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Fig. 1. The tooth dataset – the set of 7 salient representative viewpoints returned by the SCP solver. (a): the initial entropy map,     
(b-h): the images rendered from the suggested viewpoints (left) with remaining entropy map (right). (g): modifying the transfer 
function to see the detailed shape of the tooth surface. 
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Informative Views in Volume Visualization 

Ziyi Zheng, Nafees Ahmed, and Klaus Mueller, Senior Member, IEEE 

Abstract—The unguided visual exploration of volumetric data can be both a challenging and a time-consuming undertaking. 
Identifying a set of favorable vantage points at which to start exploratory expeditions can greatly reduce this effort and can also 
ensure that no important structures are being missed. Recent research efforts have focused on entropy–based viewpoint selection 
criteria that depend on scalar values describing the structures of interest. In contrast, we propose a viewpoint suggestion pipeline 
that is based on feature-clustering in high-dimensional space. We use gradient/normal variation as a metric to identify interesting 
local events and then cluster these via k-means to detect important salient composite features. Next, we compute the maximum 
possible exposure of these composite feature for different viewpoints and calculate a 2D entropy map parameterized in longitude 
and latitude to point out promising view orientations. Superimposed onto an interactive track-ball interface, users can then directly 
use this entropy map to quickly navigate to potentially interesting viewpoints where visibility-based transfer functions can be 
employed to generate volume renderings that minimize occlusions. To give full exploration freedom to the user, the entropy map is 
updated on the fly whenever a view has been selected, pointing to new and promising but so far unseen view directions. 
Alternatively, our system can also use a set-cover optimization algorithm to provide a minimal set of views needed to observe all 
features. The views so generated could then be saved into a list for further inspection or into a gallery for a summary presentation. 

Index Terms—Direct volume rendering, k-means, entropy, view suggestion, set-cover problem, ant colony optimization.

 

1 INTRODUCTION

The visual exploration and extraction of relevant information from 
3D volume data can be a daunting task as it often requires users to 
try out many different combinations of views and transfer functions. 
In this regard, having proper views to start with can greatly improve 
the efficiency of the data exploration process. Hence, given an 
arbitrary volume dataset, the suggestion of a set of interesting views 
has been a research topic of great interest, but also one of challenges.  

Most of the recent research in view selection uses metrics based 

on scalar values to locate regions of interest, that is, before selecting 
the views the user is either required to design a 1D transfer function 
[5][35] or perform a segmentation [6] to classify these regions. Then, 
once this has occurred, the viewpoint selection algorithm will search 
for the best viewpoint to display the maximum amount of 
information. However, there are a number of potential pitfalls with 
this methodology. First, before we can start searching for the best 
view, the user is required to know the scalar values of the hidden 
structures to be classified. But without having a proper look at the 
data first (and without the presence of strong domain knowledge), 
the user might not have a clear idea what these structures actually 
are, even in a coarse sense. Any initial guess will likely not be able 
to classify the hidden features successfully, and so the view selection 
algorithm in turn will not help to find the best viewpoint. Also, due 
to the fact that these methods require input in form of a transfer 
function or segmentation, if the user decides to change either of these 
a re-computation of the entire pipeline is needed to suggest the new 
best view. This iterative process can potentially take a long time and 
thus makes exploring transfer functions in an interactive manner 
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impossible. Secondly, many structures in 3D volumetric data require 
more than scalar values to be classified properly. They may require 
gradient magnitudes (or even higher-order metrics), in conjunction 
with multi-dimensional transfer functions. Given all these inherent 
shortcomings, purely scalar-based view selection algorithms can be 
quite limited for practical use. 

Also, current view selection algorithms proposed for volume 
rendering were built around the concept of selecting a single best 
possible view to visualize the volume dataset. But in situations in 
which the viewer is interested in visualizing all of the interesting 
features in a comprehensive manner, suggesting only one view can 
be inadequate. While one good view might be able to extract the bulk 
of the salient features, more views are often necessary in the likely 
event that some features are occluded in this chosen best view.   

Acknowledging the fact that good user-specified 1D transfer 
functions or proper segmentations are difficult to obtain and may be 
inadequate to be effective, we propose a view suggestion framework 
rooted in high-dimensional feature space which does not rely on 
transfer functions or volume segmentations as an initial input. By 
applying high-dimensional (low-level) feature clustering, our 
proposed method can automatically detect salient composite features 
and based on this analysis suggest promising viewpoints. The user 
may then inspect these promising views more closely by 
interactively exploring the transfer function, or run one of numerous 
automatic algorithms to optimize visibility. We henceforth call this 
method viewpoint suggestion since it helps users to navigate to 
favorable positions that potentially show interesting structures. In 
this way our approach is less ambitious than a full-fledged view 
selection pipeline, but at the same time more versatile and 
appropriate for data exploration. It supports the extraction of a set of 
good views appropriately refined with different transfer functions 
instead of a set of good views limited to one fixed transfer function. 

Our approach also offers advantages in terms of interactive data 
exploration. This is especially important when users are not certain 
about the properties of the structures of interest and need to refine 
the renderings. Traditional view selection algorithms [5][6] involve 
full volume rendering from all possible viewpoints and calculate the 
viewpoint entropy from all voxels. This can result in prohibitive wait 
times if users want to update the transfer function during the search 
for the best viewpoint. In contrast, our framework splits this process 
into two separate and subsequent phases: (1) the determination of a 
set of good viewpoints using relatively inexpensive operations 
(GPU-accelerated clustering, cluster-based visibility test and entropy 
calculation), and (2) the interactive refinement of the transfer 
function from these promising viewpoints to generate the desired 
salient volume rendered images. This approach allows users to 
maintain a stable spatial reference (and one at which many features 
are visible), while exploring these features and their relationships 
one by one by modifying the transfer function.        

To address the problem of fully covering all features in a volume, 
our viewpoints suggestion framework provides a two-fold solution. 
First, our system not only suggests a single best viewpoint, but also 
provides an interactive navigation interface where all the views are 
color-labeled with a relative measure of feature exposure. Also, the 
system can progressively mark visited features and only show the 
distribution of the unknown, yet undiscovered information. This type 
of interaction has already been useful in specialized applications, for 
example in virtual colonoscopy [18] where colon wall patches 
already viewed are painted in green on the fly-through, enabling 
doctors to focus their attention onto unpainted areas. Second, to 
effectively guide users in their exploration of the entire volume, our 
system provides an automated viewpoint suggestion module, 
effectively minimizing the number of views to be inspected. Our 
multiple-viewpoint suggestion algorithm seeks to determine the 
minimal set of views that can cover all features, which maps to the 
Set Cover Problem (SCP). Our set-cover problem solver together 
with the interactive viewpoint navigation tool then aids users in 
gaining a complete understanding of the features in the volume. 

