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Abstract

Volumetric Subdivision (VS) is a powerful paradigm that enables volumetric sculpting and realistic volume defor-
mations that give rise to the concept of “virtual clay”. In VS, volumes are commonly represented as a space-filling
set of deformed polyhedra, which can be further decomposed into a mesh of tetrahedra for rendering. Images
can then be generated via tetrahedral projection or raycasting. A current shortcoming in VS-based operations
is the need for a very high level of subdivision to represent fine detail in the mesh and to obtain a high-fidelity
visualization. However, we have discovered that the subdivision process itself can be closely simulated with radial
basis functions (RBFs), making it possible to replace the finer subdivision levels by a coarser aggregation of RBF
kernels. This reduction to a simplified assembly of RBFs subsequently enables interactive rendering of volumetric
subdivision shapes within a GPU-based volume splatting framework.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computing Methodologies]: Computer Graph-
icsPicture/Image Generation;I.3.7 [Computing Methodologies]: Computer GraphicsThree-Dimensional Graphics
and Realism ;I.4.10 [Computing Methodologies]: Image ProcessingVolumetric Image Representation;

1. Introduction

In this paper we present a rendering framework that employs
radial basis functions (RBFs) for the interactive visualiza-
tion of subdivision volumes. Subdivision volumes comprise
a class of mathematical models for representing volumetric
objects of arbitrary geometries, topologies and material dis-
tributions. They generally have provable continuity proper-
ties and are extremely powerful for data and shape repre-
sentation. For example, they can represent 4D time-varying
scalar fields defined over regular and non-regular subdivi-
sion meshes and are able to do so in the context of a mul-
tiresolution framework [LPD∗02]. Dynamic or physically-
based subdivision methodologies can be employed in a wide
variety of applications involving heterogeneous material dis-
tributions, including volumetric sculpting and deformation
[MCQ05], mechanical simulation and animation of solid
bodies [CGC∗02], and fluid flow [WW99]. Many of the re-
cent advances in the field have involved the development of
new subdivision schemes [BWX02], non-manifold subdivi-
sion volumes [CQ06], and wavelet-based hierarchical subdi-
vision volumes [LGP∗04].

In subdivision volumes, polyhedral cells are recursively

subdivided according to certain subdivision rules that often-
times would reproduce a volumetric spline after an infinite
number of subdivisions. Thus, these subdivision schemes
provide a 3D form of interpolation with a high-quality ker-
nel. Ray tracing cannot generally provide satisfactory so-
lutions for subdivision volume rendering, since the irregu-
lar spatial distribution of the voxels interferes with compu-
tations fundamental to ray tracing, such as trilinear inter-
polation of voxel densities. Cell projection [ST90] of the
polyhedral cell decomposition, on the other hand, would re-
quire subdivision of each deformed cell into many tetrahe-
dra. Such a method would require a great amount of memory
to store connectivity information and time, and it would nec-
essarily introduce errors into the volume.

Given the lack of an effective volume visualization tech-
nique for rendering subdivision volumes, we have developed
an improved visualization approach founded upon RBF-
based splatting. In this framework, the computationally ex-
pensive subdivision process is replaced with the efficient
evaluation of a set of RBFs that closely mimic the behav-
ior of the subdivision algorithm. Furthermore, our technique
is not memory intensive since it performs adaptive refine-
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ment only in undersampled portions of the volume. A main
contribution of our paper is that it shows that the RBF func-
tion closely simulates the subdivision rules and therefore can
replace recursive subdivision at a given level of detail. This
has decisive implications both on storage and on rendering
complexity. Finally, our framework is general enough that
it can be adapted easily to the visualization of other proce-
dural subdivision volume schemes employing different sub-
division weights and space decompositions.

2. Related Work

2.1. Subdivision Volume Schemes

Given an initial control mesh consisting of vertices, edges,
polygonal faces and polyhedral cells, a volumetric subdi-
vision algorithm describes a recursive procedure for refin-
ing the 3D space enclosed by the mesh. For example, a
hexahedron-based algorithm typically subdivides each hexa-
hedron into eight smaller hexahedra. Such algorithms es-
sentially produce a polyhedral cell decomposition in which
most cells are tetrahedra or hexahedra, depending on the par-
ticular algorithm being used. The subdivision rules usually
involve taking weighted sums of vertices to generate a new
set of vertices. These vertices are then connected to each
other according to a pre-determined procedure to generate
a refined cell decomposition. In subdivision volumes, these
cell decompositions are much more complex than those of
subdivision surfaces [CC78].

