
Eurographics/ IEEE-VGTC Symposium on Visualization 2008
A. Vilanova, A. Telea, G. Scheuermann, and T. Möller
(Guest Editors)

Volume 27 (2008), Number 3

Illustrative Parallel Coordinates

K. T. McDonnell1 and K. Mueller2

1Department of Mathematics and Computer Science, Dowling College, NY, USA
2Center for Visual Computing, Stony Brook University, NY, USA

Abstract

Illustrative parallel coordinates (IPC) is a suite of artistic rendering techniques for augmenting and improving
parallel coordinate (PC) visualizations. IPC techniques can be used to convey a large amount of information about
a multidimensional dataset in a small area of the screen through the following approaches: (a) edge-bundling
through splines; (b) visualization of “branched ” clusters to reveal the distribution of the data; (c) opacity-based
hints to show cluster density; (d) opacity and shading effects to illustrate local line density on the parallel axes;
and (e) silhouettes, shadows and halos to help the eye distinguish between overlapping clusters. Thus, the primary
goal of this work is to convey as much information as possible in a manner that is aesthetically pleasing and easy
to understand for non-experts.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Display algorithms I.3.3
[Computer Graphics]: Interaction techniques

1. Introduction and Related Work

During the mid-1980s and early 1990s Dimsdale and Insel-
berg [ID90] introduced a technique for visualization of mul-
tidimensional data they called parallel coordinates (PC). In
this approach, each dimension is drawn as a vertical (or hor-
izontal) line, and each multidimensional point is visualized
as a polyline that crosses each axis at the appropriate posi-
tion to reflect the N-D position. As can be seen in Figure 1,
the parallel coordinates methodology facilitates the 2D ren-
dering of very complex datasets in a single image.

The technique suffers from a few shortcomings, which
have been addressed by numerous researchers over the years.
For example, PC plots tend to be very cluttered, with poly-
lines crossing and overlapping each other. One popular way
to address this problem is to use clustering of the dataset
[WL97], such as k-means clustering [Mac67], to group
nearby N-D points into a single representative N-D point.
The clusters themselves can be drawn as heavy polylines on
top of the PC plot, and the polylines can be assigned colors
to shown their memberships in the mutually disjoint clusters.
Other approaches employ multiresolution techniques and
impose a hierarchical structure on the data [FWR99]. Algo-
rithmic approaches, like dimension reordering [PWR04], re-
structure the datasets in an automatic or semiautomatic man-
ner so as to minimize clutter. Brushing [FWR00] is a useful

Figure 1: Traditional parallel coordinates visualiza-
tion (color-coded by cluster) of the 392-point, seven-
dimensional “cars” dataset. Point distributions along axes
are given by histogram bars. All datasets visualized in
this paper are courtesy of the XmdvTool home page
(davis.wpi.edu/∼xmdv).

technique for minimizing clutter that permits one to manu-
ally omit portions of the data during rendering. Several re-
search teams [NH06,ED06] have also successfully used vari-
ous focus+context approaches to reduce clutter and to enable
the analyst to glean insights into extremely dense datasets.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.



K. T. McDonnell & K. Mueller / Illustrative Parallel Coordinates

Figure 2: An example of illustrative parallel coordinates (IPC) showing some of the major features of our new visualization
approach. Shading and opacity are used extensively in IPC to convey information.

Density-based approaches [WL97, JLC07, MW91], includ-
ing those that employ transfer functions [JLJC05], can also
be very helpful in achieving a high-level view of the distribu-
tion of the data and can reveal features that may be obscured
by numerous overlapping line segments.

Unfortunately, PC plots often do not clearly convey the
distribution of the data on each axis. That is, with so many
overlapping lines it can be difficult to discern how dense or
sparse are the data points on each dimension. A simple so-
lution to this problem is to overlay a bar chart-style render-
ing of a histogram on each axis [HLD02]. The heights of
the bars indicate how many lines intersect the small region
covered by each bucket of the histogram. This approach typ-
ically works well in practice, but gives the distribution along
the entire axis and not on a per-cluster basis.

