Constructing 3D Elliptical Gaussians for
Irregular Data

Wei Hong!, Neophytos Neophytou?, Klaus Mueller?, and Arie Kaufman*

! Center for Visual Computing and Department of Computer Science Stony Brook

University weihong@cs.sunysb.edu

Center for Visual Computing and Department of Computer Science Stony Brook
University nneophyt@cs.sunysb.edu

Center for Visual Computing and Department of Computer Science Stony Brook
University mueller@cs.sunysb.edu

Center for Visual Computing and Department of Computer Science Stony Brook
University ari@cs.sunysb.edu

Summary. Volumetric datasets obtained from scientific simulation and partial dif-
ferential equation solvers are typically given in the form of non-rectilinear grids.
The splatting technique is a popular direct volume rendering algorithm, which can
provide high quality rendering results, but has been mainly described for rectilinear
grids. In splatting, each voxel is represented by a 3D kernel weighted by the discrete
voxel value. While the 3D reconstruction kernels for rectilinear grids can be easily
constructed based on the distance among the aligned voxels, for irregular grids the
kernel construction is significantly more complicated. In this paper, we propose a
novel method based on a 3D Delaunay triangulation to create 3D elliptical Gaussian
kernels, which then can be used by a splatting algorithm for the rendering of irreg-
ular grids. Our method does not require a resampling of the irregular grid. Instead,
we use a weighted least squares method to fit a 3D elliptical Gaussian centered at
each grid point, approximating its Voronoi cell. The resulting 3D elliptical Gaussians
are represented using a convenient matrix representation, which allows them to be
seamlessly incorporated into our elliptical splatting rendering system.

1 Introduction

Direct volume rendering is an important technology in the fields of computer
graphics, as well as scientific and medical visualization. It allows the user
to comprehend and visualize a volumetric dataset directly, without requiring
the generation of a polygonal iso-surface. Volumetric datasets are commonly
classified as rectilinear or non-rectilinear, according to their grid structure.
Here, both the curvilinear and the unstructured grids belong to the class
of non-rectilinear grids, while cubic grids are the simplest case of rectilinear
grids. The volumetric datasets obtained from scientific simulation and partial

2 Wei Hong, Neophytos Neophytou, Klaus Mueller, and Arie Kaufman

differential equation solvers are typically given in the form of non-rectilinear
grids.

The straightforward method to visualize non-rectilinear grids is to resam-
ple them into a rectilinear grid [1], where usual rendering methods readily
apply. However, as a non-rectilinear grid may consist of cells of drastically
different sizes, the resampling approach may either cause a loss of important
information or result in a huge dataset. Thus, several techniques have been
developed for the direct volume rendering of non-rectilinear grids, i.e. ray
casting, cell projection, and splatting. Ray casting is the most popular direct
volume rendering technique where volume rendered images are generated by
casting rays from the viewer’s eye, through the screen pixels, into a 3D vol-
ume, and compositing the contributions of all sample points taken along each
ray into the corresponding screen pixel. Many algorithms for the ray casting
of non-rectilinear grids have been developed [2] [3] [4]. Since a non-rectilinear
grid may be composed of cells of drastically different sizes, sampling with a
constant interval along a ray is not desirable. Therefore, sample points are
usually taken at the intersections of rays and cells, which tends to be very
time-consuming. In the cell projection technique [5], a cell in a volume is pro-
jected onto the screen, and its contribution to the pixels under its projection
extent is calculated and composited with the contributions from the previously
projected primitives. Cell projection algorithms need to obtain the proper cell
visibility ordering to generate the correct compositing result. Here, the cell
visibility ordering itself is not trivial and can be rather time consuming.