In this paper, we concentrate on the problem of suggesting to the 
user a set of potentially good views. We leave the design of the 
transfer function needed to highlight the exposed features to the user, 
supported by suitable existing interactive algorithms. There are many 
of these (e.g. [9][10]) and so we do not discuss this issue further. Our 
contributions can then be summarized as follows: 

 Our high-dimensional clustering-based view suggestion 
framework is purely feature-based and acts before transfer 
function design. It informs users of promising views before 
laborious transfer function exploration even begins and so 
prevents “dead-end” transfer function exploration experiences.  

 Our view suggestion framework is adaptive to what the user 
has already seen. Users can explore the entire view-space with 
progressive suggestions of promising viewpoints. This 
facilitates a fully unconstrained volume exploration, but 
ensures that all important features are eventually seen.  

 Our system provides viewpoint set solutions that are optimal. 
We achieve this by using a set cover problem solver, which 
adapts to the set of views selected by the user so far. 

Our paper is structured as follows. In Section 2 we discuss related 
work. Section 3 provides an overview of the theoretical basis and 
Section 4 presents the practical consideration of individual 
components in the framework. Section 5 discusses results. Section 6 
presents a user study and Section 7 ends with conclusions. 

2 RELATED WORK 

In the following we review previous work related to our system. 
View Selection: Vazquez et al. [36][37] applied the concept of 

viewpoint entropy to determine the best viewpoints for polygon-
based scenes. Bordoloi et al. [5] proposed to use voxel-based entropy 
to select viewpoints in volume rendering, assuming that transfer 
functions are given. Takahashi et al. [35] proposed a similar 
framework based on iso-surface entropy, weighted by a given 
transfer function. Chan et al. [6] extended Bordoloi’s work by 
considering spatial relations between structures, after a user-
specified segmentation has been given. Our viewpoint suggestion 
algorithm is fundamentally different from these works as it does not 
depend on either prior transfer functions or segmentation. Our 
feature-definition is different from that of Takahashi et al. where 
features in the volume are defined as a set of iso-surfaces. Rather, in 
our case the feature metric is sensitive to local structures. This allows 
for the detection of very delicate features giving rise to as slight 
normal perturbations, such as text on a surface. Other importance 
metrics to define interesting features found in the literature, such as 
suggestive-contours [11] could also be readily incorporated.  

Our framework supports multiple viewpoint selection. The 
selection of multiple views (or view planning) has found application 
in many domains. A variety of methods seek to solve the next best 
view problem, such as the entropy-based method [40], the visibility-
based method [14], and the silhouette-based method [1]. They have 
wide application in the placement of laser sensors [4] and RFID 
sensors [41] and for determining the best circular trajectory in cone-
beam CT [2]. These view planning methods cannot be directly 
applied in volume rendering but they can provide useful insight in 
creating our pipeline, since we define local features in the volume 
and then solve a similar set cover problem conceptually.  

Transfer Function: In volume rendering, material classification 
is often done via transfer functions. The traditional 1D transfer 
function is based on scalar values only. Recent research has 
investigated a plurality of new transfer function domains which have 
been used together with scalar values and results from these are very 
promising. They include gradient magnitude [21], curvature [20], 
features size [8], occlusion spectrum [9] and visibility [10]. 
Perception can be also added into the transfer function design [7]. 
Mai et al. [26] presented a semi-automatic 2D transfer function 
design method based on segmented data. These user-controlled or 
semi-automatic transfer functions assume a given viewpoint. Our 



 
 

framework provides a potentially favorable starting point for these 
transfer function optimization techniques by suggesting good views 
at which they can be applied. As mentioned, we do not consider the 
transfer function design before the viewpoint suggestion, due to the 
additional burden caused from requiring all possible viewpoints to be 
volume rendered a-priori.  

Works on designing transfer function based on feature clustering 
also exist. Sereda et al. [33] proposed to use clustering to design 
transfer function. Maciejewski et al. [25] proposed feature detection 
in 2D transfer function space automatically or semi-automatically. 
We focus on using clustering in the context of viewpoint suggestion. 

View Enhancement: Focus+context techniques are widely used 
to enhance the volume rendering. Wang et al. [39] introduced the 
magnification lens into volume rendering. Viola et al. [38] proposed 
an automatic cut-away view based on assigned importance weight on 
segmentation. Krüger et al. devised the ClearView [23] system using 
spherical hot-spots based on discrete curvature based importance. 
There is also research on adding multiple view information in a 
single view. Kohlmann et al. [22] presented a deformed viewing 
sphere based on history. Sudarsanam et al. [34] proposed a widget to 
incorporate multiple views into a single image. In our work, we have 
focused on views without distortion and without advanced 
highlighting, but incorporating these advanced rendering techniques 
would further benefit our view suggestion framework. 

3 THEORY 

3.1 Viewpoint Entropy 

Simply speaking, a good view onto a volume can be defined as the 
one that reveals the maximum amount of features relevant to the 
viewer. Exactly what properties of the volumetric data are relevant to 
the viewer and need exposure depends mainly on the kind of 
problem at hand and what the viewer is really looking for. But, once 
we have defined the feature set, what we then need to find are the 
views that can show the features distinctly on the screen through 
graphical rendering. To facilitate comparison among all these views, 
we assign a score to each of them. And to compute this score, we 
apply concepts from information theory in a similar fashion as in 
previous work [5][6][35].  

Information theory defines entropy as a measure of uncertainty 
associated with an information source. Since, to resolve this 
uncertainty, the amount of data we need to transmit to the receiver 
defines the amount of information content, entropy of the source 
hence also measures information. Let us consider any information 
source A which transmits a random sequence of symbols taken from 
alphabet ሼaଵ, aଶ, … , aKሽ  where occurrence probabilities are 
ሼpଵ, pଶ, … , pKሽ. Entropy of this information flow is given by, 

ሻܣሺܪ ൌ െ   log  



ୀଵ

 (1) 

Now, say, in addition to the given probabilities, the receiver also 
has the knowledge that a certain symbol ܽ௫ is always followed by 
some other symbol, ܽ௬. Presence of this knowledge to the receiver, 
let us define it as E, reduces uncertainty regarding the source. The 
entropy after this knowledge would be, ܪሺܧ|ܣሻ.  