1.1. Contributions

In this work, we seek to build on the many successful efforts
to enhance parallel coordinates plots and offer a new suite of
techniques which we called illustrative parallel coordinates
(IPC). The overarching philosophy behind IPC is to generate
parallel coordinate-style visualizations that convey a large
amount of information about the dataset in a relatively small
area of the screen. Illustrative rendering techniques comprise
a proven strategy for revealing structure in data and have
been employed with great success in other sub-domains of
visualization, such as volume visualization [RE01,LFP∗90].
Hence, our major goal is to produce abstract renderings of
complex, multi-dimensional datasets that reveal large-scale
structures. It is also desirable to create aesthetically pleas-
ing visualizations that draw the eye to important features of
the data, such as the distribution of values and the density
of the points. We achieve these goals by devising new il-
lustrative rendering techniques and by improving upon ex-
isting parallel coordinate visualization methodologies. The
specific benefits of IPC and the contributions of this research
are as follows:

• Each data-point can be rendered as a polycurve, i.e., a
collection of end-point interpolating B-spline curves. Do-
ing so facilitates the creation of edge bundles [Hol06] and
serves to de-clutter the visualization.

• Clusters are visualized as a collection of semi-transparent
polygons bounded by spline curves, which show the ex-
tents of the clusters and which can be scaled to control the
screen area they consume. Higher cluster opacities corre-
spond with clusters containing more points.

• The distribution of the data can be viewed at different lev-
els of detail by displaying the clusters in a branched, tree-
like manner.

• A density plot that conveys the distribution of the lines
or curves between axes can be used to show correlations
between axes.

• The distributions along individual axes are shown as faded
quadrilateral strips and provide per-cluster histograms of
the dataset for each dimension.

• Silhouettes, shadows and halos not only assist the eye in
distinguishing between overlapping clusters, but also pro-
vide an interesting artistic effect.

2. Illustrative Parallel Coordinates

Throughout the discussion that follows, we assume that a
clustering of the data has been provided. Thus, the focus of
this work is strictly on the development of new rendering
techniques for parallel coordinate plots. Although we chose
to use k-means clustering in our implementation for the sake
of speed and ease of coding, other clustering techniques –
including hierarchical approaches – could be used instead.

2.1. Notation

In this paper we will use the notation di, j to refer to the value
in dimension i of the j-th data-point, where i, j ≥ 1. We will
assume that the dimension, N, of the dataset is at least 4. The
notation vi, j will signify the screen space coordinate of point

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



K. T. McDonnell & K. Mueller / Illustrative Parallel Coordinates

di, j and is computed through a linear mapping (a transla-
tion and scaling) from dimension i to a vertical line segment
that represents the i-th axis. The notation vi,min and vi,max
will denote the respective minimum and maximum values
of vi, j over all j. We assume that the region between two
adjacent dimensions i and i+ 1 is rendered in its own view-
port [NH06]. Each viewport’s horizontal axis has the range
[−1,1], and the vertical axis has the range [−1/AR,1/AR],
where AR is the viewport’s aspect ratio. Thus, −1 is mapped
to dimension i and +1 is mapped to dimension i+1. The no-
tation ci will refer to cluster i and ci,µ to the center of cluster
i. Note that we are assuming that dimension i is mapped to
the i-th axis, although this could be generalized easily to ac-
commodate re-ordered axes.

2.2. Edge Bundling

Building on the hierarchical edge bundling concept [Hol06],
we can employ B-spline curves [PT97] in IPC to replace
polylines with polycurves and thereby decrease the amount
of screen real estate required by the PC plot. Graham and
Kennedy [GK03] also proposed using curves instead of
polylines in PC plots, but their goal was to aid the eye in trac-
ing data points across the axes. Among Moustafa and Weg-
man’s generalizations of parallel coordinate plots [MW02]
is also a set of techniques for curve-based PC plots designed
to quantize the data and better facilitate analysis. Our im-
plementation employs end-point interpolating B-splines and
features a global tension parameter, β, that ranges continu-
ously between 0.0 and 1.0. Higher values of β result in less
curved splines. The control points are computed as a func-
tion of the original polyline and the cluster to which the point
belongs.