The splatting technique has become quite popular for directly rendering
volumetric datasets of various grid structures. The original algorithm, first
proposed by Westover [6] for rectilinear grids, projects each voxel onto the
image plane and composites the result into an accumulation image. As each
voxel is projected onto the image plane, the voxel’s energy is spread over the
image raster using the 2D projection of a 3D reconstruction kernel, which
is centered at the voxel’s projection point. For regular grids, the 3D recon-
struction kernel, also called a splat, is spherically symmetric and centered at a
voxel. Since the splat is reconstructed into a 2D image raster, it can be imple-
mented as a 2D reconstruction kernel called a ”footprint function”, containing
the integration of the 3D kernel along the projection direction. By ways of
two-dimensional texture mapping, rectilinear grids can be quickly rendered
with a single polygon per voxel and using a single Gaussian kernel for all
voxels. The direct extension of this technique to non-rectilinear grids is not
straightforward, because the appropriate kernels for non-rectilinear grids are
not easy to calculate. In this case, the splats are arbitrary ellipsoidal kernels,
with their shape being defined by the local grid structure.

Both ray-casting and cell projection algorithms have been extended for
the volume rendering of non-rectilinear grids. Recently, graphics hardware has
been used to accelerate ray-casting [7] and cell projection [8] [9] algorithms for
irregular grids. However, both of these modalities have some limitations. For
the cell projection algorithm, the piecewise linear interpolation may result in

Constructing 3D Elliptical Gaussians for Irregular Data 3

banding at cell boundaries, degrading the quality of the resulting image. In
addition, cell projection approaches are limited by the cell visibility sorting,
which prevents the current graphics hardware from running at full capacity.
For ray-casting algorithms, the ray-cell intersection test, the identification of
the face of the cell through which a ray exists, and the interpolation from
the surrounding grid points are very expensive operations. Even the hardware
accelerated ray-casting algorithm [7] can not achieve interactive rendering
speed.

In an attempt to overcome these problems, we propose a new approach
that utilizes splatting, in conjunction with arbitrarily shaped elliptical Gaus-
sians, for the rendering of irregularly gridded data. Our splatting approach
offers the following advantages: (i) its smooth and overlapping kernel functions
will reconstruct a smooth representation of the grid-sampled signal, without
the artifacts of the piecewise linear representations of the cell projection ap-
proaches; (ii) it promises to be more efficient than ray casting due to the ease
of footprint rasterization, especially when implemented in hardware; (iii) it is
also more efficient than other splatting approaches for irregular grids, since
the space-filling kernels are only required at the grid points, and thus the ren-
dering complexity matches that of the grid. Finally, apart from non-rectilinear
gridded data, our method also supports collections of scattered data points.

The main topic of this paper is the method for constructing arbitrarily
oriented elliptical Gaussians from irregular grid topologies. Once the 3D re-
construction kernels are found, the software rendering is straightforward. We
can either use the sheet buffer algorithm for composited rendering [10], or we
can just splat the whole kernel for X-ray type rendering.

2 Previous Work

Only a limited amount of work has been done so far on how to use the splatting
algorithm for the rendering of irregular grids. Meredith and Ma [11] proposed
a spherical Gaussian splat-based rendering method for irregular data. In this
method, they use an octree with roughly the same number of data points
stored at each leaf node. No connectivity information is stored for the data
points. For any given viewing parameters, they calculate the projected size of
any octree node on the screen. Then they divide the screen area based on the
number of data points within that octant to calculate the approximate kernel
size. This method can only give a rough estimate of the kernel size.

Mao et al. [12] [13] presented a method that resamples irregular grids
with a set of new points whose energy support extents in the 3D physical
space can be approximated by spheres or ellipsoids. To approximate the scalar
field represented in the original grid as accurately as possible without using
too many sample points, an adaptive three-dimensional stochastic sampling
method called Poisson sphere/ellipsoid sampling is employed. Then, after the
new splat distribution has been calculated, the original splatting algorithm can

4 Wei Hong, Neophytos Neophytou, Klaus Mueller, and Arie Kaufman

be used to render the irregular grid. The disadvantage of this method is that
the original grid must be resampled to compute the scalar value for the new
sample points. The error caused by this non-regular resampling potentially
degrades the quality of the resulting images. In addition, this method also
generates considerably more splats than the original number of grid points.
For example, the NASA Blunt Fin dataset with resolution of 40 x 32 x 32 is
resampled with 79,971 sphere points and 5,041 ellipsoid points, which more
than doubles the number of points. Moreover, this method cannot be used to
render scattered data.