In the context of volumetric data, we have an information source 
– the volume itself, the information receiver – the viewer and a 
transmission process which includes the whole pipeline of volume 
rendering. If the volume is not shown to the viewer, then the 
uncertainty associated with the volume is at maximum and it 
represents the total information content of the volume, say we denote 
this by H(X). Now, in the event that we render a particular view ݒଵ, 
partial information of the volumetric features become revealed to the 
user. The uncertainty remaining can roughly be defined as ܪሺܺ|ܸ ൌ
 ଵሻ. Since we are interested in finding the view that reveals mostݒ
information, from the perspective of information theory, what we 
want is to find a view ݒ that minimizes ܪሺܺ|ܸ ൌ  ሻ with respectݒ
to all possible views. From the chain rule of entropy we can write, 

ܸ|ሺܺܪ ൌ ሻݒ ൌ ,ሺܺܪ ܸ ൌ ሻݒ െ ሺܸܪ ൌ  ሻ (2)ݒ
Here, ܪሺܺ, ܸ ൌ  ሻ is the information content of the volume andݒ

its view taken together. ܪሺܸ ൌ  ሻ denotes entropy of a particularݒ
view and as such is a measure of information content of a rendered 
view. Since a view is just a projection of the volume data, we can 
consider ܪሺܺ, ܸ ൌ ሻݒ  to be constant across views. Hence, 
minimizing ܪሺܺ|ܸ ൌ ሺܸܪ ሻ effectively means maximizingݒ ൌ  .ሻݒ
So, a good view is identified as the one that has large view entropy.  
A straightforward way [5] [35] to measure the view entropy requires 
a transfer function to perform volume rendering for the view. 

Our entropy estimation is different since we do not want to 
involve transfer function as an input and later restrict the decision on 
a single fixed transfer function. Instead, we propose to measure the 
maximum possible information (across all possible transfer 
functions) for a viewpoint. This is possible since the 2D image 
generated by computing the volume rendering equation depends on 
not only the transfer function but also on the shading (lighting) 
effect. Shading plays a significant role in conveying information 
about shape and is well-studied in computer graphics. We define 
potential information for shading as blobs of voxels and we compute 
the entropy based on how well one can resolve these feature-clusters 
at a given view based on the shading (lighting) effect. It serves as an 
extension of Bordoloi’s work [5] in which the visibility of each 
voxel is computed together with the transfer function to evaluate the 
entropy. Here we group voxels in the volume according into clusters. 
Then probability distributions associated with voxel-clusters are 
needed to calculate entropy. Let ݍ  represent the contribution of 
cluster ݆  in a viewpoint. ݍ  is a special case indicating the 
background volume (containing all voxels that do not belong to any 
clusters). Then the view entropy for a certain view ܪሺܸ ൌ   :ሻ isݒ

ሺܸܪ ൌ ሻݒ ൌ െ  ݍ · logଶ ݍ
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ݍ ൌ ሺܸሻݍ ൌ
1
ߪ

·
ሻݒሺܥܸ

ܹ
  where   ߪ ൌ 

ሻݒሺܥܸ

ܹ
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 (4) 

Here ܭ is the total number of feature clusters. The factor ߪ will 
make sure that all ݍ sum up to 1. ܸܥሺݒሻ is the visibility of cluster ݆ 
in view ݒ. ܹ the noteworthiness [5] of cluster ݆, is defined as: 

ܹ ൌ ܫ ൌ െ logଶ  ൌ െ logଶ
|݊୨|

∑ |݊୧|K
୧ୀ

 (5) 

where  represent cluster ݆ ’s probability, calculated from the 
number of voxels in cluster ݆  normalized by the total number of 
voxels. We add the consideration of background. ݊  is number of 
voxels that do not belong to any cluster,   is the probability of 
background and ܹ is the noteworthiness factor for background. In 
Sec. 4.1 we present our method for computing the importance of 
features that is sensitive to shading but independent of any transfer 
function. Sec. 4.2 defines the computation of view entropy based on 
the selected metric. Finally, Sec. 4.3 shows how we present the data 
computed from Sec. 4.2 in both a suggestive and explorable manner.  

When we are suggesting views onto the volume, besides finding a 
single view that reveals information in the best way, we also want to 
guide the user such that they will not miss out on any of the features. 
In the language of information theory, a single view ݒ might be the 
optimal view in terms of view entropy but it may be the case that 
ܸ|ሺܺܪ ൌ ሻݒ ് 0. So, we propose to suggest to the user a set of 
views ሼݒଵ, ,ଶݒ … ܸ|ሺܺܪ ሽ so thatݒ ൌ ,ଵݒ ܸ ൌ ,ଶݒ . . , ܸ ൌ  ሽ=0, thatݒ
is, to find a set of views that collectively can give the viewer a total 
picture of all the important features of the volume data. Sec. 3.2 and 
Sec. 4.4 show how we compute such set by solving the SCP. 

3.2 Ant Colony Algorithm for Set Cover Problem  

We suggest an optimal series of viewpoints by solving the SCP. We 
first generate a large number of views as candidates to choose from. 
Each view will then cover a number of features. Thus we make each 
view a “set”, while the features that need to be covered form 



 

 
 

“elements”. The optimization objective is to find the minimum 
number of views that cover all salient features.  

The SCP was one of Karp's 21 NP-complete problems [17]. A 
mathematical model for the SCP is usually described by a 0-1 
matrix, ܣ. Let ܣሺܽሻ be an m-row, n-column, zero–one matrix. We 
say that a column j covers a row i if ܽ  ൌ  1. Each column ݆ is 
associated with a nonnegative real cost ܿ . Let ܫ ൌ  ሼ1, . . . , ݉ሽ and 
ൌ ܬ  ሼ1, . . . , ݊ሽ be the row set and column set, respectively. The SCP 
can be stated as: 

minሼ ܿ · ݔ



ୀଵ

ሽ (6) 

subject to  

 ܽ · ݔ



ୀଵ

 1  and  ݔ א ሼ0,1ሽ , ݅ א ,ܫ ݆ א  (7) ܬ

where, ݔ  ൌ 1  if set ݆  is selected, otherwise ݔ  ൌ 0 . The matrix 
ሺܽሻܣ  encodes all the viewpoints strength to cover the feature 
clusters in the volume.  