To take an example, when using quadratic curves, the po-
sitions of the three control points are given in viewport co-
ordinates as (−1,vi, j), (0,βm + (1 − β)p) and (1,vi+1, j),
where m is the mid-point of vi, j and vi+1, j, p = ck,µ +
λ(ck,µ −m), and ck is the cluster to which p belongs (see
Figure 3). The λ factor helps to increase the curvature of
the splines, and we found experimentally that values in the
range 0.5 ≤ λ ≤ 1.0 generated the most eye-pleasing results.
An example of edge bundles using quartic B-spline curves is
shown in Figure 4. We observe that the curve bundling very
effectively de-clutters the PC plot.

2.3. Spline-based Cluster Rendering

After finding the clusters, the number of which can be set by
the user in our implementation of IPC, we can visualize each
cluster as a collection of semi-transparent colored polygons
that show the extent of each cluster on each axis. The center
of the cluster in N-D space is mapped to the axis through
a simple projection. The vertical thickness (height) of the
cluster on each axis is controlled through a combination of
the standard deviation of each dimension i for a particular
cluster (ci,σ) and a cluster scaling parameter (h) set by the
user. The parameter h is useful for shrinking the screen area

Figure 3: Each polyline of a traditional PC plot can be
transformed into a polycurve to create edge bundles.

Figure 4: Edge bundles group polylines into tight groups of
polycurves in the “cars” dataset. Curves of the same color
are in the same cluster.

taken up by each cluster, which helps to reveal the structure
of clusters obscured by other clusters. Examples can be seen
in Figure 5.

Now, given the mean (ci,µ) and standard deviation of the
cluster in screen coordinates, the on-screen top extent for di-
mension i is given by the minimum of vi,max and the screen-
space projection of ci,µ +hci,σ. Likewise, the on-screen bot-
tom extent of the cluster is given by the maximum of vi,min
and the screen-space projection of ci,µ − hci,σ. Thus, even
if a very large scale factor is employed, the top and bottom
boundaries of the on-screen representation of the cluster will
never extend beyond the actual extents of the cluster. This
can be seen clearly in the images of Figure 5 on the axis
marked “22s” (third from left). In this dimension, the cluster
colored green includes points in a very narrow range.

The curvature of all cluster boundaries can be controlled
through a global tension parameter, such as the β mentioned
earlier, or an independent one. By modifying the tension of
the cluster boundaries, we can reveal clusters occluded by
other clusters. The upper and lower boundaries of a clus-
ter are given by end-point interpolating B-spline curves. For
each cluster we know the extents of the cluster on each axis
in screen space. Taking two adjacent axes at a time we have

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



K. T. McDonnell & K. Mueller / Illustrative Parallel Coordinates

Figure 5: Scaling the clusters permits one to generate a
wide range of visualizations. Shown is part of the “scanbio”
dataset for cluster scaling factors (h) of 0.5, 3.0 and 12.0,
respectively, and with an opacity scaling factor (αs) of 0.5.

four positions that form a quadrilateral. Call these positions
tl , tr, bl and br for the top-left, top-right, bottom-left and
bottom-right corners, respectively. Also define tm and bm as
the top mid-point and bottom mid-point as the screen-space
mid-points of the line-segments formed by tltr and blbr, re-
spectively. Now, the 2D control points of the upper curve
can be given by the triplet (tl ,βtm +(1−βbm), tr) and those
of the bottom curve as (bl ,βbm + (1− βtm),br). Examples
of cluster boundaries for different values of β are given in
Figure 6. Once the control polylines have been determined,
the two curves are discretized at the same sampling rate.
Quadrilaterals are constructed by connecting pairs of adja-
cent points in the top spline to pairs of adjacent points in the
bottom spline. Specifically, sample points i and i + 1 in the
top spline are combined with sample points i and i+1 in the
bottom spline to draw the quadrilateral.