Jang et al. [14] developed a procedure, based on the Voronoi cell describing
the region around a point, to place and orient Gaussian kernels to give more
uniform coverage in non-uniform cells. However, they did not specify how they
construct these splats. This method also need to resample the original non-
uniform cells. Jang et al. [15] performed a global optimization method to fit
radial basis functions (RBFs) to irregular data. In this paper, we propose a
method to construct 3D ellipsoidal kernels for irregular grids without the need
for an error prone resampling of the original grid, since our 3D reconstruction
kernels are still centered at the original grid points. Instead, a weighted least
squares method is used to fit a single ellipsoidal kernel to the Voronoi cell at
each grid point, which is a a local optimization method. In our method, we
do not interpolate any additional data points.

3 Creating 3D Elliptical Gaussian

The shape of a 3D elliptical Gaussian kernel centered at the origin can be
modeled via the implicit equation of an ellipsoid:

Az? + By? + C22 +2Dxy + 2E22 4+ 2Fyz — 1 =0 (1)

This equation has six unknowns and represents a quadric surface. The quadric
surface can be represented by using matrix notation, giving rise to a 3 x 3
symmetric quadric matrix Q:

ADE
Q=|DBF (2)
EFC

The quadric surface represented by) can be easily translated, scaled, and
rotated by multiplying it with a transformation matrix. Given a 3 x 3 affine
transformation matrix M, the transformed quadric surface @ is given by:

Q=M"N-Q M 3)

With this representation we can create an arbitrarily oriented elliptical
Gaussian by applying the scaling and rotation transformations contained in

Constructing 3D Elliptical Gaussians for Irregular Data 5

matrix S = {a,b,c} and R on a unit sphere, respectively, as described in the
following equation:

Q=(RYHYr-(sH.1.5"R'=R-(SH* R (4)

Here I is the identity matrix which represents the unit sphere, and (S~1!)? =
{1/a%,1/b%,1/c?} is a diagonal matrix, which can be thought of as a scaling
matrix. It represents an axis aligned ellipsoid. The rotation matrix R is an
orthogonal matrix representing the ellipsoid orientation, which can be defined
by three rotation angles «, 3, and v along the three axes. Instead of directly
fitting an ellipsoid using Equation 1, we fit the scaling matrix S and rotation
matrix R separately, using Equation 4. S and R are decided by the three
scaling factors and the three rotation angles, respectively. Due to this matrix
representation, the resulting ellipsoidal kernel can easily be incorporated into
our rendering algorithm, which represents the elliptical splats using a rotation
and a scaling matrix.

The irregular grids are always described in terms of their grid structure.
However, in our algorithm we are only interested in the grid points. In that
respect, we treat an irregular grid as a volumetric point cloud. Our algorithm
only uses these grid points as input for generating the 3D ellipsoidal kernels.
In the following sections, we describe our approach to fit the 3D ellipsoidal
kernel using the matrix representation.

3.1 Guide Points

As is well known, the dual of the Delaunay triangulation is the Voronoi dia-
gram, which consists of cells around the data points such that any location
in a particular cell is closer to that cell’s generating point than to any other.
Thus, the shape of the Voronoi cell can give us a clue about the shape of
the reconstruction kernel. The main idea of our algorithm is to fit elliptical
Gaussian kernels to the grid points by approximating their Voronoi cells. We
show a 2D example in Figure 1, in which the Voronoi cell of grid point Vj,
shown in red, is approximated with an ellipse, shown in blue. The Voronoi cell
of Vy is obtained by connecting the circumcenters between pairs of Delaunay
triangles that are adjacent and both incident to Vj.

As the first step of our algorithm, we apply the 3D Delaunay triangulation
algorithm to the input grid points. Through the 3D Delaunay triangulation,
we obtain for each grid point a list of tetrahedra incident to it. The circum-
centers of these tetrahedra are the vertices of the Voronoi cell generated for
that grid point, i.e. the cell’s generating point. In the ideal case, each circum-
center is shared by four reconstruction kernels, with each of these contribut-
ing 25% to it. This would mean that the elliptical Gaussian kernel passes
through these circumcenters with the 0.25-valued iso-contour. Furthermore,
in this ideal case, the 0.5-valued iso-contour of the Gaussian kernel should
pass through the midpoints of the edges joining the cell’s generating point.