The SCP can be solved by many algorithms and the ant colony 
algorithm is one of the fastest solvers [30][31]. It is inspired by the 
observation of real ant colonies. The general mind-set behind ant 
colony algorithm is that a large amount of artificial ants search for an 
optimal solution defined by Equation (6). Each artificial ant chooses 
a set one by one until it achieves a complete cover defined by 
Equation (7). The decisions for choosing different sets are partially 
based on Russian-roulette. Additionally, the probability for choosing 
one set will increase if a large number of ants choose it, which is in 
the way of pheromone information exchange. In the following, we 
explain the ant colony algorithm for the SCP in detail. 

 The probability for an ant to choose set j is based on the state 
transition rule: 

ܲሺݏ௧ ൌ ݆| ௧ܵିଵሻ ൌ  ൞        
߬ ݄

ఉ

∑ ݄߬
ఉ

א\ௌషభ

        ݂݅  ݆ א \ ܬ ௧ܵିଵ

݁ݏ݅ݓݎ݄݁ݐ                    0        

 (8) 

where ௧ܵିଵ  denotes the partial solution constructed before step ݐ , 
\ܬ ௧ܵିଵ denotes the subset of unselected columns, ݏ௧ denotes the set 
that will be chosen at the step ݐ  and the parameter ߚ ሺߚ ൌ 0ሻ 
determines the relative importance of the heuristic factor with respect 
to the pheromone.   

The heuristic is usually defined by a greedy method. If ܴ is the 
set of still uncovered elements and ܿ is the cost associated to set ݆. 
The heuristic value of set ݆ is:  

݄ ൌ ܫ| ת ܴ|/ ܿ     (9) 
The pheromone trials are stored at each set as ߬ . They are 

initially set to one and updated later as: 

∆ ߬ ൌ  ቐ
 

1
∑ ܿאௌ್

            ݆ א ܵ

݁ݏ݅ݓݎ݄݁ݐ                      0        

 (10) 

߬ ՚ ሺ1 െ ሻߩ ߬  ∆ ߬        ݆ א  (11)     ܬ

where ܵ  is the current best solution across all ants, ߩ  is the 
pheromone evaporation factor (with 0 ൏ ൏ ߩ  1 ) and ߂ ߬  is the 
amount of new pheromone put on column ݆. The range of pheromone 
should be clamped with a range ሾ߬, ߬௫ሿ where: 

߬௫ ൌ   
1

ሺ1 െ ሻߩ ∑ ܿאௌ್

 (12) 

߬ ൌ ߝ   · ߬௫       0 ൏ ߝ ൏ 1 (13) 
For more detailed description of the ant colony algorithm applied 

for the set covering problem, we refer the reader to [31]. 

4 APPROACH 

Our overall framework is shown in Figure 2. The first stage is a 
multi-dimensional data clustering. Given a certain noise-level for the 
dataset, we consider voxels with high gradient/normal variation as 

the important features. We perform k-means clustering to group 
voxels into blobs, followed by a visibility test. In the next stage we 
compute the information gain for all viewpoints around the object 
and create an entropy map that we display on a sphere that doubles 
as a track-ball interface used to change viewpoints. Thus, by 
mapping the entropy map directly on the track-ball, users can 
directly and intuitively identify and navigate to favorable view 
locations. The user can also add or delete viewpoints by clicking on 
the sphere and the displayed entropy map is updated accordingly.  

Alternatively, the SCP solver can be used to suggest to the user a 
set of optimal or at least near-optimal viewpoints from which to 
visualize the volume. It provides a series of viewpoints that covers 
all features. The set of optimal views suggested by the SCP solver is 
annotated onto the navigation sphere and the user can continue 
navigating through the sphere with these added suggestions in hand. 
In the meantime the user can also use the transfer function designer 
to explore settings that expose features at the given viewpoints.  

4.1 Feature Extraction and Clustering 

Our framework is based on feature detection and high-dimensional 
data clustering. As for the question how to define features in high-
dimensional space as potentially interesting structures, there are 
many choices and their suitability can be application-dependent. We 
chose to provide a very general and application-neutral importance 
metric based on normal-variation. Normal-variation plays a 
significant role in lighting. In this paper, we shall assume that an area 
with large normal/gradient variations contains salient information, 
while regions with similar gradient directions have less information. 
This metric is an extension of 2D curvature estimation and it 
generally belongs to the group of Laplacian operators. The discrete 
importance estimation for a voxel located at ሺݔ, ,ݕ  :ሻ isݖ

,ݔሺݓ ,ݕ ሻݖ ൌ  ,ݔሺ݂| ,ݕ ሻݖ െ ,ݔሺ݂ ,ݕ |ሻݖ
ሺ௫,௬,௭ሻאேሺ௫బ,௬బ,௭బሻ

 (14) 

where ݂ሺݔ, ,ݕ ሻݖ  is the volumetric scalar field,   is the gradient 
operator and ܰሺݔ, ,ݕ ሻݖ  is the set containing a neighborhood of 
ሺݔ, ,ݕ  ሻ. In our estimation, only the 6 closest neighboring points areݖ
considered. This metric is different from the classic Laplacian 
operator which is defined as the divergence of the gradient vector 
field and thus can be negative. The importance weight here sums up 
the absolute values of gradient difference individually which can 
guarantee the weight to be positive. The intuition behind this metric 
is that we want to have a measure of the perturbations of 
gradient/normal in a region.  

Most practical volume data contain a certain level of noise which 
will affect the feature detection. In the pre-processing stage, we take 
the ambient noise level as an input to threshold the scalar values. We 
also consider the noise removal as a thresholding procedure on 
gradient variation. After applying these thresholds, the resulting 
voxels are considered the important voxels and are clustered in a 

Fig. 2. Overall framework. 



 
 

five-dimensional space: scalar value, gradient magnitude, and (x, y, 
z) coordinate.  

The k-means algorithm is one of the most well-known clustering 
algorithms. Given an input value ݇, it can partition n objects into k 
clusters based on some similarity (distance) measure. We apply k-
means clustering to get k blobs in 5D space. We also record the 
voxels inside each cluster and remove a cluster if the number of 
voxels is too small (less than 5). The gradient/normal direction for 
each cluster is computed as a Gaussian-weighted average which 
enhances spatial coherence. 