In this paper we employ the MCQ scheme [MCQ04]
for recursive refinement of hexahedral meshes for proof-of-
concept experiments. However, as stated in the introduction,
our visualization framework is general enough to accom-
modate any procedural subdivision scheme after its basis
function has been accurately fitted to an ellipsoidal recon-
struction kernel. The interpolatory MCQ scheme reproduces
cubic polynomials for regular topological conditions (i.e.,
when each vertex is adjacent to exactly six others), and is C1

continuous for irregular topologies. In the regular case, each
hexahedron is subdivided into eight smaller hexahedra by
computing a set of 27 new vertices: one new point for each
existing cell, face, edge and vertex. These 27 new points are
then connected to form 8 new hexahedra. These rules are
also used to generate the densities in the volumes shown in
this paper. Details about the rules for subdivision both hexa-
hedral and non-hexahedral cells can be found in [MCQ04].
An example of an irregular topological setting that can be
accommodated by subdivision volumes (but not octrees, for
instance) is depicted in Figure 1.

2.2. Volume Visualization of Irregular Data

In recent years there has been great interest in developing
algorithms for the efficient rendering of tetrahedral meshes
and point clouds, with a number of researchers using GPUs
to accelerate this process. The majority of these approaches

Figure 1: Irregular topological configuration that can be
easily accommodated by subdivision volumes but not oc-
trees.

has been based on the projected tetrahedra (PT) algorithm
[ST90]. Defining papers in this respect include [RKE00,
WME04]. The necessary depth-sorting of the cells and cell
faces produces considerable overhead in the PT algorithm.
Callahan et al. [CICS05] recently proposed a scheme that
partially accelerates this sorting on the GPU by combining
a CPU-resident coarse-scale radix-sort with a GPU-resident
fine-scale k-buffer. Nevertheless, larger datasets still can-
not be rendered at interactive rates, and a number of dif-
ferent strategies have been recently devised to cope with
this problem. In another effort, Callahan et al. [CBPS06]
use a progressive refinement scheme that first renders the
volume boundary for interactive navigation and, once the
user pauses, renders the interior in depth order until the full-
quality volume image is generated. A year earlier, the same
authors introduced a scheme that achieves interactive render-
ing by reducing the number of cells until the desired frame
rate is achieved [CCSS05]. Finally, Cignoni et al. [CFM∗04]
tackle the problem with a multi-resolution LOD approach
that uses an edge-collapse/vertex-split mechanism.

Besides the PT algorithm there have also been approaches
that employ RBF-based rendering to project the cells to the
screen. This results in a more continuous data representa-
tion at the cell boundaries, whereas the PT scheme generates
a piece-wise linear result. Using this paradigm, Mao et al.
[Mao96], Jang et al. [JRSF02], and Hong et al. [HNMK06]
have devised representations that fill or fit each cell with one
or more RBFs or EBFs (ellipsoidal basis functions), which
are then rendered via generic splatting [Wes90].

While these RBF methods still adhere to the cell decom-
position of the data, another way to look at irregular data
is to ignore the grid structure completely and consider the
grid points as a collection of atomic scattered data points.
This eliminates the explicit point connectivity expressed by
the unstructured grid’s cell links, which may be meaning-
ful in the context of the underlying computational process
that generated the grid values. On the other hand, there are
also irregular datasets that are inherently connection-less
point clouds. While Meredith and Ma [MM01] have em-
ployed the grid structure, if available, to devise their multi-
resolution RBF-rendering framework, others have used a
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signal-processing-inspired method based on Gabor filters to
create such a hierarchy [WM03]. Both of these can be con-
sidered local grid reduction methods, and they are reason-
ably fast in terms of runtime speed. In some sense they fall
into the same category as the local cell filling and fitting
methods mentioned above. Other reduction methods seek
to optimize the number of scattered data points in a more
global sense [WBS∗05] by using an iterative optimization
method, such as the Levenberg-Marquardt algorithm. Here,
the fit is obtained by minimizing the error of the volume’s
RBF-encoding at the existing scattered data points. Our ap-
proach can be considered a local fitting method, but at the
same time it has the error characteristics of the global opti-
mization approaches.