6 Wei Hong, Neophytos Neophytou, Klaus Mueller, and Arie Kaufman

Fig. 1. A Voronoi cell is approximated by an ellipse shown in two-dimensions. Vj is
the grid point for which the Voronoi cell is constructed, Vi, ..., Vs are neighboring
grid points, and C} is the circumcenter of triangle VoV;Vii1.

However, in the general case these edge midpoints do not capture the shape
of the Voronoi cell as well as the circumcenters. This is illustrated in Figure
2, where the edge midpoints are shown as red dots, and the ellipse fitted from
these midpoints is also shown in red. The ellipse fitted from the circumcenters
is shown in blue. From this example, we can see that the blue ellipse approx-
imates the Voronoi cell, shown in green, much better than the red ellipse.
Therefore, we use the circumcenters of the incident tetrahedra as guide points
for fitting the ellipsoid that approximates the 0.25-valued iso-contour of an
elliptical Gaussian kernel.

If a tetrahedron is almost flat, its circumcenter is located far away from
this tetrahedron. In this case, the Voronoi cell is an inferior shape for fitting
the grid points kernel. Thus, if the circumcenter is too far away from the center
grid point, we use the circumcenter of the triangle opposite to the center point
as the contour guide point.

For each such guide point, we use its corresponding solid angle in the
tetrahedron as the weight. Thus, for each grid point we have a list of weighted
guide points associated with it. This list of the weighted guide points are then
fed to a weighted least squares algorithm to fit the elliptical Gaussian kernels.

Constructing 3D Elliptical Gaussians for Irregular Data 7

Fig. 2. In more general cases, as shown here, the edge midpoints do not capture
the shape of a Voronoi cell as well as the circumcenters.

3.2 Initial Guess

Before we use the least squares method to fit an ellipsoid at each grid point
based on the generated weighted guide points, we analyze the guide points
using the Principal Component Analysis (PCA) [16] method to estimate the
ellipsoid defined by the guide points. A PCA analysis of the guide points
performs an eigen-decomposition of the covariance matrix of the guide points.
This produces three eigenvalues and corresponding eigenvectors, which in 3D
define a local orthogonal coordinate system related to the ellipsoid induced
by the guide points.

Suppose the given grid point is v and the related N guide points are

ui, i =1,2,..., N. We use the following equation to compute the covariance
matrix M:
N
M= (ui —v)(u; —v)' (5)
i=1

where M is a 3 x 3 matrix. From this 3 x 3 covariance matrix, we can com-
pute the three eigenvalues and the corresponding eigenvectors. We use the
three eigenvalues as the initial guess for the three scaling factors. The corre-
sponding eigenvectors form a rotation matrix, which yields the initial guess for
the three rotation angles. The PCA analysis makes the minimization process
convergence faster by providing a good guess of the ellipsoid.

8 Wei Hong, Neophytos Neophytou, Klaus Mueller, and Arie Kaufman
3.3 Energy Function

Given a set of weighted guide points (w;,u;),i = 1,2,..., N, in order to use
the weighted least squares method to fit them with equation 4, we need to
design an energy function for minimization. For this purpose, we use the sum
of the weighted distances from the guide points to the quadric surface). This
yields the energy function:

N

E(a,b,c,0,3,7) = > _(w; x d}) (6)

i=1

where w; is the weight of the guide point u;, and d; is the distance from point u;
to the ellipsoid @, which is the length of the shortest line segment connecting
u; to any point on Q. For a given guide point w; = (z;,y;,2;), Hart [17]
proposed an algorithm to compute the closest point u} = (x}, y}, z) on an axis-
aligned ellipsoid defined by equation f(z,y,2) = (z/a)?+(y/b)?>+(z/c)? -1 =
0. As we know, the vector m is normal to the surface defined by f(z,y, z)
at u}, which satisfies the following equation:

x Y z
xi—xztg,yi—y:tbjazi—zztcj (7)
Plugging this equation into f(z,y, z) confines the point to the ellipsoid, pro-
ducing:
a’x? b2y? 2z) ®)
(t+a?)? = (t+0%)2 ° (t+c2)?