An example of computed gradient vectors is shown in Figure 3. 
The clustering phase can employ automatic feature detection if the 
ambient noise level is known. We build our system in the high-
dimensional feature domain. Hence it can detect local structures with 
high gradient variation and adjust views for these local features. This 
provides a general importance metric well suited for non-expert 
users, to minimize user invention. But we note that our data-
clustering pipeline can readily support other more specific metrics if 
more specific domain knowledge about dataset and task is available.  

An important aspect in k-means clustering is the input value ݇. 
The value of ݇ controls the resulting number of clusters and as such 
the grouping of similar features of the input dataset. For a given 
dataset, to identify the features distinctly, the algorithm requires a 
certain ݇ that will ensure separation of features such that the clusters 
truthfully represent the features. Having a smaller ݇ value will merge 
a set of features into a big cluster, whereas a larger value will 
produce clusters covering fine details. From a multi-resolution point 
of view, the choice of ݇ affects the resolution of the features to be 
extracted. Therefore, the value ݇ will reflect the average size of the 
feature clusters. We base the choice of ݇ on the average cluster size 
(and therefore desired level of detail structures), chosen by the user 
via a slider interface. Then the value ݇ is found by dividing the total 
number of noise-free voxels by the desired average cluster size. But 
alternative approaches such as the elbow criterion [19] and X-means 
[28] may also be utilized to obtain an appropriate k. Finally, users 
may also inspect the clusters by visualizing them in the 3D interface.   

Another important issue with k-means clustering is also the 
choice of the initial k seeds, which can produce a certain level of 
randomness in the clusters formed. To overcome this problem we use 
the standard practice of clustering the data multiple times with 
different random seeds and picking the clustering that has the least 
overall L2 error with respect to the clustered data points. Since we 
use the GPU-based standard-version k-means library [13] the 
performance hit is relatively minor.  

4.2 Entropy Calculation  

The k-means algorithm outputs a series of 5D clusters and 
gradient/normal values at the centers of the clusters. For each cluster, 
we extract its spatial information as a 3D ellipsoid and estimate the 
visibility based on the cluster’s normal direction.  

We assume the center of a cluster to fall within the clipping 
window. Then there are three major factors that contribute to a good 
view: (1) the angle between the cluster’s normal and the viewing 
direction (the eye ray), (2) the number of clusters that can be shown, 
and (3) the total number of voxels within potentially visible clusters.  

Our goal is to calculate the maximum potential entropy for the 
feature clusters. We establish a set of criteria for a feature cluster to 
be classified as invisible. We first set a threshold on a clusters’ 

normal range and later use entropy to measure viewpoint quality. 
 The first criterion is that the gradient direction and eye-ray 

should be within a certain range, enabling shading effects to enhance 
small details in the volume rendering. Shading conveys a strong cue 
for shape (see “shape from shading” in computer vision, graphics 
and robotics [42]). An important observation is that at 45°  the 
Lambertian cosine shading functions starts to loose strength, since 
the derivative of the cosine function has an extreme point in the 
vicinity of 45°. So if the normal vector of the cluster and viewing 
vector make an angle of greater than 45°, our framework rates the 
viewpoint as inadequate to cover the feature cluster’s information.  

Silhouettes can also be salient in conveying shape information 
(this is a popular method in non-photorealistic rendering). 
Silhouettes start to become visible when the view and normal vectors 
are close to 90°. Consequently, we may allow clusters that are close 
to 90° to be visible as well. This criterion is especially effective in 
dynamic flow visualization, in which interesting wave fronts can be 
represented as silhouettes. But in static data with concave shapes, it 
may produce poor results as shown in a simple example (Figure 4). 
Figure 4(b) is a good view via the silhouette criterion but it provides 
only little information. In contrast, Figure 4(c) emphasizes only 
normal deviations and is a more informative view. Hence, we find 
that shading effects tend to be a safer way to test the visibility of the 
features, especially when the user is facing non-convex shapes. Since 
in this paper we only focus on volume rendering of static datasets, 
we prefer the shading-based method to point out salient details.  

Our visibility test so far did not account for the occlusion among 

clusters, since our target was the maximum possible exposure of all 
details within a given viewpoint. This is less of an issue since 
advanced frameworks (such as occlusion-spectrum based transfer 
function) have the capability to explore data with occlusions. In 
addition, conceptually we place no limitation on the number of 
images or transfer functions per viewpoint. As such, at a given 
viewpoint, the user may theoretically see all the structures within a 
normal range by applying different transfer functions one by one. In 
fact, this was our initial design choice: giving the user the freedom to 
choose any type of transfer function or take any number of rendering 
results later on. But practically speaking, the occlusion effect among 
the ellipsoids represents an additional time overhead (and therefore 
cost) in the data exploration process. So we provide a weight by 
which the user can set a preference on less occlusion which in turn 
eases the transfer function design, as discussed in Section 4.5.  

By applying the visibility test, we measure the quality of a 
viewpoint in terms of view entropy (Equation (3) and (4)), and find 
the largest entropy by extensive search. As discussed, the major 
difference between ours and other work [5][6] is that instead of 
representing information according to scalar value, we define it on 
important features in a high-dimensional feature descriptor domain.  

For the cluster-based entropy, we mark all voxels that do not 
belong to any clusters as ‘background’, which is similar to the 
background feature definition in viewpoint selection methods for 
polygonal models [36][37]. This will remove singularities where 
only one cluster is shown in a viewpoint but its entropy is 0. After 
considering all background voxels, if no feature cluster is shown, the 
view will have zero entropy. In contrast, if any feature cluster is 
shown then the entropy will be non-zero. 

Fig. 3. K-means feature clustering with gradient vectors shown for (a) 
a standard cube and (b) a cube with text on the back surface. 

(a) (b) 

(a) (b) (c) 

Fig. 4. Silhouettes fail to convey concave shape.  



 

 
 

Finally, Figure 5 shows how different settings of k affect the 
entropy map of the tooth dataset. The 79-cluster case (Figure 5a) has 
an average voxel set size of 12.9 and the 109-cluster case (Figure 5d) 
has an average voxel-set size of 11.6. We observe the growing 
entropy pattern with increasing cluster number. However, the 
relative importance is quite stable. All entropy maps suggest that the 
most important view is from the north-pole. Then the next interesting 
view is from the south-pole. Finally, in the middle region there are 
two fairly interesting viewing areas and three relatively non-
interesting areas.  