To visualize the field of scattered RBFs of mixed radii,
the best images (in terms of quality) are achieved when
compositing a set of image-aligned slices, interpolated
from the volume, in a post-shaded rendering pipeline. Jang
et al. [JWH∗04] have recently described such a GPU-
accelerated rendering engine, but they use a GPU fragment
program to evaluate the Gaussian kernel function of all ker-
nels that overlap at a given point. It turns out that this pixel-
centric rendering paradigm using a fragment shader-based
kernel evaluation of all RBFs targeting a given pixel tends
to be significantly less efficient than the inverse method – an
image-aligned RBF-centric rasterization pipeline. A GPU-
accelerated implementation of such a strategy was recently
described by Neophytou et al. [NMM∗06], and this method
can also deal with scattered elliptical radial basis functions
(EBFs). We use this renderer for the work reported in this
paper.

3. Specifics on RBF Fitting and its Implication on
Rendering

As mentioned above, our RBF-based approach can be con-
sidered a local fitting method, yielding the inherent effi-
ciency advantages, but at the same time it has the favorable
error characteristics of the global optimization approaches.
We achieve this by exploiting the unique set of rules govern-
ing the subdivision process. By fitting RBFs, we avoid the
need to divide the polyhedral cells into tetrahedra to render
the subdivision result. Instead, the RBFs allow us to capture
the recursive application of the subdivision rules with high
accuracy. Having identified such an RBF kernel then enables
us to bypass the calculation of these refinements and the ef-
forts associated with the rendering of the resulting primi-
tives. Instead we can render the much coarser field of RBFs
at great efficiency on the GPU.

Our finding is important, as in most subdivision schemes,
the number of polyhedra grows exponentially with subdivi-
sion level (e.g., approximately 8n in the case of the MCQ al-
gorithm, where n is the subdivision level). (A notable excep-
tion is Pascucci’s scheme [Pas02].) Thus, for the examples
shown in this paper, a single RBF is rendered in place of 8,

Figure 2: Center slice of the 7× 7× 7 mesh of control ver-
tices used to approximate the subdivision kernel. All 73 ver-
tices except the center one are assigned a density of 0.0,
while the center vertex, drawn in red, is assigned a weight
of 1.0. This mesh, after several subdivisions, provides a dis-
crete representation of the subdivision basis function.

64, 512, etc. hexahedral cells, depending on the subdivision
level. If we used the PT algorithm for rendering, it would
then be necessary to tessellate each of those new hexahe-
dra into 5 or 6 new tetrahedra. This would produce even
more cells. In fact, many of the subdivision schemes gener-
ate hexahedra, octahedra, decahedra and other multi-faceted
polyhedra, which need tetrahedral tessellation. Although it
is certainly possible to subdivide complex polyhedra into a
collection of smaller tetrahedra, the required linear interpo-
lations will also necessarily introduce error, and to minimize
the interpolation errors, it would be necessary to subdivide
the volume at least several times. This would again dramati-
cally increase the tetrahedron count as the polyhedron count.

3.1. Approximating Subdivision with RBF Kernels

A key observation for our method is that if we study the be-
havior of a subdivision algorithm (surface or volume) after
an infinite number of subdivisions of an initial control mesh,
we often find that in the limit of the subdivision process a
spline is generated. Stam [Sta98] showed that for irregular
subdivision surface control meshes it is often possible to
find a closed-form expression for the basis functions. On the
other hand, Chang et al. [CMQ02] have shown that, in gen-
eral, it is impossible to find a closed-form expression for the
basis functions of a volumetric subdivision scheme when the
control mesh is irregular. In a nutshell, the spectral analysis
tools used to analyze 2D basis functions do not generalize
directly to 3D. Hence, we must resort to approximation tech-
niques, as we shall describe now.