This equation is equivalent to a sixth degree polynomial, obtained by mul-
tiplying through by the denominators. The largest root of this polynomial
corresponds to the closest point on the ellipsoid. There are no closed formulas
for the roots of such polynomials. We use a Newton’s iteration method to
find the largest root. When we obtain the largest root ¢ of this polynomial,
the closest point u} = (a, y}, z;) on the surface of the ellipsoid is obtained by
plugging ¢ into Equation 7, which yields the following equation:

2 2 2
a‘xz; b°y; c°z;

T = - i = Y V2 = - 9)
to + a2 to + 52 to -‘1-02

Then, the distance from the point u; to the ellipsoid is exactly the distance
between u; and u).

To compute the distance from guide point u; to an arbitrary oriented
ellipsoid @ = R - (S71)? - R, we transform @ and u; to Q' = (S~1!)? and
u} = R™1u; respectively by applying matrix R~!, where Q' is an axis aligned
ellipsoid centered on the origin. Then, the distance from u; to @ is the distance
from w to Q" in the new coordinate system, which can be computed using
the above equations. Next, we employ an iterative method to compute the
minimum of E.

Constructing 3D Elliptical Gaussians for Irregular Data 9
3.4 Minimization

The energy function of Equation 6 is a very common unconstrained minimiza-
tion problem. Powell [18] proposed a minimization method to solve this kind
of problem without calculating derivatives. Powell’s method ensures conver-
gence in a finite number of steps, for a positive definite quadratic function, by
making use of some properties of conjugate directions. However, this method
sometimes results in search directions that become linearly dependant. The
simplest way to avoid linear dependance of the search directions with Pow-
ell’s basic procedure, retaining quadratic convergence, is to reset the search
directions to the columns of the identity matrix after every n or n+1 itera-
tions, where n is number of unknowns in the system. However, the restarting
may slow down convergence, because information built up about the function
is periodically thrown away. Thus, we use a modification of Powell’s basic
procedure proposed by Brent in [19] to solve the minimization problem. In
consequence, we obtain the scaling matrix S and the rotation matrix R of
the 0.25-valued iso-contour for each elliptical Gaussian kernel, which give the
shape and orientation of the elliptical Gaussian kernel.

4 Evaluation

The straightforward way to evaluate the resulting 3D elliptical Gaussian ker-
nel configuration is to resample the irregular grid data into a N x N x N
regular grid R. In the ideal case, if the grid point is inside one of the tetrahe-
dron, the contributions from all kernels to this point sum to one. In practice,
the contributions from all kernels to a grid point do not always sum to one.
Therefore, the volume rendering image generated with the splatting algorithm
may look blotchy. Normalizing the reconstructed value at each grid point by
the contribution of reconstruction kernels can alleviate the problem.

The sum of the contributions of all kernels to each grid point can be used
to evaluate the quality of the fitted 3D elliptical Gaussian kernels. Suppose
the set of regular grid points inside the tetrahedra mesh is V. The standard
deviation is computed as follows:

. F%V('cvqu'— L0)? 10)

where C, is the sum of the contributions from the reconstruction kernels to
grid point v. The standard deviation S with a small value indicates a bet-
ter quality of the reconstruction kernel ensemble, constructed via our fitting
procedure.

10 Wei Hong, Neophytos Neophytou, Klaus Mueller, and Arie Kaufman
5 Rendering

Our rendering system uses the sheet-buffered image aligned splatting algo-
rithm introduced in [20] [10] and further refined in [21] for the 4D case. The
system was extended in order to rasterize ellipsoids of varying size and orien-
tation. Following this method, the elliptical kernels of the volume are sliced
into image aligned sheet buffers. The slices are then shaded per-pixel and
composited front-to-back onto the final image. The ellipsoids are defined by
a 3 x 3 rotation matrix and a diagonal 3 x 3 scaling matrix, as produced by
the fitting algorithm described above. Similar to 3D and 4D regular splat-
ting where this method was used, it produces crisp fully shaded images. The
process, however, is slightly more demanding when rendering unstructured
grids using elliptical splats, because the produced sheet buffers have to be
normalized before shading and compositing.