4.3 Viewpoint Information Exploration  

If we assume that all viewpoints have the same camera distance, the 
possible projection locations will be on a sphere with radius ܴ and 
can be parameterized by longitude ߮  and latitude ߣ . We further 
assume that in each view position we use the same field-of-view 
(FOV) and we are looking at the center of the sphere. Rendering the 
viewpoint entropy map onto a sphere, every single point on this 
sphere then represents one view position and the intensity of a point 
denotes the amount of information this viewpoint can possibly cover. 
As shown in Figure 6, the nearest point to the user (screen center) is 
the current viewpoint. The navigation window and volume rendering 
are displayed side by side. The user can rotate the sphere in the arc-
ball interface and in the meantime the volume will rotate in a 
synchronous fashion. The user can then check on the map which 
view position would possibly be more interesting to look at.  

Deviating from the previous works that use single viewpoint 
selection interface, we provide progressive navigation tools. Users 
can select a complete set of views to render the volume data in a 
greedy manner. The system helps the user to navigate and allows 
them to select a series of viewpoints. When the user marks a point on 
the sphere to represent the selection of a viewpoint, the system 
shows the rendered image and updates the entropy information 
interactively, reducing the entropy map to that of the undiscovered 
features. Users may then continue to choose several more views until 
not much color is left. Also, the user may undo the latest selection 
and the system will then add the affected clusters back into the map. 
The user may also undo selections multiple times which will be 
reflected on the entropy map in reverse order.  

We next explain how to update the entropy calculation after a 
user’s interaction. Initially, all clusters are set as unknown, denoted 
as ݑ ൌ 1 for the jth cluster. The clusters that have been explored by 
the user are marketed as inactive. Thus: 

ݑ ൌ  ቄ        0             if user visited cluster ݆ and ݆ ് 0
1                                              otherwise

 (15) 

ݍ ൌ ݑ ·
1
ߪ

·
ሺܸሻܥܸ

ܹ
 (16) 

Undoing a user selection will mark the corresponding ݑ as active 
again. We do not perform further normalization of the 
noteworthiness factors during user selection, considering the fact that 
the amount of total information is constant. In this way, the user will 
observe the color fading from red to blue to convey the amount of 
information that has now been explored.  

As most users tend to use this tool in a greedy manner, it may not 
be the optimal way for choosing the camera positions that cover all 

detected features. For this purpose, we incorporate our SCP solver to 
help users to find the optimal viewpoints. This is explained next.  

4.4 Suggesting Best Combination of Views 

As mentioned, a greedy search is not always the most optimal 
approach when searching for a set of views covering all clusters. The 
entropy-rated viewpoints are only a result of a local heuristic which 
is not adequate to find a global optimum. Hence we provide the user 
with the minimum number of viewpoints needed for full exploration 
based on an ant colony optimization of the set covering problem. 

The ant colony optimization method creates L artificial ants to 
search for the viable solution to Equation (6) and (7). After all L ants 
find viable solutions the system keeps track of the best ant (with 
minimum cost), updates the pheromone and runs L more artificial 
ants until the desirable cost is found by an ant. In our problem, the 
user can specify the number of views he/she wants to have to expose 
all feature clusters. Then the SCP solver will run multiple ants to 
search for the solution. Each ant will make a decision on what is the 
next viewpoint to choose based on heuristic and pheromone 
(Equation (8)). The heuristic is proportional to the number of 
unknown clusters that can be covered (Equation (9)). And the 
pheromone reflects how many other ants previously chose this 
viewpoint, as shown in Equation (10-13). After all ants have 
finished, the ant with the minimum number of viewpoints will 
deposit the pheromone to the viewpoints it chose. The system will 
report a success if an ant has found the desired solution. If in a 
limited amount of time, the ants cannot find a set of views under the 
desired cost, the system will report that no solution has been found.  

We have implemented the ant colony algorithm in C++ and 
validated it against several test problem cases [3] with known 
solutions.  

4.5 Viewpoint Preference 

The user can further set preferences to refine the viewpoint 
suggestion results. We have added several metrics to that effect.  

Cluster Occlusion: In our approach, multiple transfer functions 
are typically required to extract information from a suggested view 
when there are occlusions between features. We can add support for 
preferring views with non-occluded features by adding a cost penalty 
for views with occluded features. This cost is determined by the 
maximum number of occlusions for a given view. We compute the 
penalty during the splatting-based cluster visibility test (Sec. 4.2). As 
discussed, the clusters are represented as 3D ellipsoids, and we 
record the maximum number of ellipsoids projected on each pixel. 
The cost is initially assigned to 1 if there are no overlaps, and it 
grows with the number of overlapping clusters discovered in the 
visibility splatting. 

To visualize the amount of cluster overlap and so the potential 
difficulty in the subsequent transfer function exploration, we provide 
two interfaces: (1) we render the cost in grayscale on a separate 
map/sphere, and (2) we fuse the occlusion cost into the entropy map 
by using it as a weighting inside the SCP solver. The former can be 
justified since the cost of occlusions does not add to the concept of 
entropy which only encodes the maximum potential exposure of 
information. In Figure 7, we show the entropy map alongside the 
occlusion cost map for the bluntfin dataset. There are some areas 
with similar entropy but with different overlap counts. During the 

Fig. 5. The effect of the number of clusters on the entropy map. The 
Initial k for k-means: (a) k=100. (b) k=110. (c) k =120. (d) k =130. 

(a) 79 clusters, size =12.9 (b) 93 clusters, size =12.2 

(c) 103 clusters, size =11.8 (d) 109 clusters, size =11.6 
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Fig. 6. Viewpoint navigation for a cube dataset. (a): display window 
for the rendered object. (b): view navigation sphere (track-ball). 
Upon rotating the track-ball. Both (c) the rendered object and (d) the 
view navigation sphere will rotate in a synchronized manner. 



 
 

user interaction, the user mainly relies on the entropy map for 
viewpoint exploration, but treats the cost map as a guide to estimate 
the potential difficulty for the subsequent transfer function design.   