We can also employ opacity modulation to encode the
size of the clusters, where by “size” we mean the number
of points in the cluster. Specifically, given the size, n(ci) of
cluster i, we assign it an opacity of n(ci)/max

j
{n(c j)}. Thus,

the cluster with the greatest number of points will have the
maximum opacity of 1.0. It is also desirable to give the user
the ability to further modulate the opacities of the clusters
through a global scaling factor (call it αs, with 0 ≤ αs ≤ 1)
so that the cluster with greatest size need not always have full
opacity. Thus, in practice, each cluster is assigned an opacity
equal to αsn(ci)/max

j
{n(c j)}. As can be seen in examples in

Figure 7, opacity can play a significant role in both revealing
details hidden behind foreground clusters as well as produce
very colorful images. One improvement would be to allow
the opacity to be modulated on a local level to allow the user
to focus in on a particular feature of the dataset. This would
be interesting to investigate in a future effort.

2.4. Branched Clusters

A straightforward rendering of the clusters does not pro-
vide much insight into the distribution of the dataset along
the axes. We have devised a new branching technique that
can reveal how densely or sparsely the data are distributed
throughout the N-D space. Specifically, we can control the
amount of branching by setting a percentage (call it w%) that
indicates the minimum width of any branch. For instance,

Figure 6: A portion of the “venus” dataset with spline ten-
sion (β) values of 0.15, 0.50 and 0.85, respectively.

Figure 7: Visualizations of a portion of the “out5d” dataset
with opacity scaling (αs) values of 0.5, 0.75 and 1.0, re-
spectively. Of the four clusters shown, the red one has the
greatest size; thus, it has full opacity when αs = 1.0.

if the percentage is 5% and the height in screen space of
the axis is 500 pixels, then the minimum branch height is
25 pixels. As this percentage is decreased, thereby permit-
ting the creation of thinner branches, large branches split
into smaller ones. Conversely, as the percentage is increased,
small branches merge to form larger ones.

To construct the branches for a given axis with a minimum
width of w%, we first sort the values corresponding with the
dimension of this axis into an array separate from the orig-
inal dataset. Then, we iterate through the values starting at
the smallest and group those values lying near each other.
The boundary between two groups is determined when the
distance between two successive values is greater than some
threshold. In our implementation we set this minimum dis-
tance to be approximately w%, which prevents the branches
from touching and helps the eye to separate them. A branch
can then be displayed as a pair of spline curves bounding a
group of quadrilaterals. Our implementation uses the same
discretization sampling rate and rendering approaches de-
scribed in the previous section.

Examples of branching with different w% values are given
in Figure 8. We see how increasing the value of w% de-
creases the branching factor and permits us to view the
dataset at different levels of detail. It is important to note that
is possible for a single point (e.g., an outlier) to be mapped
to a single branch. One might expect this situation to gener-
ate a very undesirable, sliver-like branch with a width of one
pixel. However, this possibility is avoided through our use

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



K. T. McDonnell & K. Mueller / Illustrative Parallel Coordinates

Figure 8: Branching of the clusters provides insight into the distribution of the data. Shown is the “netperf” dataset with
minimum branching widths (w%) of 4.6%, 6.1% and 10.0%, respectively. As w% increases, small branches merge together.

of the w% parameter, which, by design, forces each branch
to have a minimum width significantly larger than a single
pixel.

2.5. Silhouettes, Shadows and Halos

All of the visualizations in this paper show IPC plots with
silhouettes, which help one to distinguish between overlap-
ping clusters. Silhouettes comprise a well-known technique
for clearly marking the boundaries of iso-luminant regions.
In IPC, silhouettes consist of B-spline curves drawn on top
of the splines that define the boundaries of each cluster. In
our implementation they are assigned the same hue as their
cluster but a lower brightness so as to contrast them with the
cluster’s base color. They are very clearly visible in Figure 7.

Shadows can also play a valuable role in distinguishing
the boundaries of overlapping clusters. Although all clusters
are drawn on the plane, the order in which they are drawn
determines how the opacities are blended in the final image.
Shadows help to clarify which clusters are on top of which,
particularly when the clusters are drawn with high opacity,
as shown in Figure 9. They also improve the visual quality of
the renderings and make the clusters show up more clearly
on the display. We found that they are best used in conjunc-
tion with silhouettes.