In our framework the basis functions for virtually any
procedural subdivision scheme can be approximated in a
straightforward manner and be represented in discretized
form. In the case of the interpolatory subdivision solid al-
gorithm used as an example in this paper, each vertex in the
control mesh affects nearly all of the cells located within the
three-neighborhood of the vertex. Hence, to compute the ba-
sis function for a vertex, we assign a value of 1 to the center
vertex in a 7 × 7 × 7 mesh of vertices and 0 to the other
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Figure 3: Isosurface rendering showing the central region
of the MCQ subdivision algorithm’s basis function.

vertices. A portion of this mesh is depicted in Figure 2. By
carrying this process to the limit, we could theoretically ob-
tain the scheme’s volumetric basis function for hexahedral
meshes of regular topology. In practice, however, we can ter-
minate the subdivision process at level 5, thereby generating
a 1933 volume. The voxels in this volume are point samples
of the 3D continuous basis function, shown in Figure 3.

In our own experiments, we fit the discretized basis func-
tion to three radially symmetric, volumetric filters to deter-
mine which most closely matched the subdivision scheme’s
basis function. These filters included a Gaussian distribu-
tion:

g(x) =
1

σ
√

2π
e−(x−µ)2/(2σ2)

a cubic BC-spline filter:

hBC(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2− 3
2 B−C)|x|3+

(−3+2B+C)|x|2+ if |x| < r

(1− 1
3 B)

(− 1
6 B−C)|x|3+

(B+5C)|x|2+ if r ≤ |x| < 2r

(−2B−8C)|x|+( 4
3 B+4C)

0 otherwise

and a cubic Cardinal spline filter:

ha(x) =

⎧⎪⎨
⎪⎩

(a+2)|x|3 − (a+3)|x|2 +1 if |x| < r

a|x|3 −5a|x|2 +8a|x|−4a if r ≤ |x| < 2r

0 otherwise

Although the subdivision algorithm’s basis function is not
radially symmetric, as can be seen in Figure 3, we found that
it could be approximated quite effectively by a radially sym-
metric cubic spline. We performed least-squares fittings to
compute the spline parameters for the two spline filters. For
the (normalized) Gaussian distribution, we assigned a mean
of 0 and determined numerically via the Bisection Method
that a standard deviation of 0.43 provides an accurate fit to
the subdivision basis function. Since the control mesh is of

size 7×7×7 and the control points are spaced at unit inter-
vals, we assume that all points in the subdivided mesh are in
the volumetric space spanned by [−3,3]× [−3,3]× [−3,3].

The fitting process was applied for each type of filter for
radii of 1, 2 and 3, resulting in a total of seven trials. The re-
sulting spline parameters and associated errors are summa-
rized in Table 1. To compute the mean squared errors of the
fits, we computed the average squared difference between
the densities of the sample points in the discretized subdivi-
sion kernel and the discretized analytic kernel over all 1933

sample values. Visualizations of slices of the kernels of ex-
tent 1.0 are provided in Figure 4. Undulations in the basis
function outside a radius of 1.0 unit the cubic splines result
in moderate levels of error in the fitting. As indicated in the
table, we found that the Gaussian kernel provided the best
fit.

Since the MCQ subdivision scheme is derived from cu-
bic Lagrange polynomials [MCQ04], it comes as no sur-
prise that a cubic spline can provide a good approximation of
the true basis function. However, it should be noted that the
original subdivision scheme was derived via tensor-product
application of Dyn et al.’s original 4-point scheme for sub-
division curve generation [DLG87]. This accounts for the
square-like distribution of densities outside a radius of 1.0
in the subdivision kernel. As can be seen in the difference
maps in Figure 4, it is in these regions that the kernel ap-
proximations show the highest error. This is the price that
must be paid for using a mathematically simpler and rota-
tionally symmetric kernel.