6 Implementation and Results

In this section, we present some implementation details and testing results.
Our algorithm is implemented using C++ on the Windows platform, and the
CGAL C++ library [22] is used to perform the 3D Delaunay triangulation in
the preprocessing step. All of the experiments have been conducted on a 3.0
GHz Intel Pentium IV PC running Windows XP with 1G RAM. We list the
datasets used in the experiments, the kernel fitting time, and the standard
deviation, and max weight in Table 1. Our fitting algorithm can, on average,
fit 1,300 points per minute.

Table 1. Kernel fitting times (in minutes), standard deviation, and max weight for
two different datasets.
Dataset Points|Tetrahedra|Fitting Time|Standard Deviation|Max Weight

Blunt Fin |40,960| 187,395 27.8 0.57 2.85
Combustion|47,025| 215,040 40.8 0.48 3.15

We use the NASA Blunt Fin dataset with 40,960 grid points in our first
experiment. To perform the numerical comparisons, we use the fitted 3D el-
liptical Gaussian kernels to resample it into a regular grid. One slice of the
resampled regular grid is shown in Figure 3 with two images: (a) the weight
image of that slice, and (b) the density image with normalization applied. Both
the weight image and the density image look smooth, but somewhat fuzzy at
the boundary. The weight image is the key for quality evaluation. The more
homogeneous the quality of resulting kernels is the better. We show the 3D
elliptical Gaussian kernels in Figure 4 (a) using a surface rendering method.
Figure 4 (b) is the volume rendered image using our software splatting al-
gorithm for elliptical splats. We observe that there are some large elliptical

Constructing 3D Elliptical Gaussians for Irregular Data 11

Gaussian kernels located at the boundary, which cause the fuzziness of the
volume rendering at the boundary.

(b)

Fig. 3. Blunt Fin dataset: (a) Weight image and (b) density image for one slice of
the regular grid samples evaluated using the fitted 3D elliptical Gaussian kernels of
the corresponding irregular grid.

The Combustion Chamber dataset is from the Visualization Toolkit (Vtk).
It consists of 47,025 grid points. One slice of the resampled regular grids
is shown in Figure 5. The resulting elliptical Gaussian kernels and volume
rendered image with the splatting algorithm for the Combustion Chamber
are shown in Figure 6.

7 Conclusion and Future Work

In this paper, we have presented a method to construct an ensemble of 3D
elliptical Gaussian kernels for irregular data. Our method does not resample
the irregular grids to generate regular grids. Instead, we create the 3D elliptical
kernels centered on the original grid points using a weighted least squares

12 Wei Hong, Neophytos Neophytou, Klaus Mueller, and Arie Kaufman

(b)

Fig. 4. Blunt Fin dataset: (a)The ensemble of fitted 3D elliptical Gaussian kernels,
and (b) a volume rendered image using the elliptical splatting algorithm.

method to fit ellipsoids. We perform PCA on the guide points to provide
an initial guess for the minimization process to obtain faster convergence.
The resulting kernels are arbitrarily oriented elliptical Gaussians modeled via
a matrix representation. The kernels are seamlessly incorporated into our
splatting rendering system.

Our method has some limitations. The quality of the resulting kernels is
affected by the shape of the Voronoi cells. It would require some amount of
resampling in locations that are not covered well by the resulting kernels. In
this case, the global optimization methods will do better. Our experiment
results show that the boundaries of the irregular grids are not preserved well,
appearing somewhat fuzzy. Two methods are possible to be used to solve this
problem. One method is to subdivide the boundary tetrahedron. But this
would require the resampling of more points and thus more splats would be
generated. Another method is to add a layer of ”"ghost splats” outside the
tetrahedra mesh to solve this problem. In future work, we would like to study
where to place these ghost splats in order to preserve the boundary well. In
our current implementation, the rendering is implemented using software. In
subsequent, we would like to exploit the power of GPUs to accelerate the
rendering. Here, the main feature of floating point blending will be highly
beneficial.

References

1. Fruhauf, T.: Raycasting of Nonregularly Structured Volume Data. Eurograph-
ics, C294-C303 (1994)

Constructing 3D Elliptical Gaussians for Irregular Data 13

(b)

Fig. 5. Combustion Chamber dataset: (a) Weight image and (b) density image for
one slice of the regular grid samples evaluated using the fitted 3D elliptical Gaussian
kernels of the corresponding irregular grid.