In our implementation, shadows are drawn by rendering a
strip of dark gray quadrilaterals whose opacities fade from
1.0 to 0.0. This provides the desirable soft shadow effect
shown in the figures. Near the junction of two branches,
it is necessary to taper the shadows. Otherwise, the shad-
ows overlap with the clusters themselves and cause the visu-
ally distracting artifacts. In our implementation we taper the
shadows down to a thickness of 0.0 near junctions so as the
accommodate the rendering of branches very close together.
Last, glowing halos [ARS79,IG98] can be created by chang-
ing the shadow color to a non-grayscale value; they provide
an eye-catching visual effect.

2.6. Faded Histograms within Clusters

Histograms are sometimes overlaid on parallel coordinate
plots to give a sense of the data’s distribution on each di-
mension. We have incorporated this idea into IPC and have

improved upon it by using fading, shading and warping in
drawing the histograms. Even more importantly, our faded
histograms provide distributions of the dataset within each
cluster on each axis. The count of each entry bi, j (“bucket”)
in the histogram for axis i is normalized by dividing each
bucket’s value by the maximum value in any bucket in that
axis’s histogram. Call this normalized value b′i, j . Then, the
triple (b′i, j, b′i, j , b′i, j) is treated as an RGB grayscale value.
Thus, black corresponds with an empty bucket and white
with the bucket of greatest magnitude. Each bucket is ren-
dered as a quadrilateral strip with high opacity at the axis it-
self and tapering off to an opacity of zero away from the axis.
We found through experimentation that it is best to visual-
ize the histograms in this approach by displaying the clus-
ters one at a time. Otherwise, the clusters’ semi-transparent
quadrilaterals overlap, and it can become difficult for one to
discern which histogram belongs to which cluster. One way
to avoid this problem is to visualize all clusters at full opac-
ity.

To render the histograms, we treat them as bar charts
that have been warped according to the spline tension pa-
rameter (β) set by the user and by the geometry of the
branches. Since the bars are deformed, we will refer to them
as “stripes” throughout this discussion. Bucket stripes are
drawn on a branch-by-branch basis so as to avoid drawing
stripes in empty regions lying near the axes. Within each
branch we determine which buckets lie within the branch
and draw them sequentially as warped quadrilaterals strips.
One end of the stripe is attached to an axis and the other
end to a position one-third of the distance to the neighbor-
ing branch. Note that the stripes are drawn on both sides
of each axis. The x values of the quadrilaterals are spaced
equidistantly along the horizontal. The y values are deter-
mined through linear interpolation of the y values of the two
spline curves that define the upper and lower boundaries of
the branches. Use of the splines’ y values guarantees that the
histogram stripes follow the same contours as the branches,
as can be clearly seen in Figure 10. We see that the distribu-
tions inside the branches can vary quite dramatically, a fact
which is captured quite effectively by the faded histograms.
To the untrained eye, these stripes might appear to be a form
of diffuse shading of a 3D surface. One possible solution

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



K. T. McDonnell & K. Mueller / Illustrative Parallel Coordinates

Figure 9: Shadows help the eye to determine the relative z order of clusters and provide a visually interesting rendering effect.
Shown here is the “netperf” dataset without shadows, with shadows, and with magenta halos, respectively. Note that we have
drawn the shadow a little darker and wider than usual so that it reproduces well in print.

would be to put a silhouette around each stripe, but doing so
would clutter the image.