Viewpoint Separation: The SCP solver will generate results 
with reasonable separations among the viewpoints. If there are 
several solutions, the user can set a preference for viewpoint 
separation. This will reflect how evenly the viewpoints are 
distributed over the sphere. We gauge this evenness of the 
distribution by calculating the variance of the distances between the 
selected views on the sphere.  

Viewpoint Up-Direction: Given a fixed view, the information 
exposed by the volume on the screen does not depend on the 
orientation of the image. But users may have a preferred up-direction 
of the camera based upon common viewing experiences with the 
given dataset. In our framework there is a default vector specified as 
up-direction. If the data does not appear to be properly oriented with 
the default up direction, the user has the option to specify this vector. 

5 RESULTS 

In our experiments, we set the viewing angle limit to 45°  and 
assuming a voxel distance of 1 mm we set the viewing distance to 
5,000 mm. The image size is always 5122 pixels. The view positions 
on a sphere are sampled on a 60 ൈ 30 grid, with a total of 1,800 
viewpoints. All volume-rendered results shown in this paper were 
obtained using the rendering software Imagevis3D [12][15].  

We first tested our framework on a simple cube dataset. The 
cube’s size is 803, residing in a 2563 volume grid. We added a shift 
vector ሺ10, 20, 30ሻ to the cube which moves it off the volume grid 
center. Figure 8(a) shows this dataset, and Figure 9 displays the 
rendering results obtained with our system. In this case, the SCP 
solver automatically suggests 4 different views, looking down the 
cube diagonals. All of these 4 views coincide with the best views 
provided by Bordoloi et al. [5].  It appears that two images are not 
sufficient since each viewpoint will resolve three edges in the center 
through shading, while the rest of the edge features are partially but 
not completely visible. As seen in Figure 8(c), it is not safe to only 
have two views to visualize the cube, since we do not have good 
information about the 6 edges appearing in the silhouettes. 
Conservatively speaking, only 4 viewpoints will be able to see all 12 
edges with full exposure of all features. The corresponding entropy 
map is shown in the bottom row of Figure 9. The initial high entropy 
map with no views selected shows 8 favorable regions, identifying 
the cube’s 8 vertices as best views. The entropy map is then updated 
gradually as views are selected. Here selecting a given view typically 
removes more than one local maximum from the entropy map. 

For our next experiment, we add the text “Vis2011” on one of the 
surfaces of the cube (normal perturbation), as shown in Figure 8(b). 
The results for this modified cube are shown in Figure 10. In this 

case, we need 5 views to fully visualize the dataset. In navigation 
mode, the entropy map clearly highlights the surface with text, 
indicating that in this region there is something important. In the 
automatic view suggestion mode, one of the resulting views 
specifically targets the text while the other viewpoints aim to look 
along the diagonals. In contrast, scalar-value based methods [5][35] 
will not be able consider the text as an important feature and so will 
display the entropy map of a uniform cube. Our method, on the other 
hand, can faithfully detect this type of intricate surface features and 
suggest something of possible interest is hiding in a certain view. 

We also tested our pipeline on medical data, which typically do 
not have strong regular edges like the cube. Our experiment uses the 
well-known tooth dataset. Figure 1 shows the resulting 7 views 
suggested by the SCP solver (the progressive entropy maps are 
shown on the right of each image). We note that both the rendering 
results and the entropy maps have been re-oriented using the user-
defined up-directions since the default up-direction does not conform 
to the user-preferred tooth direction. In accordance with Bordoloi’s 
result, the entropy map of this dataset indicates the north-pole and 
the south-pole as the two most interesting regions. The SCP solver 
subsequently chooses the north-pole and the south-pole as the first 
two viewpoints, and therefore the resulting 2 images are deemed to 
reveal the most interesting information on the data. We also see that 
after the first 2-3 views have been selected the remaining entropy is 
rather low and sparse, but our system includes them in the gallery to 
provide complete coverage. Another important aspect to note in this 
particular experiment is the utilization of multiple transfer function 
in the same view. For some of the viewpoints, the potential 
information is hidden if only one transfer function is considered, as 
shown in the 6th viewpoint in Figure 1(g). But once the user is given 
a view that can guarantee the presence of useful information, he can 
always refine the transfer function to freely explore the interesting 
structures best revealed by this view.  

Next, we tested the framework on a practical dataset obtained 
from Computed Tomography (CT). Figure 11 shows the results for 
the carp dataset. According to the entropy maps, the first 3 views 
cover the most important features of the carp. The map also indicates 
that one side of the carp is slightly more interesting than the other 
side, due to the carp’s bent body as shown in Figure 11(d). The 
remaining two views are less important, but again we provide them 
for completeness of the gallery. 

Figure 12 shows a gallery obtained for the engine dataset where 
panels (d) and (g) each show images of the same view but rendered 
with different transfer function settings to visualize different aspects 
of the engine. This study illustrates the benefit of the two-phase 
design of our system. First obtain a view direction at which many 
different types of features can be observed well, and then maintain 

Fig. 7. (a) Entropy map and (b) cost map for the bluntfin dataset. In 
the cost map, the maximum number of overlaps is 8 which is 
mapped to white color. 

(a) the entropy map (b) the cost map 

Fig. 8. The cube datasets. (a): a standard cube. (b): a cube with text 
on a face. (c): a cube with features on the edges.  

(a) (b) (c) 

Fig. 9. The standard cube dataset (4 viewpoints computed by the SCP solver). The cube is shifted from the center. (a): the initial entropy 
map. (b-e): the suggested viewpoints rendered (top) and the maps with remaining entropy (bottom).  
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that view and visualize these features in a number of ways to 
accentuate their various relationships in turn. This approach allows 
the user to maintain a coherent spatial reference, while learning 
about the dataset through dynamic feature exploration.  

 Finally, we also tested our framework on a fluid simulation 
dataset, e.g., the well-known blunt fin. Figure 13 shows the 5 views 
suggested by the SCP solver. The view in Figure 13(a) is suggested 
as the most important view, which in fact is close to the most 
commonly selected view onto this dataset.  