3.2. Rendering

To perform true and accurate volume rendering of a subdivi-
sion volume, it would be necessary to subdivide the dataset a
sufficient number of times such that at any zoom level there
would be no discernable gaps between sample points. In-
stead of subdividing many times, we use an adaptive form
of the RBF-based approximation just derived to refine the
dataset only in those regions where we are zooming in to
view the volume or in those regions where the original vol-
ume is undersampled. The idea is to refine only large hexa-
hedra, whose image-plane projection would take up many
pixels. As illustrated in 2D in Figure 5, we employ interpo-
lation to fill the cell with new sample points until the max-
imum inter-sample distance between any two neighboring
samples is approximately 1.5 units. (Here, a “unit” refers to
the length of a voxel. In this paper, we assume each volume
is bounded approximately by a 200×200×200 cube of vox-
els.) The sample positions are determined by trilinear inter-
polation, while the density values themselves are calculated
by centering a reconstruction kernel over a sample point and
taking a weighted sum of the original data values that lie
within the extent of the RBF. (The extent of the kernel is set
to be sufficiently large that it includes all of the vertices of
the cell that contains the sample point.) The weights are de-
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(a) (b) (c) (d)

(a) - (b) (a) - (c) (a) - (d)

Figure 4: (a) Slice through the center of the subdivision kernel. (b)-(d) Slices through fitted Gaussian, BC-spline and cardinal
splines, respectively, for an extent/radius of 1.0. The bottom three images show the differences between a slice through the
center of the true kernel and its approximations. The minimum and maximum values of the kernel are approximately -0.022 and
1.0, respectively.

Filter Radius Parameters MSE RMSE MAE

Gaussian N/A
µ = 0.000000

0.000041 0.006395 0.002079σ = 0.430000

1.0
B = 0.382175

0.000054 0.007339 0.002144
C = 0.253253

BC-spline 2.0
B = 0.039579

0.000139 0.011808 0.002892
C = 0.028746

3.0
B = −0.062800

0.011781 0.108542 0.022184
C = 0.012591

Cardinal
Spline

1.0 a = −0.507829 0.000127 0.011275 0.002895
2.0 a = −0.098673 0.000156 0.012492 0.002944
3.0 a = −0.040698 0.010297 0.101472 0.028730

Table 1: Function parameters and fitting errors for different spline approximations of the basis function for the MCQ inter-
polatory subdivision solid algorithm. MSE = “Mean Squared Error,” RMSE = “Root Mean Squared Error,” MAE = “Mean
Absolute Error.”

termined in terms of their distances from the center of the
RBF, using one of the kernels described in Section 3.1 and
the parameters from Table 1.

Splatting an adaptively sampled volume essentially sim-
ulates the act of subdividing the volume an infinite number
of times. This is the key advantage of using a spline approx-
imation of the subdivision scheme’s basis function over ex-
plicit subdivision. This is the first time, to our knowledge,
that splatting or any other volume visualization algorithm
has been used as a vehicle for simulating the recursive re-
finement of irregular volumetric data.

3.3. Benefits of RBF-Driven Subdivision Volume
Visualization

Decreased Memory and Computation Costs. Subdivision
can be circumvented completely at the cost of small error by

interpolating densities at desired 3D positions inside cells.
By doing so we save memory since the complex cell de-
composition does not need to be maintained. Also, we save
computation time since it is unnecessary to traverse the cell
structure at the current subdivision level or to construct the
structure for the next subdivision level.

User-Specified or System-Specified Sampling Rates. A
global subdivision always introduces a given number of new
vertices at locations determined by the particular subdivision
scheme. If we use the MCQ scheme as an example, a single
application of the subdivision algorithm replaces the 8 ver-
tices of one hexahedron with 27 new vertices. In general, N
subdivisions result in the creation of approximately 23N new
vertices per hexahedron. Suppose that to satisfy a given error
tolerance it is necessary to resample a hexahedron at a final
resolution of 5×5×5. Without our resampling framework,
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(a) (b) (c)

p3

p2
p1

p4

r

Figure 5: Example of material density reconstruction in 2D.
An analogous process is employed in 3D. Standard and de-
formed cell geometries are shown in (a) and (b), respec-
tively. In (c), a resampled cell is shown, with new sample
points drawn in varying shades of gray. The RBF reconstruc-
tion kernel of radius r for a particular sample is rendered as
an overlaid circle. A weighted sum of the four data points pi
is used to assign material attributes to the sample.

it would be necessary to subdivide to level 3, meaning that
each hexahedron would contribute 83 vertices. This would
result in oversampling and the computation of (83 − 43) or
448 superfluous samples per hexahedron. (We use 43 in the
calculation instead of 53 so as to account for the sharing of
samples between adjacent hexahedra.) This process would
be repeated over the entire control mesh, wasting consider-
able time and memory.