2.7. Density Plots

For our illustrative parallel coordinate framework we have
devised a technique to generate a density map from the poly-
lines or polycurves so as to give a high-level view of the data
distribution and to provide an artistic means of revealing cor-
relations between adjacent axes. For each viewport we ren-
der the polycurves of the dataset in an off-screen buffer of
the same resolution of the viewport. The curves are rendered
in black on a white background. Then, for each pixel at loca-
tion (i, j) in the buffer we count the number of black pixels
in a square-shaped neighborhood of radius rn of the pixel,
including the pixel itself. Given the count ni, j for the pixel
at (i, j), we can now define a density value gi, j = ni, j

2rn+1 and
generate a density map image. The pixels of this image – ex-
cept for the white pixels, which represent zero density – must
then be inverted so that regions of high density correspond
with black and dark gray. That is, each density value gi, j
is replaced with 255−gi, j, assuming we are using 8-bit tex-
tures. To improve the contrast of this inverted image, we then
perform a histogram equalization. Next, several applications
of a low-pass filter improve the overall density map quality.
Optionally, a transfer function can then be applied to map
density to color. Finally, the image is texture-mapped onto
a quadrilateral, which is then rendered semi-transparently in
the viewport. The cluster branches, silhouettes, histograms
and other elements are then rendered on top of the density
map. An example of a colored density map is shown in Fig-
ure 11c. Green indicates low density and red denotes high
density. As we can see in the image, there is a strong neg-
ative correlation between the rightmost two axes and little
or no correlation between the third and fourth axes from the
left.

Through experimentation we found that for a viewport of
128× 512 pixels, a neighborhood radius (rn) of at least 10
pixels provides a good starting point for generating the den-
sity map. Our implementation then applies a low-pass filter
20 times to the entire image to smooth the map. On the rel-

Figure 10: A portion of the “iris” dataset with histograms
rendered in the traditional way and with our new approach.
For the sake of this example we grouped the data into a sin-
gle cluster.

atively low-end 2 GHz machine on which IPC was imple-
mented, the entire process discussed above usually required
approximately one second per viewport.

2.8. Implementation Notes

The images shown throughout this paper were generated by
our C++/OpenGL implementation of illustrative parallel co-
ordinates. Each axis is rendered in a separate viewport of
128×512 pixels, which we found provided sufficient width
for all the IPC effects to be useful. The development plat-
form was a 2 GHz laptop with 1 GB RAM, and all visual
effects, except for cluster identification and generation of
the density maps, could be generated at interactive rates for
the datasets shown in this paper. We employed very little in
the way of GPU acceleration, although it is quite conceiv-
able that certain operations – most notably, the density map
generation and spline curve generation – could be acceler-
ated by shifting them to the GPU. The system also contains
an FLTK-based GUI for changing the rendering parameters
(www.fltk.org). Changes to these parameters are reflected in
the display in a fraction of a second, even when all visual

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



K. T. McDonnell & K. Mueller / Illustrative Parallel Coordinates

effects are enabled. The drawing of the spline curves can be
costly for larger datasets, but even for the “out5d” dataset,
which consists of 16,384 points, about one second was re-
quired to render all the viewports. Thus, we are very con-
fident that the techniques we have introduced in this paper
could be incorporated into existing parallel coordinate visu-
alization systems without imposing a serious performance
penalty.

2.9. Caveats

As mentioned in several places, one must be prudent in mix-
ing the different IPC techniques in a single visualization.
For instance, the polycurves and density plots work well in
conjunction with each other, but do not provide satisfactory
results when rendered with the histogram stripes. Second,
sometimes it is desirable to use halos instead of black shad-
ows so as to avoid mistaking a dark shadow with a dark
histogram stripe. It depends primarily on how many over-
lapping clusters are visualized at once. Third, rendering the
polycurves with the branches occasionally provides unsat-
isfactory results, particularly when the polycurves are not
tightly clustered and/or they are drawn with very low ten-
sion.

3. A Dataset in More Detail

In this section we continue to explore the well-known, 7-
dimensional, 392-point “cars” dataset. As we saw earlier,
Figure 1 gives a traditional parallel coordinates plot. As dis-
cussed in Section 2.2, edge-bundling (Figure 4) greatly re-
duces the clutter and gives one an immediate sense of the
distributions of the clusters. The overall structure of the clus-
ters is comparatively difficult to see in the traditional plot.
Now, in looking at Figure 1, it is not clear which of the
three clusters has the most points. It looks likely that the blue
cluster does, but the overlapping lines prevent us from mak-
ing a definitive call. If we visualize the clusters in branched
form (Section 2.4) and enable density-based opacity modu-
lation (Section 2.3), we find that the blue cluster is indeed
the largest (Figure 11a).

