 2.6

Fig. 4f multi-channel diffuse photon tracing 3.0 48.6 52.7 2.6

Fig. 5. Cloud rendered with our diffuse photon tracing. The resolution
of the data is 96×74×143.

rounding region is less saturated red due to color bleeding. The mater-
ial of the objects is easily controlled and changed using user specified
transfer functions. In Fig. 8b, the lobster shell absorbs green and blue
photons faster than red ones and scatters red photons more than green
and blue ones. The shell appears red and the muscle casts soft shadows
onto itself. Fig. 8c displays the data from a different camera position.

7 DISCUSSION

In our framework, a photon is saved at every step of the first pass,
regardless of whether it is scattered or not. A stored photon repre-
sents a possible path from the light sources. In the ray tracing pass,
the radiance estimation actually calculates the density of photon paths
at the sampling positions. In contrast, the traditional photon mapping
method uses the probabilistic sampling technique to calculate the step
size, and the expected step size is 1/σt . Usually σt is small and trac-
ing a photon can generate many more stored photons in our algorithms
than in photon mapping. Moreover, the FCC lattice provides a more
efficient data structure to store photons. In diffuse photon tracing, each
lattice site stores multiple photons. In radiance estimation, the contri-
bution of multiple photons on a lattice link is computed jointly using
Eqn. 9. Suppose the radiance estimation searches photons in the spher-
ical neighborhood S, and there are k0 sites and k1 photons inside S. It
costs O(k0) time for diffuse photon tracing and O(k0 + k1) for specu-
lar photon tracing. However, it costs O(k1 + logn) time with the k-d
tree data structure in photon mapping, where n is the total number of
photons. Also, the k-d tree need to be built before the rendering pass,
which costs O(n logn) time. However, our algorithms do not need
such a preprocessing step.

There are other simplified lighting models for participating media
and volumes [13, 14, 18, 26]. For all these methods, only forward
scattering is considered and lighting values are propagated from slice
to slice. The value of each pixel is calculated by sampling and at-
tenuating neighboring pixels (up to 4) on the previous slice. In other
words, forward scattering is calculated in several directions in the 2π



(a) (b) (c)

Fig. 6. Global illumination of a CT scan of the visible human foot. The original data is 1283 and the sampled FCC lattice is 128× 128× 180. The
images are rendered with (a) ray casting with local illumination; (b) our diffuse photon tracing; (c) our multi-channel diffuse photon tracing.

(a) (b) (c)

Fig. 7. Global illumination of an industrial CT scan of an engine. The original data is 128×128×64 and the sampled FCC lattice is 136×136×98.
The images are rendered with (a) ray casting with local illumination, (b) and (c) our multi-channel diffuse photon tracing.

(a) (b) (c)

Fig. 8. Global illumination of a CT scan of a lobster. The original data is 128×127×28 and the sampled FCC lattice is 114×113×35. The images
are rendered with (a) ray casting with local illumination; (b) and (c) our multi-channel diffuse photon tracing.

Table 2. Rendering of the foot, engine and lobster data in Figs. 6, 7 and 8. The meaning of the columns are the same as in Table 1.

Algorithm Photon count (M) Photon tracing (s) CPU rendering (s) GPU rendering (s)

Fig. 6b diffuse photon tracing 1.0 27.0 98.0 4.7

Fig. 6c multi-channel diffuse photon tracing 3.0 86.1 118.6 5.8

Fig. 7b multi-channel diffuse photon tracing 9.0 136.4 110.6 5.4

Fig. 7c multi-channel diffuse photon tracing 9.0 147.9 110.7 5.4

Fig. 8b multi-channel diffuse photon tracing 3.0 26.9 40.7 2.0

Fig. 8c multi-channel diffuse photon tracing 6.0 53.9 37.9 1.9



solid angle. Our algorithms can handle scattering within the entire 4π
solid angle. Also, our methods can store photons from multiple light
sources in one volume, while previous methods do not support multi-
ple light sources. The method of Max [20, 21] is more accurate than
ours but runs slowly.

The idea of tracing photons on the lattice links is general and might
be applied to other lattices such as the CC lattice. However, a CC lat-
tice site only has 6 nearest neighbors, which is definitely not enough
for discretizing the phase function. Consider a strongly forward scat-
tering phase function, a photon arriving from a link can only move
forward on its original direction or be scattered to 4 directions perpen-
dicular to its incoming direction. Although we can add links between
the secondary or tertiary neighbors, this solution needs to calculate
and store the absorption and scattering probabilities of links with vary-

ing length (1,
√

2 and
√

3), thus making the photon tracing algorithm
more complicated and time consuming. Instead, a FCC lattice site has
12 nearest neighbors, which is sufficient in photon tracing (in previous
systems, only 4 or 5 directions are used for forward scattering). The
link length in the FCC construction is uniform, which greatly simpli-
fies the computation and storage: the absorption and scattering proba-
bilities on 12 links of a site are the same and stored only once on the
site. Moreover, the FCC lattice has better sampling efficiency than the
CC lattice. With the same number of sites, FCC captures 23% more
information. In addition, the maximum distance of an arbitrary point

to its nearest site is
√

2
2 in FCC instead of

√
3

2 in CC, which means
18.4% less quantization error of photon positions with the O-Buffer
data structure.

8 CONCLUSIONS AND ONGOING WORK

We have presented a novel framework for volumetric global illumina-
tion based on FCC lattices. Benefitting from the FCC lattice unique
geometric and sampling properties, we were able to develop algo-
rithms that can render participating media and volumes with multi-
ple scattering effects. Our diffuse photon tracing algorithm renders
high quality images at a speed significantly faster than conventional
methods. We have also described a memory efficient specular photon
tracing algorithm. In future work, our plan is to extend our framework
to render hybrid scenes of volumetric datasets and surface objects with
specular reflection and refraction.

Our current implementation only uses 12 links to the nearest sites on
the FCC lattice. For future efforts, we consider incorporating the links
connecting the secondary and tertiary neighbors to increase the angu-
lar discretization granularity. With these additional links, the phase
function can be discretized with even higher precision, thus more ac-
curate radiance estimation will be obtained. In doing so, a total of 42

neighbors with distance less than
√

3 will have to be considered and
different link lengths will participate in the computation of the absorp-
tion and scattering coefficients. Hence, a more efficient data structure
will be required for diffuse photon storage. We also consider applying
our general framework to other types of particles or waves, such as
phonons and Huygens’ wavelets, to solve their energy and wave prop-
agation problems. Last, we would like to accelerate the photon tracing
pass on the GPU to improve the overall framework performance.
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