Non-Uniform Sampling Rates. Explicit, global subdivi-
sion of a volume introduces new vertices along all edges and
faces. For cells that are long and skinny, it is wasteful to
subdivide along those directions corresponding to closely-
packed vertices. When projected, the splats for these vertices
will overlap significantly. Our resampling framework facil-
itates adaptive sampling across edges, faces and cells and
resamples only where needed. An example of this procedure
can be seen in Figure 5(c), where the quadrilateral has been
sampled at different rates along edges.

4. Results and Error Analysis

We have employed the GPU-accelerated splatting renderer
for scattered data, described in close detail in [NMM∗06],
to test and visualize our RBF-based subdivision volumes.
Some examples are given in Figure 7, which shows visu-
alizations of several subdivision volumes that underwent
dramatic deformations. Detailed error metrics and perfor-
mance statistics are given in Table 2. “RMSE” refers to the
root mean squared error of the RBF-based interpolation per-
formed over each dataset (both deformed and undeformed).
It was computed by subdividing the volume once, taking
the squared difference between (i) the density at each new
vertex as computed by the subdivision scheme and (ii) the

Figure 6: Resampling scheme used to compute RMSE of
models. “Subdivided point” refers to a vertex generated by
subdivision. Note that each control point has one RBF asso-
ciated with it.

density computed by the RBF resampling scheme described
in Section 3.2 and illustrated in Figure 6. We see that the
root mean-squared errors are very low and fall in the range
0.003−0.011.

5. Conclusions

This paper has presented an efficient and novel frame-
work for the visualization of subdivision volumes. We have
demonstrated that splatting in particular is the ideal subdivi-
sion volume visualization algorithm since it can be readily
adapted to the visualization of the irregular datasets gener-
ally produced by subdivision schemes. By employing RBFs
to approximate the subdivision process, we greatly reduce
the computational cost and memory requirements that would
be otherwise required to render these irregular datasets. Our
fitting approach, for subdivision volume rendering, replaced
the need to render 320 tetrahedral cells with the overhead
associated for rendering 125 sliced RBF kernels for every
cell, amounting to a ratio of 39% (for 2 levels) and 729
RBFs/2560 tetrahedra or 28% for 3 levels. Possible direc-
tions for future work include extension of the framework to
encode and visualize time-varying subdivision volumes, ap-
plication of the visualization framework in interactive volu-
metric sculpting, and exploitation of the hierarchical nature
of subdivision volumes to permit the visualization of larger
datasets. We would also like to explore local density-based
data reduction techniques, which we have not done so far. As
Jang et al. [JWH∗04] have demonstrated, the higher-order
kernel functions of RBFs allow for aggressive data reduc-
tion, more than the piece-wise linear function approximation
of cell-based decompositions. We hope to achieve further
speedups based on such simplifications. Concomitant with
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RMSE for RBF Fit of
Model Deformed Data # Data Points # Points Rendered Frame Rate

Deformed Pawn 0.0037 543,599 90,497 4.0
Alien 0.0030 487,071 31,573 4.4

Train #1 0.0045 1,898,312 228,018 2.2
Toy Car 0.0107 1,406,847 176,802 2.7
CSG Fan 0.0042 517,153 35,832 5.1
Nozzle N/A 155,808 155,808 4.0

Train #2 0.0044 1,636,349 216,476 2.5

Table 2: Fitting errors and rendering speeds for the models shown in this paper. Densities lie in the range [-1,+1] and were
approximated using a cubic BC-spline of radius 2 with B = 0.039579 and C = 0.028746. One level of subdivision was performed
on the original volume. The nozzle dataset was generated via physical simulation, and so no RBF fitting was possible.

these efforts should be further investigation of spline en-
coding techniques, including the possibility of using wavelet
analysis to reduce fit error even further.
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