Although the traditional histograms given in Figure 1 in-
dicate the overall distribution of the dataset along each axis,
it would be helpful to understand the distributions within
clusters. The traditional plot, even when color-coded by den-
sity, cannot effectively provide this information, particularly
in the middle portion of the plot. In contrast, the faded his-
tograms (Section 2.6) given in Figure 11b reveal some in-
teresting aspects that are invisible in the traditional plot. For
instance, one can notice a bright spot in the red cluster along
the “Acceleration” axis (third from right), indicating a lo-
cally dense group of points in that cluster. To take another
example, the blue cluster along the “Horsepower” axis (third
from left) seems to exhibit a fairly uniform distribution of
points in the original plot. However, Figure 11b reveals that
there are three spots of high density, with the most dense in
the center. These two examples alone demonstrate that there

are aspects of the data that are virtually impossible to glean
from the original PC plot.

Last, a density plot would be helpful to understand some-
thing about the correlations between axes. Figures 1 and 4
provide some preliminary information along these lines. For
instance, it would appear that there is a strong negative cor-
relation between “Weight” and “Acceleration,” which makes
sense in the context of this dataset. Not as immediately ob-
vious is the relationship between “Cylinders” and “Horse-
power.” The density plot of Figure 11c with overlaid poly-
lines shows a strong negative correlation for high values of
“Cylinders,” and little or no correlation for lower values. The
density plot also provides insight into the last axis, “Ori-
gin.” The histogram of Figure 1 gives the impression that
few points have high values for the “Origin” dimension. The
bright red stripe traveling from the lower end of the “Year”
axis to the upper end of “Origin” reveals a much higher den-
sity of values than the original PC plot and also shows a
strong negative correlation between the two axes.

4. Conclusions

We have introduced illustrative parallel coordinates, a set
of novel rendering techniques for conveying significant and
interesting aspects of multi-dimensional data that are also
pleasing to the eye and artistic in appearance. Using our
branched representation of clusters, an analyst can very eas-
ily see the overall distribution of the data across all dimen-
sions. Faded histograms provide additional details by show-
ing the data density within each branch and along each axis.
Between axes the density hints give a notion of whether ad-
jacent axes have a positive or negative correlation, or nei-
ther. Silhouettes, shadows and halos provide their own artis-
tic touches and assist the eye in distinguishing between over-
lapping clusters. All these techniques are straightforward to
implement and most of the effects generated by our new
illustrative methods can be modified at interactive rates on
even a low-end PC.

4.1. Future Work

We envision several directions for future research. First, it
would be worthwhile to investigate GPU acceleration for
the more computationally costly aspects of IPC, such as the
spline curve generation and density map creation. Second, it
would be interesting to investigate the use of IPC to explore
temporal datasets and extend some of the ideas recently
presented by Johansson and colleagues [JLC07]. Third, we
have not considered the issue of outliers in this work, which
should play a role in cluster identification. Fourth, IPC and
parallel coordinates approaches, in general, would benefit
from increased use of multiresolution techniques to decom-
pose large datasets. Last, a user study would further assist
us in gauging the efficacy of IPC and would likely generate
additional directions for future work.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



K. T. McDonnell & K. Mueller / Illustrative Parallel Coordinates

(a) (b) (c)

Figure 11: Several visualizations of the “cars” dataset as part of the case study discussed in Section 3.

Acknowledgments

This work was supported in part by NIH grant R21
EB004099-01 and NSF grant CCF-0702699. The authors
would also like to thank the anonymous reviewers for their
helpful comments and suggestions.

References

[ARS79] APPEL A., ROHLF F. J., STEIN A. J.: The
haloed line effect for hidden line elimination. In Proceed-
ings of ACM SIGGRAPH 1979 (1979), pp. 151–157.

[ED06] ELLIS G., DIX A.: Enabling automatic clutter re-
duction in parallel coordinate plots. IEEE Trans. on Vis.
and Comp. Graph. 12, 5 (2006), 717–723.