14

Wei Hong, Neophytos Neophytou, Klaus Mueller, and Arie Kaufman

(b)

Fig. 6. Combustion Chamber dataset: (a)The ensemble of fitted 3D elliptical
Gaussian kernels, and (b) a volume rendered image using the elliptical splatting
algorithm.

2.

3.

10.

11.

12.

Garrity, M.: Raytracing Irregular Volume. Computer Graphics, Vol. 24, No. 5,
35-40 (1990)
Ramamoorthy, S. and Wilhelms, J.: An Analysis of Approaches to Ray-Tracing
Curvilinear Grids. Tech. Report UCSC-CRL-92-07, Univ. of California, Santa
Cruz (1992)

. Farias, R. and Silva, T.C.: Out-of-Core of Large, Unstructured Grids. IEEE

Computer Graphics and Applications, 21(4), 42-50 (2001)

. Max, N., Hanrahan, P., and Crawfis, R.: Area and Volume Coherece for Efficient

Visualization of 3D Scalar Functions. Computer Graphics, 24(5), 27-33 (1990)

. Westover, L.: Footprint Evaluation for Volume Rendering Computer Graphics.

24(4), 367-376 (1990)

. Weiler, M., Kraus, M., Merz, M., and Ertl, T.: Hardware-Based Ray Casting

for Tetrahedral Meshes. In Proceedings of IEEE Visualization, 333—-340 (2003)

. Rottger, S., Kraus, M., and Etrl, T.: Hardware-Accelerated Volume and Iso-

surface Rendering Based On Cell-Projection. In Proceedings of IEEE Visual-
ization, 109-116 (2000)

. Weiler, M., Kraus, M., and Ertl, T.: Hardware-Based View Independant Cell

Projection. In Proceedings of IEEE Symposium on Volume Visualization, 13-22
(2002)

Mueller, K., Moller, T. and Crawfis, R.: Splatting without the blur. In Pro-
ceedings of IEEE Visualization, 363-371 (1999)

Meredith, J., Ma, K.L.: Multiresolution View-Dependent Splat Based Volume
Rendering of Large Irregular Data. Proceedings of the IEEE symposium on
parallel and large-data visualization and graphics, (2001)

Mao, X., Hong, L., and Kaufman, A: Splatting of Curvilinear Volumes. In
Proceedings of IEEE Visualization, 61-68 (1995)

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Constructing 3D Elliptical Gaussians for Irregular Data 15

Mao, X.: Splatting of Non Rectilinear Volumes Through Stochastic Resam-
pling. IEEE Transaction on Visualization and Computer Graphics, 2(2), 156-
170 (1996)

Jang, J., Shaw, C., Ribarsky W. and Faust N.: View-Dependent Multiresolution
Splatting of Non-Uniform Data. Eurographics-IEEE Visualization Symposium,
125-132 (2002)

Jang, Y., Weiler, M., Hopf, M., Huang, J., Ebert, D.S., Gaither, K.P., and
Ertl, T.: Interactively Visualizing Procedurally Encoded Scalar Fields. Joint
Eurographics-IEEE TCVG Symposium on Visualization (2004)

Jolliffe, I.T.: Principal Component Analysis. Springer-Verlag, New York, NY
(1986)

Hart, J.: Computing Distance betwwen Point and Ellipsoid. Graphics Gems IV,
Academic Press, Boston, MA, 113-119 (1994)

Powell, M.J.D.: An efficient method for finding the minimum of a function of
several variables without calculating derivatives. Comp. J. 7, 303-307 (1964)
Brent, R.P.: Algorithms for Minimization Without Derivatives. Dover Publica-
tions, Mineola, NY (1973)

Mueller, K., and Crawfis, R.: Eliminating popping artifacts in sheet buffer-based
splatting. In Proceedings of IEEE Visualization, 239-245 (1998)

Neophytou, N. and Mueller, K.: Space-time points: Splatting in 4D. Symposium
on Volume Visualization and Graphics, 97-106 (2002)

CGAL CH+ library www.cgal.org