All of our experiments were conducted on an NVIDIA GTX 480 
GPU, programmed with CUDA 3.2 runtime API, hosted by an Intel 
Core 2 Duo CPU @ 2.66GHz. Table 1 shows the performance of the 
different stages of our framework. The feature extraction part 
includes the thresholding and randomization of the resulting voxels. 
The visibility test portion is for testing the cluster normal directions 
at all views and also includes the splatting-based occlusion number 
computation. The most time-consuming part is the visibility test 
which would be much slower without GPU acceleration. The total 
processing time is about 2-8 times faster than a volume rendering of 
1,800 views with a fixed transfer function. Table 2 shows the optimal 
number of viewpoints computed by the ant colony-based SCP solver 
in 10 seconds and the number it finally converges to (marked by ∞). 
For practical datasets, the voxels were filtered at above 3% of the 
maximum scalar value to remove noise, and the average cluster 
width was in the range of 10-20 voxels.   

Table 1. The Performance of Different Stages of Our Viewpoint 
Suggestion Pipeline  

Dataset Datasize 
Feature Extraction / 
K-Means Clustering 

/ Visibility Test 

 Rendering 
Time / 

Speedup 
Cube 256x256x256 0.9s / 0.9s / 7.3s 18s / 2.0× 

Cube + Text 256×256×256 1.2s / 0.5s / 7.9s 18s / 1.9× 
Tooth 256×256×161 1.2s / 1.3s / 8.9s 93s / 8.2× 
Engine 256×256×110 1.1s / 0.6s / 10.4s 53s / 4.4× 

Blunt Fin 256×128×64 0.7s / 0.6s / 8.2s 26s / 2.7× 
Carp 256×256×512 2.5s / 2.5s / 9.2s 87s / 6.1× 

Table 2. The Problem Size of the K-Means Clustering and the 
Minimum Number of Views Found by the SCP Solver 

Dataset Voxels 
Initial k /  

Resulting k 

Averaged 
Cluster 
Width 

Views 
(10s / ∞) 

Cube 968 50 / 47 2.7 4 / 4 
Cube+Text 1278 60 / 58 2.8 5 / 5 

Tooth 170228 100 / 79 12.9 7 / 6 
Engine 529050 120 / 111 16.4 7 / 6 

Blunt Fin 65053 50 / 50 10.9 6 / 5 
Carp 331894 80 / 69 16.9 5 / 5 

6  EVALUATIONS  

We performed a simple user study to evaluate the effectiveness of 
our iView interface. For this, we invited 9 graduate students, all 
familiar with volume rendering and transfer function design. At all 
time, the subjects were permitted to use the 1D or 2D transfer 
function editor and choose any preferred view to look at the volume, 
with a fixed front-light and using the track-ball interface. The only 
testing condition was that they either had access to our entropy map 
or not. In the latter case the track-ball surface was simply left blank.   

Each subject/user would render two different dataset in turn – the 
tooth and the carp. For each dataset, a user was asked to construct 
two galleries (that is, select a set of viewpoints) that would best 
expose the salient information of the given dataset. The first gallery 
was always constructed with no entropy-map guidance, while for the 
second gallery this guidance was available. Prior to using the system, 
each user was trained on how to navigate with the entropy sphere (if 
provided), how to interpret its data, how to observe the clustering 
results and also how to use keys to add/delete views from the gallery.  

We compared the views selected with and without the iView 
guidance. We found that in general users would pick fewer views 
without guidance. The mean of the difference between two sets of 
views was 0. 90 (tooth) and 0.56 (carp). We used the dependent t-test 
for paired samples to analyze the view numbers with the hypothesis 
that those two means (with/without entropy map) are identical. The 
p-values for tooth and carp were 0.003 and 0.05, respectively. Thus, 
the fact that users would consistently pick fewer views without 
guidance indicates that iView helps users in locating commonly 
overlooked regions.  

It was also interesting to observe that no gallery generated 
without guidance would include all of the top three views found with 
guidance (or with the SCP solver). There were often redundant views 
in the uninformed gallery or views with low entropy. To capture this 
behavior more quantitatively, we measured a given gallery’s 
information coverage by the sum of entropy left in the map after 
gallery composition. When a user was allowed to use the map, the 
sum of the entropy left dropped from 51% to 24% for the tooth and 
from 37% to 19% for the carp, on average. Likewise, the percentage 
of entropy covered per view increased from 11% to 15% for the 
tooth and from 14% to 16% for the carp. This demonstrates that our 
navigation interface can clearly help users to optimize a set of 
viewing positions and with it the information seen.  

7 CONCLUSIONS 

We have presented a feature clustering approach that suggests users 
promising viewpoints for volume visualization prior to transfer 
function design activities. We believe that such a transfer function 
neutral approach cuts down on the volume exploration effort since it 
selects potentially interesting views before laborious transfer 
function exploration begins. As such, our approach promotes a data 
exploration procedure in which users first navigate to views that 
promise to show many features well and then explore and enhance 
these features and their relations via transfer functions in a stable 
spatial context. We believe that this is cognitively less challenging 
than changing viewpoint and transfer function at the same time.  

Our approach strongly favors interactive volume exploration, 
mapping the navigation aids directly on the track-ball interface used 
for spatial transformation. In addition, the system updates the 
navigation aids in an adaptive manner based on the views selected. 
Finally, a set cover problem solver is also available to choose a set of 
optimal views automatically to compose an overview gallery. 

(a) 

(c) 
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Fig. 10. The cube with text on one face (5 viewpoints computed by 
the SCP solver), with transfer function highlighting the text. (a): the 
initial entropy map. (b-f): the suggested viewpoints rendered (left) 
and the maps with remaining entropy (right).  

(e) (f)
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For future work, we plan to extend our feature descriptor to other 
known metrics, such as suggestive contours (where the derivative of 
the normal vector is 0) and other well-known descriptors from 
computer vision: the multi-scale Harris detector [16] or SIFT [24], 
which we used already in other work for feature detection [27]. 
Further, we also believe that the silhouette metric would be a 
promising candidate for dynamic flow visualization and we plan to 

research this more thoroughly. Finally, we also plan to implement 
the ant colony optimization on the GPU to reduce response time. 
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Fig. 11. The carp dataset (5 viewpoints computed by the SCP solver). (a): the initial entropy map. (b-f): the suggested viewpoints rendered (left) 
and the maps with remaining entropy (right). The transfer function could be changed in different views. 
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Fig. 13. The bluntfin dataset (5 viewpoints resulting from the SCP solver). 
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Fig. 12. The engine dataset (7 viewpoints computed by the SCP solver). (a-g): the suggested viewpoints rendered with different transfer 
functions. (d) and (g) shows the need to use multiple transfer functions to explore features.  
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