[FWR99] FUA Y., WARD M. O., RUNDENSTEINER

E. A.: Hierarchical parallel coordinates for exploration
of large datasets. In Proceedings of IEEE Visualization
(1999), pp. 43–50.

[FWR00] FUA Y., WARD M. O., RUNDENSTEINER

E. A.: Structure-based brushes: A mechanism for nav-
igating hierarchically organized data and information
spaces. IEEE Trans. on Vis. and Comp. Graph. 6, 2
(2000), 150–159.

[GK03] GRAHAM M., KENNEDY J.: Using curves to en-
hance parallel coordinate visualisations. In Proceedings
of the Seventh International Conference on Information
Visualization (2003), pp. 10–16.

[HLD02] HAUSER H., LEDERMANN F., DOLEISCH H.:
Angular brushing of extended parallel coordinates. In
Proceedings of the IEEE Symposium on Information Vi-
sualization (2002), pp. 127–131.

[Hol06] HOLTEN D.: Hierarchical edge bundles: Visual-
ization of adjacency relations in hierarchical data. IEEE
Trans. on Vis. and Comp. Graph. 12, 5 (2006), 741–748.

[ID90] INSELBERG A., DIMSDALE B.: Parallel coordi-
nates: a tool for visualizing multi-dimensional geome-
try. In Proceedings of IEEE Visualization 1990 (1990),
pp. 361–378.

[IG98] INTERRANTE V., GROSCH C.: Visualizing 3D
flow. IEEE Computer Graphics & Applications 18, 4 (Jul-
Aug 1998), 49–53.

[JLC07] JOHANSSON J., LJUNG P., COOPER M.: Depth
cues and density in temporal parallel coordinates. In Pro-
ceedings of EuroVis 2007 (2007), pp. 35–42.

[JLJC05] JOHANSSON J., LJUNG P., JERN M., COOPER

M.: Revealing structure within clustered parallel coordi-
nates displays. In Proceedings of the 2005 IEEE Sympo-
sium on Information Visualization (2005), pp. 125–132.

[LFP∗90] LEVOY M., FUCHS H., PIZER S. M., ROSEN-
MAN J., CHANEY E. L., SHEROUSE G. W., INTER-
RANTE V., KIEL J.: Volume rendering in radiation treat-
ment planning. In Proceedings of the First Conference on
Visualization in Biomedical Computing (1990), pp. 4–10.

[Mac67] MACQUEEN J.: Some methods for classification
and analysis of multivariate observations. In Proceedings
of the Fifth Berkeley Symposium on Mathematical Statis-
tics and Probability (1967), pp. 281–297.

[MW91] MILLER J., WEGMAN E.: Construction of line
densities for parallel coordinate plots. Computing and
graphics in statistics (1991), 107–123.

[MW02] MOUSTAFA R., WEGMAN E. J.: On some gen-
eralizations of parallel coordinate plots, seeing a mil-
lion. In Proceedings of 2002 Data Visualization Workshop
(Rain am Lech (nr. Munich), Germany) (2002).

[NH06] NOVOTNY M., HAUSER H.: Outlier-preserving
focus+context visualization in parallel coordinates. IEEE
Trans. on Vis. and Comp. Graph. 12, 5 (2006), 893–900.

[PT97] PIEGL L., TILLER W.: The NURBS Book, sec-
ond ed. Springer-Verlag, Berlin, 1997.

[PWR04] PENG W., WARD M. O., RUNDENSTEINER

E. A.: Clutter reduction in multi-dimensional data visu-
alization using dimension reordering. In Proceedings of
the 2004 IEEE Symposium on Information Visualization
(2004), pp. 89–96.

[RE01] RHEINGANS P., EBERT D.: Volume illustration:
nonphotorealistic rendering of volume models. IEEE
Trans. on Vis. and Comp. Graph. 7, 3 (Jul-Sep 2001),
253–264.

[WL97] WEGMAN E. J., LUO Q.: High dimensional clus-
tering using parallel coordinates and the grand tour. Com-
puting Science and Statistics 28 (1997), 352–360.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.


